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Abstract: Plant tissue culture produces a wide range of genetic variations which are useful for quality
improvement of the plant species. However, the differences in metabolic components and the key
genes responsible for the difference in metabolic components between somaclonal variation and
the original parent are still largely unknown. In this study, a mutant named ‘Mixue’ was identified
with somaclonal variation of the ‘Sachinoka’ strawberry. The contents of pelargonidin-3-O-glucoside
and cyanidin-3-O-glucoside in the red fruit of ‘Mixue’ were significantly decreased compared with
‘Sachinoka’. In comparison with ‘Sachinoka’, the expression levels of FaMYB10, FaMYB11.2, FaWD40
and FaTT19 in the turning fruit of ‘Mixue’ were significantly down-regulated, while the expression of
FaMYB1 was significantly up-regulated in the red fruit. ‘Sachinoka’ and ‘Mixue’ fruits were found to
have 110 volatile components. Among them, 15 volatile components in the red fruit of ‘Mixue’ were
significantly increased compared with ‘Sachinoka’, such as nerolidol, benzaldehyde, ethyl hexanoate,
ethyl isovalerate, which led to an enhanced aroma in ‘Mixue’ and might result from the up-regulated
expression of FaNES1, FaCNL and FaAATs in ‘Mixue’. These results provide useful information on the
effect of somaclonal variation on metabolic components of strawberry fruit and lay the foundation
for the improvement in quality of strawberry.

Keywords: strawberry; aroma; somaclonal variation; volatile components; white flesh

1. Introduction

Strawberry (Fragaria × ananassa Duch.) belongs to the Fragaria genus of the Rosaceae
family, which is an important economic crop and is widely consumed throughout the world.
Antioxidants, vitamins, dietary fibers, and pleasant volatile components are abundant in
strawberry. Strawberry also has the potential benefits to human health, such as protective
effects in inflammation, neurodegenerative diseases and coronary heart diseases, ageing,
cancer, and obesity [1].

Conventional propagation of strawberry is through runner and this kind of prop-
agation produces new clonal plants, which are susceptible to plant diseases caused by
various fungi and viruses [2]. In vitro propagation techniques using different explants have
been widely applied for efficient strawberry production [3]. However, the propagation of
strawberry through tissue culture may produce genetic variations compared with plants
obtained through runners [4]. Tissue culture germinating variation in regenerated plants is
called somaclonal variation [5]. The occurrence of somaclonal variation is related to point
mutations, transposable elements, DNA methylation, changed sequence copy numbers
and chromosomal rearrangements [6–8]. Somaclonal variation may be affected by explant
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types, culture media and tissue culture conditions [9]. In addition, plant growth regulators,
such as thidiazuron (TDZ), 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-indolebutyric acid
(IBA), have been implicated in the induction of somaclonal variability [10,11]. Together, the
molecular basis of somaclonal variation is complex and remains uncertain. Interestingly,
the molecular mechanism of ‘bud sports’ in woody crop species, also known as somatic
mutations, has made some progress [12]. For instance, somatic mutations in the color of
grape skin [13], fruit acidity of sweet orange [14], and fruit skin of apple [12] are associated
with retrotransposon insertion, DNA transposon insertion and DNA methylation in key
factors involved in color and acidity, which in turn regulates the expression of these key
factors to affect corresponding phenotypes. The potential of somaclonal variation has yet to
be completely exploited for plant improvement by breeders [7]. In addition, the variations
in metabolic components between somaclonal variation and the original parent and the
key genes responsible for the variations are still largely unknown.

In this study, ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ were used as the research
materials. ‘Mixue’ is a rare strawberry somaclonal mutant with white-flesh and enhanced
aroma which comes from the tissue culture of apices of runner tips of ‘Sachinoka’. A series
of metableolic components and gene expression analysis were conducted to explore the rea-
sons for the differences in flesh color and volatiles between ‘Sachinoka’ and its somaclonal
mutant ‘Mixue’. These data will be helpful to understand the effect of somaclonal variation
on metableolic components of strawberry fruit and will lay the foundation for quality
improvement of strawberry.

2. Results
2.1. Morphological Characteristics of ‘Sachinoka’ Strawberry and Its Somaclonal Mutant ‘Mixue’

The fruit skin and flesh color of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ were
not significantly different at the green and white fruit stages, respectively. During the
turning stage, the fruit skin and flesh color of ‘Sachinoka’ were red and light red, respec-
tively, while the fruit skin and flesh color of the somaclonal mutant ‘Mixue’ were light
red and white, respectively (Figure S1). At the red fruit stage, the fruit skin and flesh
color of ‘Sachinoka’ were dark red and red, respectively, while the fruit skin and flesh
color of the somaclonal mutant ‘Mixue’ were red and white, respectively (Figure 1A). The
contents of pelargonidin-3-O-glucoside (Pg3G) and cyanidin-3-O-glucoside (Cy3G) were
remarkably increased in the red fruit of ‘Sachinoka’ compared to its somaclonal mutant
‘Mixue’ (Figure 1B). The contents of Pg3G and Cy3G in ‘Sachinoka’ were 5.15 and 1.32 times
higher than in its somaclonal mutant ‘Mixue’, which were consistent with more pigment
accumulation in ‘Sachinoka’ compared with its somaclonal mutant ‘Mixue’.
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Figure 1. Phenotype (A) and anthocyanins content (B) analysis of ‘Sachinoka’ strawberry (WT) and
its somaclonal mutant ‘Mixue’ (Mut) at red fruit stage. * (p < 0.05) and *** (p < 0.001) represent
significant differences between ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’.



