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Abstract: Limosilactobacillus fermentum CECT5716, a probiotic strain isolated from human milk, has
reported beneficial effects on different gastrointestinal disorders. Moreover, it has shown its ability to
restore altered immune responses, in association with microbiome modulation in different pathologi-
cal conditions. Therefore, our aim was to assess the effects of a Limosilacbacillus fermentum CECT5716
in a rat experimental model of irritable bowel syndrome (IBS) that resembles human IBS. The experi-
mental IBS was induced by deoxycholic acid (DCA) in rats and then, Limosilactobacillus fermentum
CECT5716 (109 CFU/day/rat) was administered. Behavioral studies, hyperalgesia and intestinal
hypersensitivity determinations were performed and the impact of the probiotic on the inflammatory
and intestinal barrier integrity was evaluated. Additionally, the gut microbiota composition was
analyzed. Limosilactobacillus fermentum CECT5716 attenuated the anxiety-like behavior as well as the
visceral hypersensitivity and referred pain. Moreover, this probiotic ameliorated the gut inflammatory
status, re-establishing the altered intestinal permeability, reducing the mast cell degranulation and
re-establishing the gut dysbiosis in experimental IBS. Therefore, our results suggest a potential use of
Limosilactobacillus fermentum CECT5716 in clinical practice for the management of IBS patients.

Keywords: IBS rat model; probiotic; Limosilactobacillus fermentum CECT5716; Intestine anti-inflammatory
activity; visceral analgesia

1. Introduction

Irritable bowel syndrome (IBS) is a highly prevalent disorder, in which a dysfunction
in the gut–brain axis seems to have a prominent role. This gut disorder is characterized by
abdominal discomfort, together with pain and altered bowel habits, associated stomach
bloating and flatulence [1]. It is estimated that 1 in 10 people worldwide suffers from
IBS [2], but its prevalence differs across reporting regions considering the disparity of
the various potential risk factors, including diet, gastrointestinal infections, genetics, and
gut microbiome composition [3]. The aetiology of IBS remains not completely unveiled;
however, recent experimental and clinical studies have shown that both physiological
and psychological variables are responsible for triggering the IBS symptoms [4]. The
pathophysiological mechanisms comprise alterations in the intestinal epithelial barrier
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function, in the composition of the gut microbiota (termed as dysbiosis) and in the immune
response, characterized by an increased number of intraepithelial lymphocytes, as well
as enteroendocrine and mast cells, in the gut mucosa [5]. In addition, psychological
factors, such as anxiety, stress, or depression, have also been shown to bias symptom
perception [6], although, at present, it is unknown if they are the cause or the consequence
of the development of IBS [7]. Furthermore, one of the main manifestations observed in IBS
is intestinal hypersensitivity in association with impairment of the intestinal function, which
often coexists with other frequent symptoms, including loss of appetite, sleep disturbances,
stress, and depressive states [8,9].

Therefore, the complexity of the pathophysiological mechanisms involved in IBS
together with a multifactorial etiopathogenesis makes its therapeutic management a chal-
lenge [10], which involves, in most cases, the combination of lifestyle and dietary interven-
tions with behavioral and pharmacological strategies. In this regard, many different types
of drugs have been proposed to exert beneficial effects in this condition, including antide-
pressants, laxatives, prokinetics, antidiarrheal drugs, serotonin 5-HT3 receptor antagonists,
antibiotics, intestinal secretagogues, opiate derivatives, stimulants of gabapentin-mediated
neuronal signaling as well as natural products [11,12] although their efficacy is controver-
sial [13]. In consequence, nowadays no pharmacological treatment that combines optimal
efficacy and safety has been reported. However, recent studies have described the modula-
tory effects of some nutraceuticals on mast cells which may influence (increase or reduce)
IBS symptoms [5]. Moreover, since IBS patients display an altered gut microbiome, its
selective modulation with using probiotics and/or prebiotics has emerged as a promising
therapy. In this sense, Limosilactobacillus fermentum CECT5716 is a probiotic strain isolated
from human milk that has shown to prevent the development of mastitis in breastfeeding
women [14], to reduce gastrointestinal infections in infants [15], as well as to modulate the
gut dysbiosis and the altered intestinal barrier function in experimental rodent models of
colitis [16,17], obesity [18] and hypertension [19], among others.

Considering all the above, the objective of the present study was to assess the beneficial
effects of L. fermentum in a rat model of chronic post-inflammatory visceral pain induced
by deoxycholic acid (DCA), which produces persistent visceral hyperalgesia and referred
pain resembling human IBS. Additionally, the impact of L. fermentum administration has
been evaluated on behavioral alterations, specifically those associated with stress, together
with its capacity to modulate the altered immune response and/or restore the dysbiosis
described in this experimental model of IBS. The effect of the probiotic treatment in this
IBS experimental model in rats was compared with two treatments used in IBS patients;
gabapentin (a GABAergic agent) and rifaximin (an antibiotic) that have been clinically
assayed for visceral pain, diarrhea and abdominal discomfort in human IBS [20–22].

