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Abstract: As life becomes richer day by day, the requirement for quality industrial products is
becoming greater and greater. Therefore, image anomaly detection on industrial products is of
significant importance and has become a research hotspot. Industrial manufacturers are also gradually
intellectualizing how product parts may have flaws and defects, and that industrial product image
anomalies have characteristics such as category diversity, sample scarcity, and the uncertainty of
change; thus, a higher requirement for image anomaly detection has arisen. For this reason, we
proposed a method of industrial image anomaly detection that applies a generative adversarial
network based on attention feature fusion. For the purpose of capturing richer image channel
features, we added attention feature fusion based on an encoder and decoder, and through skip-
connection, this performs the feature fusion for the encode and decode vectors in the same dimension.
During training, we used random cut-paste image augmentation, which improved the diversity of
the datasets. We displayed the results of a wide experiment, which was based on the public industrial
detection MVTec dataset. The experiment illustrated that the method we proposed has a higher
level AUC and the overall result was increased by 4.1%. Finally, we realized the pixel level anomaly
localization of the industrial dataset, which illustrates the feasibility and effectiveness of this method

Keywords: anomaly detection; attention feature fusion; generative adversarial network; image
augmentation

1. Introduction

Anomaly detection, also named as outlier detection, is a process in which actual
cases are detected where there is an obvious deviation from the majority of the data [1],
and then the anomalous value is found for the data distribution that is different from the
body data. For the past few years, image anomaly detection has been widely applied
in several research domains, such as finance detection [2], cyber security detection [3],
credit card fraud detection [4], manufacturing detection [5], video surveillance detection [6],
biomedicine detection [7], and so on. In the manufacturing industry, image anomaly
mainly refers to the damage or threat to a product’s quality in different degrees [8]. For
instance, on the surface of a finished industrial product, there may be defects, such as a
scratch, erosion, a crack, and the like; some of these are obvious while some are difficult
to discover. For this reason, finding inferior products and defective sites promptly not
only increases product quality standards, but also localizes the operative breakdown of a
machine. Therefore, industrial image anomaly detection has become especially important
nowadays. As such, we took industrial image anomaly detection in the manufacturing
industry as the main object to research, as it is focused on the quality detection process of
finished industrial products.

Nowadays, there are three problems concerning industrial anomaly detection: Firstly,
the sample is unbalanced; while the quantity of normal samples is so big that they are easy
to obtain, the number of sample anomalies is so few that they are hard to collect. Secondly,
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to label data is difficult; and in the process of supervised learning, training the model
depends on sample labeling, whereas labeling anomaly samples requires more time and
labor and is less practical for the application of anomaly detection for industrial images
on a large scale. Thirdly, the anomalous form appears as a diversification; anomaly means
abnormal, and the size of the form’s irregularly varies randomly, there are various kinds,
and the chance of the character being unknown is very strong. In this situation, the ability
of automatic anomaly detection is restricted by its supervised learning, which needs a great
number of known labeled samples. Schlegl et al. [7] first proposed the application of a
generative adversarial network (GAN) [9] to the field of anomaly detection. Compared
with other models, GAN holds its own position in the field of deep learning. It is used to
explore the root cause because GAN can model complex multidimensional distribution
in the real world, study the inherent law of real data, simulate data distribution, generate
clearer and lifelike samples, and has displayed superior performance in various anomaly
detection training tasks.

Based on GAN, we built an industrial images anomaly detection model by using the
reconstruction ability of an auto-encoder and the correlation learning ability of attention
feature fusion (AFF). Firstly, for extracting most of the features, we purposefully used an
encoder for extracting the feature vectors and used a decoder for reconstructing the images.
Secondly, in order to extract the detail features of an image more effectively, we added the
attention feature fusion mechanism to every convolution layer of the decoder and through
skip-connection, we input the encode vectors and decode vectors of the same dimension
into the AFF in order to capture the correlative features among the image pixels. Finally, for
increasing the diversity of the limited training dataset, we added an image augmentation
module. In this paper, we created an experiment with the open dataset MVTec [10] to verify
the effectiveness. Figure 1 shows the detection process for our method.
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Figure 1. On the left, (A) is the image enhancement process and (B) is the image reconstruction
process. Generators learn only normal image features. On the right, (A) indicates that the image has
not been data enhanced. (B) is the reconstruction process of the test image. (C) represents the absolute
residual between the reconstructed image and the test image, and the residual image is obtained.
Finally, the thermal map is generated according to the residual image, and a 0.7 times thermal map is
superimposed on the 0.3 times abnormal image to complete the abnormal location of the image.