Plants 2023, 12, 82 3 of 19

2.2. The Amount and Content Analysis of Volatile Components in ‘Sachinoka’ Strawberry and Its
Somaclonal Mutant ‘Mixue’

To get a chemical insight into the differences in volatile components between ‘Sachi-
noka’ and its somaclonal mutant ‘Mixue’, volatile components were analyzed in the four de-
velopmental stages of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’. A total of 110 volatile
components were identified in the four stages of ‘Sachinoka’ and its somaclonal mutant
‘Mixue’, including alcohols (17), acids (9), ethyl esters (10), acetate esters (8), other esters (8),
benzene and volatile phenols (15), aldehydes and ketones (23), isoprenoids (17) and furans
(3) (Table S3). Some 70, 80, 88, 105 volatile components in ‘Sachinoka’ and its somaclonal
mutant ‘Mixue’ were identified in the green, white, turning and red fruits, respectively.
These data indicated that the number of volatile components gradually increased and the
aroma became more intense during strawberry ripening.

In the red fruit, 15 volatile components were significantly increased in somaclonal
mutant ‘Mixue’ with at least 1.5-fold change relative to ‘Sachinoka’, including two alco-
hols, three ethyl esters, one acetate, on other ester, five aldehydes and ketones, and three
isoprenoids (Table S3). Interestingly, the contents of ethyl hexanoate and nonanal with low
olfactory threshold in somaclonal mutant ‘Mixue’ were 1.70 and 3.77 times higher than
those in ‘Sachinoka’, respectively, which may have some influence on the flavor of ripening
strawberry fruit.

2.3. The Volatile Components and Trends of ‘Sachinoka’ Strawberry and Its Somaclonal Mutant
‘Mixue’ Fruits at Different Developmental Stages

We analyzed the content of nine categories of volatile components in the fruits of
‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at different developmental stages. In the
green fruit stage, the contents of aldehydes and ketones in the somaclonal mutant ‘Mixue’
fruits were significantly higher than those in ‘Sachinoka’. The total contents of 2-hexenal
and hexanal in ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at the green fruit stage
accounted for 88.66% and 94.59% of the aldehydes and ketones, respectively. The total
contents of 2-hexenal and hexanal in the somaclonal mutant ‘Mixue’ were 4.37 times higher
than those in ‘Sachinoka’. In the white fruit stage, the content of acetate ester was increased
by 84.79% in ‘Sachinoka’ compared with the green fruit stage and was markedly higher
than that in somaclonal mutant ‘Mixue’ (Table S3). In addition, the contents of aldehydes
and ketones in the somaclonal mutant ‘Mixue’ were decreased by 65.54% in the white
fruit stage compared with the green fruit stage and there was no great difference between
‘Sachinoka’ and its somaclonal mutant ‘Mixue’. During the turning stage, the contents
of other esters in the somaclonal mutant ‘Mixue’ were significantly higher than those
in ‘Sachinoka’, which were 10.33 times higher than those in ‘Sachinoka’. Among other
esters, methyl hexanoate largely accumulated in the somaclonal mutant ‘Mixue’ during
the turning stage, which was 21.62 times higher than that in ‘Sachinoka’. During the red
stage, the contents of ethyl esters in the somaclonal mutant ‘Mixue’ fruit was significantly
higher than that in ‘Sachinoka’. The content of ethyl hexanoate increased 1.70 times in the
somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Table S3).

Next, we analyzed the trend of the contents of the nine categories of volatile compo-
nents in the fruit of the ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at four develop-
mental stages. In the first three stages of fruit development (green stage, white stage, and
turning stage), the trend of the contents of nine categories of volatile components between
‘Sachinoka’ and its somaclonal mutant ‘Mixue’ was similar (Figure 2). The contents of
alcohols, aldehydes and ketones accounted for approximately 90% of the total contents of
volatile components in the first three stages of fruit development. The contents of acids,
ethyl esters and other esters were significantly increased and the contents of alcohols,
aldehydes and ketones were significantly decreased in the red stage of ‘Sachinoka’ and its
somaclonal mutant ‘Mixue’ fruits compared with the first three stages of fruit development.
Acids, other esters, and ethyl esters represented the most abundant components in the red
fruit of ‘Sachinoka’ and accounted for 38.78%, 20.87% and 17.01% of the total contents of
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volatile components, respectively. The top three volatile components with higher contents
in the somaclonal mutant ‘Mixue’ fruit during the red stage were acids, ethyl esters and
other esters, accounting for 33.31%, 25.98% and 17.14% of the total contents of volatile
components, respectively (Table S4).
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2.4. The Odor Activity Values (OAVs) of the Major Volatile Components in ‘Sachinoka’
Strawberry and Its Somaclonal Mutant ‘Mixue’