2. Materials and Methods
2.1. Reagents, Drugs and Probiotics

The chemicals and drugs were purchased from Sigma Chemical (Madrid, Spain),
except when mentioned specifically. The probiotic Limosilactobacillus fermentum CECT5716
was provided by Biosearch, S.A. (Granada, Spain) and grown in MRS media for a period of
24 h at 37 ◦C under anaerobic conditions using the Anaerogen system (Oxoid, Basingstoke,
UK). For probiotic treatment, bacteria were daily suspended in sterile phosphate-buffered
saline (PBS) solution.

The in vitro studies was performed in complete DMEM Advanced (Gibco, Ther-
moFisher Scientific, Waltham, MS, USA) (containing 10% fetal bovine serum, 2 mM glu-
tamine (Lonza Barcelona, Spain), 1% penicillin/streptomycin and 1% amphotericin B) and
cultured at 37 ◦C and 5% CO2.

2.2. Cell Viability and Proliferation Assay

Viability and proliferation of rat basophilic leukemia-2H3 basophils (RBL-2H3) ob-
tained from the Cell Culture Unit of the University of Granada (Granada, ES, Spain) and
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human mast cells (HMC 1.2; Sigma Aldrich, MO, USA) after Compound 48/80 (50 µg/mL),
L. fermentum (1 × 109 CFU/mL), gabapentin (5, 10 or 25 µM) or rifaximin (5, 10 or 25 µM)
incubation were assessed by CellTiter 96® AQueous One Solution Cell Proliferation Assay
(MTS) from Promega (Madison, WI, USA) following the recommended protocol. Concisely,
the cells were seeded into 96-well plates and after 24 h, the [3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) solution was added
to each well and incubated for 1–4 h. Then, the absorbance of the supernatant was mea-
sured at 490 nm. Cell viability and proliferation (%) were calculated by comparing sample
absorbance values with untreated control cultures.

2.3. Quantification of β-Hexosaminidase Release In Vitro

The cell degranulation response was quantified measuring the level of β-hexosaminidase
released in culture supernatants from RBL-2H3 and HMC 1.2.

RBL-2H3 (1.25 × 106 cells/mL) and HMC 1.2 (1.25 × 106 cells/mL) cells were incu-
bated in 96-well plates for 24 h at 37 ◦C under 5% CO2. Next day, after washing, cells were
incubated for 30 min with L. fermentum (1 × 109 CFU/mL), gabapentin or rifaximin at 5,
10 or 25 µM diluted in Tyrode’s buffer (137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1.8 mM
CaCl2, 0.2 mM Na2HPO4, 12 mM NaHCO3, 5.5 mM D-Glucose). Then, cells were stimulated
with Compound 48/80 at 50 µg/mL. Tyrode’s buffer and Compound 48/80 at 50 µg/mL
diluted in Tyrode’s buffer were used as negative and positive controls, respectively. After
90 min of incubation with the substrate solution (3.5 mg/mL p-nitrophenyl-N-acetyl-β-D-
glucosaminide in 40 mM citric acid, pH 4.5) at 37 ◦C, the supernatants were collected and
the β-hexosaminidase released was measured. The reaction was stopped by adding glycine
400 mM, pH 10.7, and optical density was measured at 405 nm in a microplate reader
(Tecan, Männedorf, CH, Switzerland). The spontaneous enzyme release was deducted from
this total value and data were expressed as a percentage (%) of the total β-hexosaminidase
content in the cells measured by lysing cells with 0.1% Triton X100.

2.4. Rat Model of Irritable Bowel Syndrome by DCA

The animal studies were performed in agreement with the “Guide for the Care and
Use of Laboratory Animals” as promulgated by the National Institute of Health, ARRIVE
guidelines and the protocols approved by the Ethics Committee of Laboratory Animals of
the University of Granada (17/07/2020/084). Adult (10 weeks old) male Sprague Dawley
rats (240–320 g) were purchased from Janvier Labs (St Berthevin Cedex, FR) and housed
in Makrolon cages (5 rats/cage; 2 cages per group), maintained with a 12 h light–dark
cycle and provided with ad libitum food and tap water in an air-conditioned atmosphere
(20–22 ◦C and 45–55% humidity). The rats were randomly assigned to 5 study groups
(n = 10). To develop IBS, rats were fasted overnight. Next day, rats were anesthetized and
1 mL of 4 mmol/L DCA in Krebs’ solution was administered through the colon by a gavage
needle once daily for three consecutive days. Rats were kept on a mound of bedding in a
head-down position to avoid leakage of DCA. A control group (Non-IBS) was included
for reference, which was given the DCA vehicle. Once IBS had developed, the different
compounds were administered daily by oral gavage, for 14 days. Rats were treated with
rifaximin (150 mg/kg), gabapentin (70 mg/kg) or L. fermentum (109 CFU/day) depending
on the group. The IBS control group followed the same protocol but received sterile water
(vehicle used for all compounds). Rats’ body weights, water and food intake and diarrhea
episodes were daily recorded during the experiment by a blinded observer. After finishing
the administration and physical/behavioral determinations, rats were sacrificed with an
overdose of halothane. Then, the colon was removed aseptically and kept frozen at −80 ◦C
or fixed in 10% neutral buffered formalin until future studies.