Different from previous methods, we introduced an image cut-paste module to en-
hance the datasets, and randomly cut a certain proportion to rectangle size in the original
image and then pasted it into the original image to increase the irregularity of the image in
an attempt to achieve a rough simulation of anomalies. In addition, attention feature fusion
is introduced to enhance the network’s attention to channel information. The multi-scale
image fusion enables the network to have a stronger learning ability, to capture more de-
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tailed features of the image. To sum up, in this paper, there are three aspects of contribution
as follows:

1. It proposes a novel module of an encoder–decoder GAN based on attention feature
fusion, which can detect anomaly images accurately while never depending on an
anomaly sample.

2. We made an attention feature fusion for the corresponding convolutional layers of both
the encoder and decoder, so as to retain the channel features of different dimensions. In
addition, we added extra image augmentation to simulate an anomaly for the purpose
of dataset enhancement.

3. Compared with the experimental results of other similar modules, it is verified that, in
the aspect of anomaly classification, our method has achieved superior performance.

The rest of this paper is organized as follows: The second section introduces the
present related works and the existing research state of image anomaly detection. The
third section introduces the network construction, object function, detection method and
image enhancement process we proposed. The fourth section describes the dataset we
used, training detail, and the experimental results as well as the ablation experiment and
comparison experiment. In the fifth section, we deduce a conclusion from the experiment.

2. Related Work

In recent years, as deep learning arises rapidly, anomaly detection based on GAN has
become a research hotspot and related applications have become more and more extensive.
In 2017, based on the deep adversarial network Schlegl et al. [7] proposed, AnoGAN, which
was the initial case of GAN, was used in the field of anomaly detection. The main thought
behind AnoGAN is that, through a convolution neural network, a priori distribution for
generating an image is input, and then the generated image and real image are input into a
discriminator to be classified. Finally, the anomaly value is determined according to the
residue between the generated image and the real image. However, there is a defect of
low computational efficiency. To improve the training speed, Schlegl et al. [11] proposed
f-AnoGAN, which rapidly mapped a picture to a certain point in hidden space. Then,
it detects an anomaly by means of WGAN [12]. This model performs excellently for its
variability in capturing normal samples in a smooth expression way. GANomaly [13]
introduced a type of encoder-decoder-encoder network layout into GAN, which primarily
compresses and maps an image into a latent feature vector and reconstructs the image,
and then uses an auxiliary encoder to map the generated images into a latent expression.
Under the condition of no negative case, this method achieves anomaly detection, but it
cannot reconstruct the complex multidimensional data of realities well. Inspired by U-
net [14], Skip-GANomaly [15] added skip-connection between corresponding convolutional
layers. This skip-connection provides essential help for directing information transmission
between convolutional layers. OGNet [16] used two auto-encoders as generators for high
quality and low quality reconstruction, respectively, and transferred the function of the
discriminator from discriminating between true and false to discriminating between high
quality or poor quality images. Additionally, its author also proposed a pseudo-anomaly
module for artificially constructing a false anomaly example. Bergmann et al. [17] proposed
a frame of unsupervised anomaly detection on the basis of teacher-student learning, the
local descriptor of the pre-trained teacher network can act as the substituted label of student
sets. In addition, this paper proposed a score function based on student forecasting variance
and regression error, which is beneficial to more precisely segment an image anomaly.