2.5. Measurement of Response to Colorectal Distension

Visceral hypersensitivity was evaluated 7 and 14 days after the last administration of
DCA by the response of rats to colorectal distension (CRD) as previously described [23].
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Briefly, under light anesthesia, a mini balloon was trans-anally inserted into the colon
and inflated to 60 mmHg for a 20 s stimulation period followed by a 5 min period of rest.
Behavioral responses to CRD were collected by a blinded observer in triplicate following a
score system based on abdominal withdrawal reflex (AWR). The scores were as follows:
0 = normal behavior without response; 1 = brief head movement at the onset of the stimulus
followed by immobility; 2 = contraction of abdominal muscles; 3 = lifting of the abdomen
off the platform; 4 = body arching and lifting of pelvic structures [24,25].

2.6. Determination of Referred Pain

Rats were checked for referred hyperalgesia 7 and 14 days after the last administration
of DCA. For this purpose, rats were shaved on the abdomen and then located in individual
plastic boxes. Once calm and acclimatized, a series of von Frey filaments (Stoelting Co,
Wood Dale, IL, USA) ranging from 8 g down to 1 g were perpendicularly applied to the
abdomen. Each filament was tried 5 times for 10 s. If the rat had a positive response (brisk
escape), then the filament of the next lower force was applied. The test ended when two
filaments were applied without a positive response.

2.7. Intestinal Permeability

Regarding intestinal permeability, 12 days after the last administration of DCA, rats
were fasted for 12 h and administered 4000 Da fluorescent dextran–FITC (DX-4000–FITC)
(350 mg/kg) by oral gavage. Four hours later, blood was collected from the abdominal
aorta and DX-4000–FITC concentration was analyzed in plasma (diluted 1:20) using a
Fluorostart fluorescence spectrophotometer (BMG Labtechnologies, Offenburg, Germany).
The excitation wavelength was 485 nm and the emission one was 535 nm. FITC–dextran
diluted in PBS was used to obtain the standard curves [26].

2.8. Gene Expression Analysis

In order to test the impact of the compounds, colonic gene expression of Muc-3, Vegf-α,
Cox-2 and Trpv1 were analyzed by RT-qPCR. Total RNA was isolated from colonic samples
employing NucleoZOL® (Macherey-Nagel GmbH & Co. KG, Dueren, Germany) following
the manufacturer’s protocol. Then, RNA was quantified and reverse transcribed using
oligo (dT) primers (Promega, Southampton, UK). Real time quantitative PCR amplification
and detection were carried out using 20 ng of cDNA, the KAPA SYBR® FAST qPCR Master
Mix (Kapa Biosystems, Wilmington, MA, USA) and specific primers at their annealing
temperature (Ta) (Table 1). The values of the housekeeping glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) gene were used to normalize mRNA expression. The 2-∆∆Ct
method was employed to calculate the mRNA relative quantitation.

Table 1. Primer sequences employed for real-time PCR assays.

Gene Sequence 5′–3′ Annealing
Temperature (◦C)

Muc-3 FW: CACAAAGGCAAGAGTCCAGA
RV: ACTGTCCTTGGTGCTGCTGAATG 60

Cox-2 FW: TGATGACTGCCCAACTCCCATG
RV: AATGTTGAAGGTGTCCGGCAGC 60

Vegf-α FW: CTTCCGAGGGATTCAATATTTC
RV: CTCATCTCTCCTATGTGCTG 55

Trpv1 FW: AAGAGTTTGTTTGTGGACAG
RV: TGTAGTAGAGCATGTTGGTC 56

Gapdh FW: CCATCACCATCTTCCAGGAG
RV: CCTGCTTCACCACCTTCTTG 60
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2.9. Western Blot Analysis

Proteins were extracted from colon samples, their concentration were measured using
a BCA Protein Assay Kit (Pierce Biotechnology, Waltham, MA, USA), and run on SDS-PAGE
gel (Beyotime Biotechnology, Haimeng, China) and transferred onto a polyvinylidene fluo-
ride membrane (Millipore, Berlington, MA, USA). After 5% milk blocking, the membranes
were incubated at 4 ◦C overnight in the primary antibody: Occludin (E-5) sc-133256 (Santa
Cruz Biotechnology, Heidelberg, DE, USA). β-actin (Santa Cruz) at 1:1000 dilution was
used as an internal reference. Then, the membranes were incubated with a secondary
antibody (Cell Signaling Technology, Danvers, MA, USA) for 2 h at room temperature
and exposed to enhanced chemiluminescence for signal intensity quantification (Bio-Rad
Laboratories, Madrid, ES, Spain). The obtained images were evaluated using ImageJ Fiji
Software [27].

2.10. DNA Extraction and Illumina MiSeq Sequencing

Fecal DNA was isolated using the protocol reported by Rodríguez-Nogales et al. [16].
DNA was amplified with primers targeting regions flanking the variable regions 4 through
5 of the bacterial 16 S rRNA gene (V4–5) and explored employing Illumina MiSeq tech-
nology. The PCR reactions from the same samples were pooled in one plate, cleaned,
and normalized in Invitrogen SequalPrep 96-well Plate kit. The quantified sequences that
resulted were completed, quality-filtered, clustered and taxonomically assigned on the
basis of 97% similarity level against the RDP (Ribosomal Database Project) [28] with the
QIIME2 software package (2021.11 version; https://qiime2.org; California, USA) and “R”
statistical software package (version 3.6.0; https://www.r-project.org/) [29].

2.11. Histology

Colon specimens were fixed in 10% neutral buffered formalin for a minimum of 3 days,
dehydrated, embedded in paraffin, and sectioned. Then, histological sections of 5 µm
were stained with either hematoxylin and eosin (H&E) or Toluidine Blue (TB). The H&E
histological staining was used to assess the inflammatory cell infiltration in the colon. On
the other hand, TB staining was applied to visualize mast cells in the connective tissue.
Specimens were evaluated independently by 3 individual researchers who were blinded to
the experimental procedure. The results were analyzed using ImageJ Fiji Software (version
2.9.0.) [27].

2.12. Anxiety Behavior Associated with Visceral Hypersensitivity

Animals were placed in the center of a brightly illuminated arena from the top open-
field (OF) for a 10 min trial. The OF arena was a translucent polyethylene box with internal
dimensions of 60 cm × 60 cm × 45 cm. Behavioral responses were recorded by a camera
above the center of the open-field and connected to a computer. Then, the obtained videos
were analyzed by a blinded observer. The time elapsed in central and peripheral zones was
recorded using a software designed for this purpose (CPP.OF version 21, Tiselius company,
Madrid, Spain). Results were expressed as the percentage of time that the animal spent in
the central zone.

The excreted feces were collected and the OF arena was cleaned with ethanol (70%) at
the end of each session.

2.13. Statistics

In the in vivo and in vitro studies the data are expressed as the mean ± standard error
of the mean (SEM) and are representative of three independent experiments. Differences
between means were tested for statistical significance using a one-way analysis of variance
(ANOVA) followed by the Bonferroni post hoc test. For non-parametric data, median
and CI 95% were used and the Kruskal–Wallis test was performed. The von Frey data
were registered as areas under the curve (AUC) that were quantified with the trapezoid
method. The distribution of force threshold AUC’s was evaluated for normality using the

https://qiime2.org
https://www.r-project.org/
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Kolmogorov–Smirnov one-sample test and the data were transformed prior to analysis
using the histogram transformation. The AUC data of the five treatment groups were
compared using a generalized linear model treatment group as factors.

Microbiome evaluation including α-diversity indices and taxa abundance of the differ-
ent groups were compared using Kruskal–Wallis test followed by pairwise Mann–Whitney
U comparison. Resulting p-values were adjusted by the Bonferroni method. Analysis of
α-diversity was carried out on the output normalized data, which were assessed using
Mothur. Principal coordinate analysis (PCoA) was accomplished to identify principal
coordinates and visualize β-diversity in complex multidimensional data of bacteriomes
from different groups of rats. Differences in beta-diversity were tested by permutational
multivariate analysis of variance (PERMANOVA). The data are expressed as the mean ±
standard error of the mean (SEM). Multiple comparisons between groups were performed
using the one-way ANOVA, followed by the Bonferroni post hoc test.

For the correlation analysis between fold gene expression data and gut microbiome
abundance values, the “stat_cor” function of R package was used. We then calculated the
Spearman rank correlation coefficients for each group of study and the corresponding p
values applying the cor.test() function with a two-sided alternative hypothesis.

All statistical analyses were performed with the GraphPad Prism version 8.1 (Graph-
Pad Software Inc., San Diego, CA, USA), with the statistical significance placed at p < 0.05.

3. Results and Discussion

IBS is one of the most diagnosed gastrointestinal diseases, with a 10% prevalence in the
general population, considering the Rome IV criteria [1]. IBS has a great negative impact
on well-being and socioeconomic status, considering that the current treatments frequently
show side effects and are not effective [30,31], most likely due to the complicated patho-
physiology and the variability of the clinical manifestations of the condition [10]. This has
made the patients more prone to self-medicating and using alternative and complementary
medicines, which may treat a broader range of symptoms. Among these, probiotics have
been proposed for exerting beneficial effects against these conditions [32]. In this study, we
have evaluated the effects of the probiotic L. fermentum in DCA-induced post-inflammatory
IBS in rats.

3.1. L. fermentum Administration Ameliorates the Anxiety-like Behavior in Experimental IBS

Studies conducted in both humans and animals have shown that chronic intestinal
diseases are frequently linked to anxiety-like behaviors as well as high levels of stress [9,33].
These behaviors would be the product of changes in corticolimbic areas related to emotion
processing [34]. In this study, the open field maze was used to explore if this experimental
model of IBS would also be related to anxiety-like behaviors, as well as the impact of the
different treatments. In fact, the administration of DCA to rats produced a significant
reduction in the time in the central zone compared with Non-IBS rats (Figure 1), which is
considered as an evident sign of anxiety. However, those groups treated with L. fermentum,
rifaximin and gabapentin, significantly spent more time in the central zone, thus indicat-
ing an improvement in the state of anxiety associated with the visceral hyperexcitability
developed in this model of IBS (p < 0.05; Figure 1).