CutPaste [18] is the method used to enhance an image; the main thought here is that
an anomaly sample is constructed in the range of the image by randomly cutting and
then randomly pasting it to the image. The simulated anomaly sample is then used in
motivating the model to reconstruct a normal sample well. The literature [18] proposed a
high-performance image anomaly detection model that does not depend on anomaly data;
it learns the features of normal images with a self-supervised model, and then constructs
a single discriminator on the basis of the learned features. Fei et al. [19] transferred the
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images construction task to a restoration task, and proposed a simple and efficient attribute
erase module (AEM) as well as an attribute restoration network (ARNet). The former can
delete and compact semantics to represent the attributes of correlative color and direction.
The latter can efficiently extract an image’s semantic features. In the test phase, in theory,
the attribute restoration value of anomaly images should be very big. Li et al. [20] proposed
an anomaly detection method based on dual attention and consistency loss; the multiple
scale channel attention and pixel attention are jointly used in the generative network based
on an auto-encoder. Furthermore, pixel consistency, construction consistency and gradient
consistency are added to the object function in order to enhance detail information retention.
For solving an unbalanced sample, Tang et al. [21] proposed DAGAN, within which the
frame of skip-connection and dual auto-encoder displayed very strong reconstruction
ability and stability. Likewise, Wang et al. [22] used the frame of an encoder-decoder-
encoder to reconstruct images; here, the peculiar point is that the anomaly localization
needs to pass through the three phases of pixel level localization, an area level localization
and the fusion result. In the first phase, the localization is accomplished by the absolute
value residuals of the original images and the reconstructed images. In the second phase,
it proposed that the area localization is accomplished by using a local difference analysis
(LDA) module. Lastly, the final segment results are obtained by the strategy of fusing the
residual images with the mask images. Chen et al. [23] proposed a network constructed
from a dual generator–discriminator on the basis of an encoder-decoder-encoder, which is
used for improving the accuracy of anomaly detection through GAN learning, dynamically
and reciprocally, via its normal distribution and marginal distribution; it also defines the
optimized anomaly scores. By combining BiGAN [24] with an auto-encoder, CBiGAN [25]
introduced two consistency constraints, which respectively, keeps the latent feature and
spacious consistency of each image to retain the reconstruction accuracy of the model. From
the above, we can see that anomaly detection on the surface of an industrial product is
an indispensable part of intellectual production and possesses strong practicability and
realistic significance.

As far as the above methods are concerned, the proposed method is not completely
independent of normal samples, and there are some problems, such as the large amount of
computing resources required, unstable reconstruction ability, and low detection accuracy.
In order to overcome these shortcomings, we proposed a GAN anomaly detection method
based on attention feature fusion, which is more accurate, more stable and does not
depend on abnormal samples, combined with the high dimensional and complex features
of detection images. Its more precise reconstruction capability improves the anomaly
detection performance significantly.

3. Propoosed Method
3.1. Network Architecture
3.1.1. Generative Network

We proposed the network architecture shown in Figure 2. Inspiration was gained from
Skip-GANomaly [15] and U-net [14] and our generator employs an encoder–decoder frame,
and via skip-connection, simultaneously inputs the encoding feature vectors and decoding
feature vectors in the same dimension to the AFF. Encoder GE is mainly composed of a
convolutional layer and a batch normalization [26] layer. Decoder GD is mainly composed
of a transposed convolutional layer and a batch normalization layer. The input image
passes through the decoder and vector z is obtained, then z is decoded so as to get the
reconstructed image x′. This is a feature extraction process; the encoding and decoding can
be represented as:

z = fEn(x, θEn) (1)

x′ = fDe(z, θDn) (2)



Sensors 2023, 23, 355 5 of 16

where fEn denotes the encoding function, fDe denotes the decoding function, x is the input
image, z is the latent vector, θEn and θDn denote, respectively, the parameters of the encoder
and decoder, x′ is the reconstructed image.
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Figure 2. The architecture of the network used in our method.

3.1.2. Discrimination Network

The discrimination network, the architecture of which is identified with the discrimi-
nator of DCGAN [27], is composed of a convolutional layer, a batch normalization layer
and an activation function. Besides, Sigmoid is used on the last layer, and a leaky rectified
linear unit (ReLU) is used in all the other layers as an activation function. Its main function
is to discriminate between the true and false image x and G(x), and learns the intrinsic laws
of the image data and then outputs a scalar value of 0–1. Meanwhile, the discriminator and
generator alternately create adversarial training to improve the performance, respectively,
in the hope of reaching the Nash Equilibrium [9]. Moreover, the discriminator can be used
as a classifier as well as a feature extractor.

3.1.3. Attention Feature Fusion

In order to improve the effect of the reconstruction and capture richer image channel
features of different convolutional layers, and with inspiration from Dai et al. [28], we
added the attention feature fusion (AFF), the concrete network architecture of which is
shown in Figure 3.

AFF is constructed on the basis of a multiple scale channel attention module (MS-CAM).
Firstly, X and Y are input for initial feature integrating, which yields F. Then, F is input to
MS-CAM to intensify the attention of the network on image channel information. Finally,
the result of intensification is, respectively, performed as an element-wise multiplication
with the X and Y element, the summation of which is the fusion feature Z.