3.2. L. fermentum Administration Ameliorates IBS-Associated Visceral Pain

Previous studies have shown that DCA administration to rats for three consecutive
days increases visceral hypersensitivity [35], being this the most incapacitating symptom
in human IBS. Moreover, this model is characterized by a mild and transient colonic inflam-
mation, with no symptoms of ulceration or epithelial damage and with persistent visceral
hyperalgesia. Different methods have been employed to assess this visceral hypersensi-
tivity, which shows some similarities to visceral pain in human IBS [36]. Correspondingly,
the results revealed higher visceral hypersensitivity to CRD (pressure applied 60 mm Hg),
one and two weeks after DCA administration (IBS group), in comparison with Non-IBS
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rats (p < 0.05; Figure 2a,b). Remarkably, the administration of L. fermentum (109 CFU/day)
significantly lowered the CRD scores after both periods of time when compared with the
IBS control group (p < 0.05; Figure 2a,b). Remarkably, the probiotic treatment showed a
similar reduction in the CRD values to the treatments with gabapentin or rifaximin (p < 0.05;
Figure 2a,b), which are frequently prescribed to treat chronic neuropathic pain and visceral
hyperalgesia in human IBS [37]. Actually, other probiotics, including lactobacilli and bifi-
dobacteria, have reported beneficial effects on visceral pain in different IBS experimental
models [38,39].
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Figure 2. Response to colorectal distension (CRD) was collected using a score system; one (a) and
two (b) weeks after intracolonic administration of DCA vehicle (Non-IBS), 4 mmol/L DCA (IBS),
L. fermentum (109 CFU) (L. ferm), Gabapentin at 70 mg/kg (GBP) and Rifaximin at 150 mg/kg (RFX)
treated rats. Data are expressed as means (triplicate measurements) ± SEM (n = 10). Groups with
different letters statistically differ (p < 0.05).

3.3. L. fermentum Administration Reduces Visceral Hyperalgesia and Allodynia in the DCA
Experimental Model

The intracolonic administration of DCA causes moderate intestinal inflammation,
associated with somatic hyperalgesia and allodynia [40]. Thus, the referred pain was tested
by the response (brisk escape) induced by the application of von Frey filaments in the lower
abdomen. The results showed a significantly lower response threshold to pressure in the
IBS control group in comparison with the Non-IBS group, revealing the higher visceral
hyperalgesia at both time points evaluated (Figure 3a,b). Additionally, the percentages
of responses were significantly higher at all the pressure points evaluated, being those
more intense after 7 days (Figure 3a) than 14 days later (Figure 3b). The treatment with
L. fermentum or rifaximin significantly diminished the nociceptive score (from 4 to 26 g),
when compared to the IBS group, one and two weeks after the last DCA administration
(p < 0.05) (Figure 3a,b). Conversely, in the groups treated with gabapentin, although they
failed to show significant differences in the nociceptive score in comparison with the IBS
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control group, a tendency was noticed in the second week and no statistical differences were
seen among treated groups. On the other hand, it is important to remark that, despite the
fact that other probiotics have been shown to have the potential to modulate visceral hyper
sensation and to alleviate the visceral pain responses in animal studies [41,42], this study
shows for the first time the capacity of L. fermentum to alleviate the increased sensitivity
induced by DCA administration in rats.
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Figure 3. Evaluation of referred hyperalgesia one (a) and two (b) weeks after DCA instillation. Von
Frey filaments (1–8 g) were applied to the abdomen of DCA vehicle (Non-IBS), 4 mmol/L DCA
(IBS)-, L. fermentum (109 CFU) (L. ferm)-, Gabapentin at 70 mg/kg (GBP)- and Rifaximin at 150 mg/kg
(RFX)-treated rats. Referred hyperalgesia was calculated considering the percentage of response
to filaments (number of animals responding to the filament) and area under the curve (AUC) was
determined. Data are expressed as means ± SEM (n = 10). * p < 0.05 vs. IBS group. Groups with
different letters are statistically differ (p < 0.05).

3.4. L. fermentum Administration Ameliorates Gut Inflammatory Status in Experimental IBS

The IBS-associated intestinal inflammatory process plays a pathogenic role in IBS.
In fact, several studies have reported gut mucosal inflammation at the microscopic and
molecular levels [43]. Moreover, chronic, low-grade, subclinical inflammation has also been
thought to perpetuate the symptoms of IBS [35]. Specifically, in this experimental model, the
DCA administration also induces a low-grade inflammatory process and an altered immune
response [36]. The gene expression profile of different markers, including Vegf-α, Cox-2 and
Trpv-1, was significantly increased in the IBS group in comparison with Non-IBS control
(Figure 4a–c, respectively). Previous studies have described higher levels of these mediators
in IBS patients [44–47]. Remarkably, the probiotic and rifaximin treatments significantly
reduced their expression (Figure 4). These results agree with our previous results regarding
visceral pain evaluation. It has been well known that active immunogenic mediators
induce activation of COX-2 leading to an increase in the synthesis of prostaglandin E2,
which contributes to visceral hypersensitivity and diarrhea related to IBS [48]. Here, we can
observe that the probiotic and rifaximin treatment reduced the Cox-2 gene expression, which
was associated with the amelioration of the visceral pain and the referred hyperalgesia.
Additionally, the increase in TRPV1, a receptor of pain perception, has been reported in gut
and primary sensory neurons from animals and IBS patients [49]. It is important to note
that different studies have revealed that species from Lactobacillus as well as the rifaximin
can improve the visceral hyperalgesia via the TRPV1 channel [50,51]. On the other hand, it
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is widely recognized that VEGF plays a key role in wound repair and chronic inflammation,
being also able to promote vascular permeability, as well as the adhesion of leukocytes to the
endothelium and chemotaxis of monocytes [52]. Moreover, VEGF upregulates NF-κB and
the production of many proinflammatory cytokines and chemokines [53]. Consequently, a
significantly increased gene expression of Vegf -α was seen in the IBS control group when
compared with the Non-IBS control group (Figure 4a), whereas the treatment with rifaximin
and the probiotic significantly reduced it. Thus, although it is not well known why these
markers are overexpressed, it could be linked to an unbalanced stimulation of the immune
response by the intestinal microorganisms, including a mucosal barrier dysfunction, and/or
stress-caused activation of the immune system. Consequently, our results sustain that the
immunomodulatory properties of L. fermentum can contribute to its positive effect.
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Gabapentin at 70 mg/kg (GBP) or Rifaximin at 150 mg/kg (RFX) treatment on colonic gene ex-
pression of Vegf-α (a), Cox-2 (b) and Trpv-1 (c) assessed by real-time qPCR and normalized with the
housekeeping gene Gapdh. Data are expressed as means ± SEM (n = 10). Groups with different letters
statistically differ (p < 0.05).

3.5. L. fermentum Administration Reduces Cell Degranulation

As commented above, IBS is more and more considered as a low-grade inflammatory
disorder and attention has been centered on the roles of mast cells (MCs) in the intestinal
wall. Many other immune cells (T and B cells, eosinophils, monocytes, macrophages) may
also participate in the pathophysiology of IBS, however, mast cells have been identified
as key connectors of the intestinal mucosa and the nerve fibers of the enteric nervous
system [54,55]. MCs are related with major intestinal functions, such as epithelial secretion,
epithelial permeability, blood flow, neuroimmune interactions and visceral sensation [56].
In fact, MCs hyperplasia and activation would lead to anomalous gastrointestinal sensi-
tivity, motility and secretion, which in turn promote abdominal pain and/or discomfort,
bloating and abnormal intestinal function [57]. In this sense, many therapies targeting
mast cells have been explored in IBS patients and have shown good effectiveness to some
extent [58,59]. Therefore, and in order to disclose the mechanism involved in the positive
effects of L. fermentum in the IBS experimental model, the impact of the probiotic was
evaluated on the mastocytosis process. The confocal microscopy using blue toluidine
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staining showed that the number of mast cells in the intestinal mucosa was significantly
elevated in the IBS control group compared to Non-IBS rats, being reduced by the different
treatments assayed (Figure 5).
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by determining the β-hexosaminidase release in RBL-2H3 and HMC 1.2 cells. Firstly, the 
toxicity of L. fermentum (1010 CFU/mL), gabapentin (5, 10 and 25 μM) or rifaximin (5, 10 
and 25 μM) was measured in both cell lines by the MTS assay, and the results suggested 
that the cell viability was not significantly modified after treatment incubations. However, 
only L. fermentum could significantly decrease the release of the degranulation marker β-
hexosaminidase in both cell lines in comparison with non-treated cells (p < 0.05). Similarly, 

Figure 5. Mastocytosis in colonic tissue in DCA vehicle (Non-IBS), 4 mmol/L DCA (IBS)-, L. fermentum
(109 CFU) (L. ferm)-, Gabapentin at 70 mg/kg (GBP)- and Rifaximin at 150 mg/kg (RFX)- treated rats.
Representative distal colon tissue stained with toluidine blue (scale bar = 20 µm). Yellow arrows
show mast cells inactivated in Non-IBS tissue and mast cells activated in IBS tissue at 100X.

Furthermore, the mast cell degranulation process leads to the release of inflammatory
mediators that can activate enteric neurons [60]. In fact, previous studies have shown that
colonic mast cell infiltration and the mediators released close to the mucosa innervation
might promote the abdominal pain perception (severity and frequency) in IBS patients [61].
Consequently, in the present study, the in vitro mast cell degranulation was assessed by
determining the β-hexosaminidase release in RBL-2H3 and HMC 1.2 cells. Firstly, the
toxicity of L. fermentum (1010 CFU/mL), gabapentin (5, 10 and 25 µM) or rifaximin (5, 10
and 25 µM) was measured in both cell lines by the MTS assay, and the results suggested
that the cell viability was not significantly modified after treatment incubations. However,
only L. fermentum could significantly decrease the release of the degranulation marker β-
hexosaminidase in both cell lines in comparison with non-treated cells (p < 0.05). Similarly,
the data obtained with C48/80-stimulated RBL-2H3 cells showed that only the incubation
with L. fermentum significantly inhibited the β-hexosaminidase production in comparison
with non-stimulated cells (p < 0.05) (Figure 6a). In contrast, when the HMC1.2 cells were
analyzed, the results indicated (Figure 6b) that all treatments were capable of reducing
the degranulation process, thus showing lower values of β-hexosaminidase production
induced by C48/80 when compared with non-treated cells (p < 0.0001 all, Figure 6b).
Other lactobacilli have been reported to suppress the production of β-Hexosaminidase
in vitro [62] and in vivo [63,64]. Interestingly, the C48/80 compound is a mixed polymer
of p-methoxy-N-methyl phenylethylamine crosslinked by formaldehyde and broadly em-
ployed to stimulate mast cells, thus, many reports have described that C48/80 require
stimulation of nerves by mast cell activation. Therefore, these results reveal a new and
innovative mechanism of action of the probiotic. Actually, its positive effect can be ascribed
to its capacity to modulate the mast cell degranulation through the inhibition of the release
of β-Hexosaminidase induced during the inflammatory process.
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dysfunction in IBS patients [65]. In this sense, the IBS group displayed a significant 
increase in the histological damage of the colon whereas Non-IBS control rats had intact 
intestinal mucosa, with the villi neatly arranged (Figure 7a,b). After the different 
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Figure 6. Evaluation of β-hexosaminidase production in RBL-2H3 cells (a) and HMC-1.2 cells (b).
Cell controls (called C) and cells incubated with L. fermentum (1 × 109 UFC/mL), Gabapentin (GBP at
5, 10 and 25 µM) or Rifaximin (RFX at 5, 10 and 25 µM) and then stimulated with Compound C48/80
or vehicle. Experiment was performed in triplicate. Data are expressed as means ± S.E.M. Groups
with * are statistically different (p < 0.05) from the control group (non-stimulated cells). Groups with
# statistically differ (p < 0.05) from the C48/80 stimulated group.