F = X⊕Y (3)

Z = X⊗M(F) + Y⊗ (1−M(F)) (4)

where, X and Y represent the object of fusion, F is the result of the initial integration, which
is also called the broadcasting addition, Z represents the fusion feature, M represents MS-
CAM,⊕ denotes the broadcasting addition, and⊗ denotes the element-wise multiplication.

MS-CAM extracts channel information from the feature map and includes two parts:
the global and the local. For the global feature of channel attention, the global average
pooling operation should be performed for the input feature map F firstly. Then, it is
convoluted point-wise by the kernel size of C

r ∗ 1 ∗ 1, again, it is convoluted point-wise by
the kernel size of C ∗ 1 ∗ 1 after the operations of batch normalization and ReLU activation
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function. Finally, F1 is obtained after the treatment of batch normalization. The process is
shown as follows:

F1 = BN(PC(ReLU(BN(PC(GAP(F)))))) (5)

where GAP represents global average pooling, PC represents point-wise convolution, BN
represents batch normalization, and ReLU is activation function.

In contrast, for the local feature, there is not a global average pooling operation on
the extracting channel attention feature, and the two point-wise convolutional kernel sizes,
respectively, are C

r ∗ H ∗W and C ∗ H ∗W, through which calculation F2 is obtained. The
process is shown as follows:

F2 = BN(PC(ReLU(BN(PC(F))))) (6)

Then, combining the channel attention broadcasting addition of the global feature and
local feature, and using the Sigmoid activation function, the attention map F′ is obtained.

F′ = Sigmoid(F1 ⊕ F2) (7)

Finally, map F is input and is multiplied element-wise by the attention feature map,
whereby the MS-CAM output feature M(F) is obtained.

M(F) = F⊗ F′ (8)
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module, ⊕ denotes the broadcasting addition, and ⊗ denotes the element-wise multiplication.

Attention feature fusion can intensify association learning of the image feature, and can
extract the association features between pixels to the fullest, so as to make the representation
data richer. Therefore, the overall quality of the generated image will be improved. We
take the encode feature vector and the decode feature vector in the same dimension as X
and Y to be input into the AFF of the identical dimension, and through this calculation,
obtain the fusion feature.

3.2. Data Augmentation

In order to prevent model over fitting, we performed an image augmentation for
the training dataset. Nowadays, image augmentation is an efficient method of enriching
the diversity of a dataset, and the methods of augmentation are varied. For resolving
the problem of an error fail concerning the reconstruction at the pixel level, RIAD [29]
proposed a method, whereby, by randomly deleting part of the image and replacing
the lost information with content that is reasonable in semantics, image restoration and
reconstruction are fulfilled. In consequence, RIAD transferred the question of image
anomaly detection to image restoration and reconstruction. The augmentation method
of random erasing [30] has been widely applied, within which, the mask area length and
width, and the pixel substitution values, are random. In operations such as classification,
detection and masked face recognition, this method can mask the image in varying degrees



Sensors 2023, 23, 355 7 of 16

to obtain a robust effect. Inspired by CutPaste [18], we added an image augmentation
module to the model. Shown in Figure 4, we randomly cut rectangular areas, based on
an area ratio from 0.02 to 0.15, and then randomly pasted these to the original images to
intensify the irregularity of the image’s content for the purpose of achieving the effect of
sketchily simulating an actual anomaly. Concerning the pasted contents, the attributes
of size, rotation angle and color dithering can be adjusted. The size of our augmentation
module can be chosen randomly, as can the part of the texture categories of the dataset and
applied color dithering treatment. Lastly, the augmented data was input into the generator
for training.
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3.3. Training Objectives

During the training, we first input a normal sample to the image augmentation module,
where it was processed to obtain an artificially construed false anomaly image. Then, this
image was transmitted to encoder GE; as a consequence, the compressed feature vector z
was obtained. After being reconstructed through decoder GD, the generated image was
obtained. At that very moment, the network simultaneously input the generated image and
the original image to the discriminator to be discriminated, and the discriminator output
a scale value of 0–1. As we only trained a normal image, the generator only learnt the
detail features of a normal image. When a normal image is input into the model, in theory,
there should be a similarity to a certain degree. When an anomaly image is input into the
model, the generator cannot reconstruct the anomaly. In other words, the generator should
possess the ability to reconstruct part of an anomaly into a normal feature. When the model
calculates the content loss of a generated image and an anomaly image, the theoretical
value of the loss should be big.