3.6. L. fermentum Supplementation Ameliorated the Altered Intestinal Permeability in
Experimental IBS

Several reports have described that a deficient epithelial barrier function leads to
aberrant gut permeability, which is linked to a defective immune response and gut dys-
function in IBS patients [65]. In this sense, the IBS group displayed a significant increase
in the histological damage of the colon whereas Non-IBS control rats had intact intesti-
nal mucosa, with the villi neatly arranged (Figure 7a,b). After the different treatments,
including probiotic administration, an enhancement of the colonic histology was observed,
characterized by decreased congestion and edema, as well as inflammatory cell infiltration,
regular arrangement of intestinal villi and a smaller villus gap (Figure 7a,b).
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Figure 7. Effects of DCA vehicle (Non-IBS), 4 mmol/L DCA (IBS), L. fermentum (109 CFU) (L. ferm),
Gabapentin at 70 mg/kg (GBP) and Rifaximin at 150 mg/kg (RFX) administration on colonic tissue.
(a) Representative sections of the distal colon analyzed by hematoxylin and eosin staining (scale
bar = 20 µm). (b) Histopathological scores of inflammation cell infiltration, depth of lesions, destruc-
tion of crypts, width of lesions and crypt damage. Data are expressed as means ± SEM (n = 10).
Groups with different letters statistically differ (p < 0.05).

It has been described that DCA downregulates the gene expression of numerous
pathways associated with cell junctions and improves permeability in a human intestinal
barrier model [66–68]. Accordingly, a lower expression of the colonic mucin component
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Muc-3 was detected in the untreated IBS control group in comparison with Non-IBS rats
(p < 0.05) (Figure 8a); MUC-3 is an important glycoprotein of the mucus layer found
covering the colonic mucosal surface. Actually, the reduction in mucin expression has
been previously reported both in this model as well as in other experimental models
of IBS [23]. Interestingly, the administration of L. fermentum, as well as gabapentin and
rifaximin, ameliorated the expression of Muc-3 (Figure 8a), thus contributing to restoring
the damaged gut barrier. Additional experiments showed that L. fermentum treatment
enhanced the intestinal function by improving permeability, which was evaluated in vivo
using FITC-dextran and by the WB determination of occludin expression (Figure 8b).
FITC-dextran plasma concentrations in the control IBS rats were higher in comparison
with Non-IBS rats, which agrees with an impaired epithelial barrier function seen in this
experimental model of IBS. It is interesting to remark that all the treatments significantly
lowered FITC-dextran levels in comparison with the IBS control group (p < 0.05; Figure 8b).
Similar results were obtained when occludin (OCLN) expression was evaluated. It was
diminished in the IBS control group in comparison with the Non-IBS group, whereas
the treatments were able to increase it (Figure 8c). Curiously, DCA is a secondary bile
acid naturally regulated by microbial processes and gut microbial composition. In fact,
lactobacilli has been reported as participating in the preservation of the gut barrier by
regulating the bile acid metabolization [69]. Consequently, summing up the present results,
this probiotic could have a beneficial effect in the IBS condition by improving the intestinal
mucosal barrier integrity.
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3.7. L. fermentum Modulates the Gut Dysbiosis in the DCA Experimental Model in Rats