To improve the training network, and to meet different requirements, we employed
three loss functions; and by combining these with weights, we obtained an overall objec-
tive function.

Adversarial Loss: In order to enable the model to reconstruct an input sample to the
greatest degree, through adversarial training, we made the discriminator lack the ability
to discriminate true or false from two kinds of images, with the aim of making the model
generate more lifelike samples. By minimizing adversarial loss, generator G should learn
the basic features of a normal image. Its loss function is defined as follows:

Ladv =
1
N ∑x∼px

[logD(x)] +
1
N ∑x∼px

[log(1− D(G(x)))] (9)

Reconstruction Loss: Adversarial loss can only fit with the approximate distribution
of the input sample. In order to allow the generated image to more closely reach an identity
with normal image details, and to capture richer image features and content information,
we used the L1 distance between the input image x and the generated image G(x) as the
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reconstruction loss to promote the approximation to infinity. Its loss function is defined
as follows:

Lrec =
1
N ∑

x∼px

||x− G(x)||1 (10)

Latent Loss: In order to ensure that the network is able to generate a reasonable latent
representation, we used the last convolutional layer output of the discriminator to extract
the latent representation of the generated image and normal image. We used the L2 distance
from the input to the reconstructed image as the latent loss. Its loss function is defined
as follows:

Llat =
1
N ∑x∼px

|| f (x)− f (G(x))||2 (11)

where f (·) represents discriminator mapping from the input to the output of the last
convolutional layer.

To sum up the above, the overall loss of GAN can be expressed as:

Ltotal = WadvLadv + WrecLrec + WlatLlat (12)

where Wadv, Wrec and Wlat, respectively, are the weights of the three corresponding
loss functions.

3.4. Anomaly Detection

In order to discriminate an anomaly better, having referred to literature [13], we
defined the anomaly score. When the detection sample is a normal image, A(x) should be
less and close to 0. When the detection sample is an anomaly image, A(x) should be very
big. For the given anomaly image, its anomaly score can be calculated by:

A(x) = γLrec + (1− γ)Llat (13)

where Lrec and Llat, respectively, represent the value of reconstruction loss and latent loss.
Lrec measures the similarity in content of the two images, Llat measures the similarity in the
latent feature of two images. γ denotes the weight parameter in the range of [0, 1], which
represents the importance of Lrec.

The anomaly value of the detection image can be calculated by formula (13). For
measuring the overall anomaly matter, having referred to literature [13] we proposed the
method that reduces and magnifies the anomaly score feature into the probability range
of [0, 1]; the bigger its value is, the higher the probability of an anomaly arising in the
detection image. Ideally, a normal sample A′(x) = 0, and an anomaly sample A′(x) = 1.
The final anomaly score can be represented as:

A′(x) =
S(x)−min(S)

max(S)−min(S)
(14)

4. Experiment
4.1. Datasets

The importance of choosing a suitable dataset for experimental research is obvious to
everyone, and different datasets are chosen according to the requirements of each different
research objective and application. We chose MVTec [10] to test the model’s performance,
which is an anomaly detection benchmark dataset for simulating real industrial environ-
ments, and which possesses a certain challenge meaning and a very strong reference value.

As shown in Figure 5, the MVTec contains 15 categories, which includes 5 categories
of texture (carpet, grid, leather, tile and wood) and 10 categories of object (zipper, pill,
transistor, capsule, bottle, toothbrush, metal nut, hazelnut, cable and screw). The dataset
contains 5354 color images of industrial products with high resolution, which ranges from
700 × 700 to 1024 × 1024. Within it, 3629 images are used for training and verification, and
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1725 images are used for testing. The detailed information is shown in Table 1. The training
set contains normal images, and the test set contains both normal images and anomaly
images. There are 73 abnormal forms, such as damage, contamination, twists, scratches,
dents, and so on. In addition, it provides anomaly images with pixel scale annotation,
which is very helpful for anomaly localization.
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red box contains the surface defect of each product.

Table 1. Detailed information of the MVTec.