The IBS pathophysiology comprises alterations in visceral nerve sensitivity, gut perme-
ability and psychological factors. However, more and more evidence suggests the crucial
etiopathogenic role played by the intestinal microbiome; in fact, metagenomic studies
have reported an altered intestinal microbiome, called dysbiosis, in IBS patients compared
with healthy subjects [70,71]. Since previous studies have described the capacity of the
probiotic L. fermentum to ameliorate gut dysbiosis in different experimental models of
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disease, the intestinal microbiota composition was evaluated in the present study. The
amplicon sequencing results showed a modification in the bacterial architecture of the
IBS rats (Figure 9). Specifically, alpha diversity assessed by different indexes (Observed
species, Shannon, Simpson, ACE and PD_whole) indicated that the probiotic treatment
significantly increased the diversity compared with the untreated IBS group (Figure 9a).
Similarly, the beta diversity analyzed by weighted unifrac method revealed a clear sepa-
ration in the Principal Coordinates Analysis (PCoA) between the Non-IBS and IBS rats,
thus indicating an evident disruption of the homeostasis of gut microbiome by the DCA
instillation (Figure 9b). Remarkably, L. fermentum and gabapentin groups showed a closer
distance to the Non-IBS group than to the IBS group (Figure 9b). Consistently, the Venn
diagram (prevalence 75%) revealed 34 common OTUs among the Non-IBS and IBS groups,
and that the highest number of shared OTUs was found among the Non-IBS rats and the
L. fermentum group (Figure 9b).
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Additionally, the gut microbiota taxa and their abundance were also analyzed. As
shown in Figure 10a, the taxonomic composition at the phylum level mainly comprised
Bacillota, Bacteroidota and Verrucomicrobiota. The abundance of Bacillota, Verrucomicrobia and
Cyanobacteria was augmented in the IBS group compared with the control group, while
Bacteroidota and Pseudomonadota were reduced (Figure 10a). Notably, the probiotic and
gabapentin were capable of ameliorating the modification of gut microbiota composition
caused by DCA stimulation (Figure 10a). Moreover, the Bacillota/Bacteroidota (named
F/B) ratio in the IBS group was significantly greater than in the control rats, and the
administration of the probiotic was able to significantly reduce it (Figure 10b). These
results confirm previously reported assays in which IBS patients display consistent changes
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consisting in higher Bacillota and lower Bacteroidota abundance [70]. In fact, it has also been
published that the F/B ratio is increased in IBS patients [71].
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IBS), 4 mmol/L DCA (IBS)-, L. fermentum (109 CFU) (L. ferm)-, Gabapentin at 70 mg/kg (GBP)-
and Rifaximin at 150 mg/kg (RFX)-treated rats. (a) Distribution histogram of relative abundance
of phylum taxa. (b) Bacillota/Bacteroidota (called F/B) ratio in each experimental group. (c) Venn
diagram showing the number of OTUs unique and common to each group. (d) Taxonomic signatures
at genus level. Data are presented as mean ± SEM. Bars with different letters are statistically different
(p < 0.05).

At a genus level, the results revealed that the abundance of some bacteria, such as
Prevotellaceae_UCG_001, Prevotella_g and Collinsella, was enhanced in the IBS control group
when compared to Non-IBS rats (Figure 10d), in agreement with the results previously
reported in experimental IBS [72,73]. Of note, the abundance of all of these genera was
restored by the probiotic treatment (Figure 10a). Curiously, the overabundance of Prevotella
has been associated with the induction of visceral hypersensitivity by boosting carbohy-
drate fermentation and hindering gut mucosal immune function [74,75]. Moreover, the
higher abundance of Collinsella in IBS rats may display a proinflammatory effect through
gas production, thus upholding IBS development [76]. Conversely, different bacterial taxa
were diminished in the IBS group in comparison with the Non-IBS group (Oscillibacter,
Bacteroides, Butyricicoccus and Lachnospiraceae) (Figure 10d), being the abundance of these
bacteria partially restored in those groups of rats treated by L. fermentum or gabapentin
(Figure 10d). Interestingly, the reduction in these bacterial taxa has been also reported in
IBS patients [77]. These microorganisms are included in the butyrate-producing bacteria
classification and their abundance has been reduced in the IBS group. It is well known that
butyrate is a pivotal element for the maintenance of intestinal homeostasis and epithelial
integrity, considering that it is the principal energy source for colonocytes. Consequently,
the impact of the probiotic administration on these genera can contribute to attenuation of
the visceral pain associated with this IBS model. In fact, when we explored the link between
Trpv1 and the abundance of these bacterial genus, the results showed that the IBS group
resulted in a positive correlation between Trpv1 expression and this bacterial abundance,
such as Bacteroides, Butyricicoccus, Prevotellaceae_UCG_001 and Collinsella, compared with
the Non-IBS rats (Figure 11). In the Bacteroides and Butyricicoccus correlation with Trpv1, the
rise of abundance in the rats treated with gabapentin and the probiotic was not correlated
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with an increase in the receptor of pain perception (Figure 11a,b). However, when the
Prevotellaceae_UCG_001 and Collinsella abundances were correlated with the pain receptor,
the treatments maintained lower abundances of both of these bacterial taxa and the expres-
sion of the receptor (Figure 11c,d). This relationship occurs reciprocally, since situations of
chronic stress, as well as exacerbated anxiety responses, also alter the conformation of the
intestinal microbiota [78,79]. This gut–brain relationship could explain how the probiotic
treatment improved both intestinal dysbiosis and behavioral disorders [80,81].
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4. Conclusions

This study revealed the positive effects of L. fermentum on an experimental IBS model
in rats. L. fermentum administration attenuated DCA-induced visceral hyperalgesia and
referred pain. Furthermore, the probiotic ameliorated the inflammatory state of the rats,
downregulating the expression of pro-inflammatory mediators linked to visceral analgesia
and gut epithelial barrier integrity-maintenance. This study suggests a new mechanism
of action of L. fermentum in the IBS experimental model in rats that involves the serotonin
pathway, being the probiotic able to inhibit mast cell degranulation. Moreover, the probiotic
exerted beneficial effects through the restoration of gut dysbiosis. Therefore, our data
support the treatment with L. fermentum as a novel preventative and/or therapeutic strategy
against IBS.
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