Category Train Test
(Normal)

Test
(Anomaly)

Defect
Types

Image
Side

Textures

Carpet 280 28 89 5 1024
Grid 264 21 57 5 1024

Leather 245 32 92 5 1024
Tile 230 33 84 5 840

Wood 247 19 60 5 1024

Total 1266 133 382 25 -

Objects

Bottle 209 20 63 3 900
Cable 224 58 92 8 1024

Capsule 219 23 109 5 1000

Hazelnut 391 40 70 4 1024
Metal nut 220 22 93 4 700

Pill 267 26 141 7 800
Screw 320 41 119 5 1024

Toothbrush 60 12 30 1 1024
Transistor 213 60 40 4 1024

Zipper 240 32 119 7 1024

Total 236 334 876 48 -

4.2. Training Details

To ensure the training went smoothly, we used Adam [31] as the optimizer, with the
initial learning rate set to 0.0002, and the momentum parameter set to β1 = 0.5, β2 = 0.999.
Concerning the hyperparameter of loss function, we chose Wadv = 1, Wrec = 40, Wlat = 1.
The number of training epochs was set as 400, and the batch size set to 64. In this work,
a PyTorch deep learning frame was used, and the hardware environment was an Intel
i7-12700 and Nvidia3090 24 GB GPU.
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For the training, we resized the input image of texture category and object category to
256 × 256, and randomly cut a rectangular box into an image, then randomly pasted this to
the input image.

4.3. Evaluation

To evaluate the performance of the anomaly detection on industrial images, we em-
ployed a receiver operating characteristic area under curve (AUC) [32] as a measure stan-
dard to illustrate the discrimination effect, and for the discriminator to judge between
superior and inferior. The AUC value was within the range of 0 to 1, the bigger the value
was, the better effect is illustrated. If the AUC = 0.5, the predicted effect from the model is
equivalent to a random guess.

4.4. Experimental Results
4.4.1. Anomaly Classification

The results of the anomaly detection based on AFF are shown in Table 2. We compared
these with AnoGAN [7], GANomaly [13], Skip-GANomaly [15], DAGAN [21], CBiGAN [25]
and Dual-AttentionGAN [20]. Among those, the AUC data in AnoGAN, GANomaly, Skip-
GANomaly and DAGAN are taken from the literature [21]. From Table 2 and Figure 6, it
can be seen that with respect to the MVTec dataset, AnoGAN performs the worst, although
it is first to apply the adversarial concept to the detection of fundus oculi pathology. In
contrast, on most of the categories, our method achieved the most advanced AUC, and the
AUC average value reached an optimum, despite it performing poorly on a few categories.
Compared with dual-attention GAN, which possesses consistency, with respect to the
average AUC of the detection effect, our model increased it by 4.1 percentage points,
including that of the texture category, which increased by 6.4 percentage points, and the
object category, which increased by 2.8 percentage points. With comparison to the algorithm
Skip-GANomaly with skip-connection, our method increased it by 13.8 percentage points.
Additionally, from Table 2 it can be seen that on the texture category dataset, our method
performs better, with the average AUC value reaching 97.4%. Of note, concerning the
categories of wood and bottle, it reached 100%.

Table 2. The AUC values of the anomaly detection task in the MVTec dataset with respect to the
various models we reported. The results in bold and underlined are the best AUC results.

Category AnoGAN GANomaly Skip-
GANomaly DAGAN CBiGAN

Dual-
Attention

GAN
Ours

Texture

Carpet 37.7 82.1 79.5 90.3 55.0 91.0 93.7
Grid 87.1 74.3 65.7 86.7 99.0 94.0 99.4

Leather 45.1 80.8 90.8 94.4 83.0 95.0 96.1
Tile 40.1 72.0 85.0 96.1 91.0 80.0 97.9

Wood 56.7 92.0 91.9 97.9 95.0 95.0 100

Average 53.3 80.2 80.2 93.1 84.6 91.0 97.4

Object

Bottle 80.0 79.4 93.7 98.3 87.0 94.0 100
Cable 47.7 71.1 67.4 66.5 81.0 88.0 96.3

Capsule 44.2 72.1 71.8 68.7 56.0 85.0 83.0
Hazelnut 25.9 87.4 90.6 100 77.0 95.0 93.7
Metal nut 28.4 69.4 79.0 81.5 63.0 69.0 85.1

Pill 71.1 67.1 75.8 76.8 81.0 89.0 98.7
Screw 10.0 100 100 100 58.0 100 90.3

Toothbrush 43.9 70.0 68.9 95.0 94.0 100 98.3
Transistor 69.2 80.8 81.4 79.4 77.0 88.0 91.3

Zipper 71.5 74.4 66.3 78.1 53.0 91.0 89.9

Average 49.2 77.2 79.5 84.4 72.7 89.9 92.7

Average 50.6 78.2 80.5 87.3 76.7 90.2 94.3
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4.4.2. Anomaly Localization

In industrial production, anomaly localization has a very practical guiding significance
for actual production. Concerning anomaly localization, we allowed the generated images
and input images to be made into absolute value residuals at the pixel level. Because the
generator has only learned the features of normal samples, in theory, the local anomaly
cannot be reconstructed, and the residuals of the generated images and input images are
very big. As a result, the localization is achieved. As shown in Figure 7, we accomplished
image reconstruction by using the encode–decode architecture frame with a skip-connection.
After the anomaly input image passes through GE and GD, the reconstructed image is
obtained; then, the input image is compared with the reconstructed image on the pixel
scale, and through the difference, the absolute value between both images of the residual
image is obtained. The calculation process is shown as formula (15):

Ires = abs(Iin − Iout) (15)

where abs(·) represents taking the absolute value, Iin represents the detection image, Iout
represents the generated image, and Ires represents the residual image.
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Figure 7. The algorithm frame diagram of the encode–decode with a skip-connection.

Figure 8 shows the visualization effect of the anomaly detection for 15 categories
in the MVTec. In this figure, the columns respectively represent the anomaly images,
reconstructed image, residual image between the former two columns, heat maps of
corresponding anomaly, and the ground truth. The anomaly heat maps are obtained by
superposing the pseudo color onto the original images, which are a consequence of the
corresponding residual images being obtained in accordance with the reconstruction errors
between the detection image and the generated image. In the anomaly heat map, the colors
from blue to red represent the anomaly degree from low to high. Compared with the
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ground truth, it can be seen that our detection effects are similar. When the ground truth is
contrasted with the anomaly heat map in Figure 8, the method we proposed can be seen
to infer the anomaly area with accuracy. The higher the anomaly degree, the higher the
corresponding score.
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4.5. Ablation Studies

To evaluate the influence of single components in the model on detection performance,
we used an ablation experiment. This section illustrates the effectiveness of image augmen-
tation and AFF. We summed up the ablation result on the MVTec dataset and expressed
this in Table 3. The ablation experiment mainly includes four states: State 1 represents
how the generator is composed of the foundational parts of the encoder–decoder and is
used to evaluate the detection performance at baseline. State 2 represents the bottom of
the baseline, where an image augmentation module is added to evaluate its influence on
defeat detection performance. State 3 represents how the AFF module is added to evaluate
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the effectiveness of the defeat detection. Finally, both of these are combined to form the
model we proposed, which is State 4.

As shown in Table 3, we reported the AUC values of every sub-module on the MVTec.
From Table 3, it can be seen that, as the image augmentation and AFF module are used
alone for the detection task, when compared with the baseline, the performance increased
by 0.5% and 4.3%, respectively. However, when united, image augmentation and AFF can
markedly improve the detection effect, and consequently, the average AUC surpasses the
benchmark model by 18.8 percentage points. It illustrates the effectiveness of combining
the above two modules. This proves that image augmentation is helpful in enlarging
data volume, and AFF is helpful in the classification detection of the auxiliary network.
Comparatively, in State 4, the model we proposed performs excellently and the average
AUC reaches 97.4%, especially in the wood category, where it reaches 100%. In addition,
among the object categories, there are eight categories that increase, and they, as a whole,
perform well with an average AUC up to 92.7%.

Table 3. The AUC values of every sub-module on the MVTec dataset. Hereby, the influence of every
sub-module on the anomaly detection task is illustrated. The results in bold and underlined are the
best AUC results.

Category State1 State2 State3 State4

Texture

Carpet 52.1 56.0 54.3 93.7
Grid 83.2 78.9 93.3 99.4

Leather 64.3 70.1 64.6 96.1
Tile 73.3 73.6 96.9 97.9

Wood 96.4 96.0 99.7 100

Average 73.9 74.9 81.8 97.4

Object

Bottle 84.7 91.9 72.4 100
Cable 78.8 77.8 53.3 96.3

Capsule 71.3 70.1 80.0 83.0
Hazelnut 82.4 79.3 86.5 93.7
Metal nut 55.6 58.0 55.2 85.1

Pill 78.3 80.7 99.7 98.7
Screw 67.1 70.6 100 90.3

Toothbrush 94.7 86.4 93.1 98.3
Transistor 80.5 78.7 82.0 91.3

Zipper 69.4 71.3 66.1 89.9

Average 76.3 76.5 78.8 92.7

Average 75.5 76.0 79.8 94.3

4.6. Comparative Experiment

To evaluate the influence of unitedly using the different components on detection
performance, we used a comparative experiment. In this this section, we illustrate the
superiority of the cut-paste image augmentation and AFF module. We summed up the
comparative result on the MVTec and this is expressed in Table 4. The comparative
experiment mainly included the four combinations of random erasing with connection,
random erasing with AFF, cut-paste with connection, and cut-paste with AFF. Here, random
erasing means randomly choosing a rectangular area and erasing all pixels within it.
Connection means tensor splicing the corresponding convolution layers of the encoder and
decoder. For the operation of the attention feature fusion, refer to Section 3.1.3. For the
operation of cut-paste, refer to Section 3.2.

As shown in Table 3, we reported the AUC values of the different sub-modules on
the MVTec. In this table, when comparing the third and fourth column with the fifth and
sixth column, it can be seen that after substituting the operation of random erasing with
cut-paste, the average AUC increased by 3.8% and 4.2%, respectively. This proves that
under the same conditions, the overall effect of the cut-paste data augmentation method



Sensors 2023, 23, 355 14 of 16

is better than random erasing. Under the precondition of cut-paste, on average, the AUC
using AFF is higher by 4.2 percentage points than a normal skip-connect. In sum, by
comparing the average AUC values of the four different sub-modules mentioned above, it
can be seen that the combination of using cut-paste with attention feature fusion can obtain
a better effect, with an average AUC value up to 94.3%.

Table 4. The AUC values of different sub-modules on the MVTec dataset. The results in bold and
underlined are the best AUC results.

Category Struc1 Struc2 Struc3 Struc4

Texture

Carpet 91.1 89.0 84.8 93.7
Grid 86.0 81.5 94.2 99.4

Leather 81.8 82.6 85.8 96.1
Tile 90.2 83.6 99.3 97.9

Wood 93.4 98.2 98.4 100

Average 88.5 87.0 92.5 97.4

Object

Bottle 93.7 89.8 99.8 100
Cable 83.3 83.7 75.5 96.3

Capsule 68.4 87.2 83.2 83.0
Hazelnut 70.7 79.9 81.2 93.7
Metal nut 71.6 71.9 73.1 85.1

Pill 77.2 94.7 96.3 98.7
Screw 100 100 99.3 90.3

Toothbrush 93.1 87.8 99.7 98.3
Transistor 96.8 77.2 89.1 91.3

Zipper 97.4 85.6 91.2 89.9

Average 85.2 85.8 88.8 92.7

Average 86.3 86.2 90.1 94.3

5. Conclusions

In the work that this paper has elaborated, we emphatically researched the subject
of quality detection of industrial products. Through gathering together the superiority of
Skip-GANomaly and AFF, we proposed a novel GAN anomaly detection method based on
attention feature fusion, the key of which lies in uniting the AFF in the decoder. Through a
skip-connection, it performs the feature fusion of the encode vector and decode vector in
the same dimension, therefore, augmenting the attention of the generator to include global
and local channel feature information. This augmented the image reconstruction ability
of the generator, as well as augmenting the detection performance of the model on the
conditions of sample scarcity and anomaly variation. We evaluated this model on the actual
anomaly detection MVTec dataset. Compared with all of the former similar methods, on
average, the AUC value of the model we proposed was higher by 4.2 percentage points than
the next optimal model, and better performance was obtained. In addition, we illustrated
the network effect by displaying the anomaly localization at a pixel level. Furthermore, the
influence of the use of individual components and different components on the network’s
detection capability was also studied. The results showed that the image enhancement and
attention feature fusion modules can improve the reconstruction ability of the proposed
method to some extent, which makes the method maintain a high level of AUC value.

Our method can obtain a better effect within the texture category dataset. Nevertheless,
on some object categories, such as capsule, hazelnut, screw, and so on, there remains some
difficulty. Consequently, we will further explore the accurate classification and localization
of abnormal images within these object categories.
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