Volatile components in strawberry fruit are usually distinguished by the odor activity
value [15] (OAV: ratio of concentration to its sensory threshold). Volatile components
having OAVs greater than 1 are considered as major contributors to the aroma [16]. Higher
OAVs of volatile components indicate a greater contribution to the aroma of strawberry
fruit. Based on the published threshold value of aroma substances [17–21], we analyzed
the OAVs of 29 volatile components in ‘Sachinoka’ and its somaclonal mutant ‘Mixue’
(Table 1). There were 13 volatile components with OAVs greater than 1 at the red fruit stage
of ‘Sachinoka’. In the somaclonal mutant ‘Mixue’, there were 14 volatile components with
OAVs greater than 1 during the red fruit stage.

The characteristic volatile components with higher OAVs in ‘Sachinoka’ and its so-
maclonal mutant ‘Mixue’ during the red fruit stage were ethyl hexanoate, ethyl butyrate
and linalool (Table 1). The OAVs of ethyl hexanoate, ethyl isovalerate, nonanal and neroli-
dol in the red fruit of the somaclonal mutant ‘Mixue’ were 1.70, 2.22, 3.77 and 1.69 times
higher compared with ‘Sachinoka’, respectively. The OAV of methyl hexanoate in the red
fruit of the somaclonal mutant ‘Mixue’ was lower than that in ‘Sachinoka’ and decreased
by 38.55% compared with ‘Sachinoka’. There was no significant difference in the OAVs
of linalool in the red fruit of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’. In addition,
the OAV of benzaldehyde was greater than 1 in the red fruit stage of somaclonal mutant
‘Mixue’ and less than 1 in the red fruit stage of ‘Sachinoka’ (Table 1).
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Table 1. The odor activity values (OAVs) of partial volatile components in ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’.

Volatile Components Classification Olfactory Threshold
(mg × kg−1)

WT
Green

WT
White WT Turn WT Red Mut

Green
Mut

White Mut Turn Mut Red

Ethyl hexanoate Ethyl esters 0.0003 a,d 0.00 0.00 0.00 6391.77 0.00 0.00 5.53 10,844.39
Ethyl butyrate Ethyl esters 0.001 b,d,e 0.00 0.00 1.29 3105.80 3.76 1.07 6.43 3142.38

Linalool Isoprenoids 0.001 b,c,d 2.08 4.95 11.68 939.29 8.20 6.99 84.86 927.83
Ethyl isovalerate Ethyl esters 0.002 e 0.00 0.00 0.00 57.98 0.00 0.00 0.00 128.67
Methyl butyrate Other esters 0.01 b,c 0.43 0.47 0.93 139.70 0.00 0.56 6.34 120.41

Hexyl acetate Acetate esters 0.002 a,d,e 0.20 10.70 2.06 168.27 1.12 2.07 15.46 49.47
Methyl hexanoate Other esters 0.087 a,d 0.00 0.00 0.03 42.18 0.00 0.00 0.68 25.92
Ethyl pentanoate Ethyl esters 0.0015 c 0.27 0.24 0.24 9.76 0.83 0.42 0.36 10.94

Hexanal Aldehydes and ketone 0.1 b 2.32 3.34 2.94 6.56 9.20 2.99 3.97 6.50
Octanal Aldehydes and ketone 0.001 e 1.13 0.80 0.72 10.57 1.34 0.93 1.21 7.26
Nonanal Aldehydes and ketone 0.001 e 0.37 0.42 0.37 1.59 1.69 0.48 0.75 5.99
Nerolidol Isoprenoids 0.1 b 0.00 0.00 0.00 1.65 0.00 0.00 0.01 2.80

Ethyl Acetate Acetate esters 1 bc 0.01 0.01 0.01 2.11 0.02 0.01 0.02 1.70
Benzaldehyde Benzene and volatile phenols 0.35 e 0.01 0.01 0.01 0.84 0.01 0.01 0.01 1.10

Hexanol Alcohols 0.1 b 0.06 1.61 0.37 0.40 0.36 0.27 0.66 0.22
cis-3-Hexenol Alcohols 0.03c 0.05 0.29 0.11 0.04 0.70 0.09 0.22 0.03

trans-2-Hexenol Alcohols 1 b 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
1-Octanol Alcohols 0.11 e 0.01 0.01 0.02 0.04 0.02 0.01 0.02 0.03

Acetic acid Acid 100 b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Butanoic acid Acid 1 b 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.18
Hexanoic acid Acid 10 b 0.00 0.00 0.00 0.81 0.00 0.00 0.01 0.57
Octanoic acid Acid 0.91 c 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.76

trans-3-Hexenyl acetate Acetate esters 0.016 c 0.02 0.19 0.10 0.84 0.31 0.11 0.62 0.74
trans-2-Hexenyl acetate Acetate esters 0.21 c 0.00 0.20 0.05 0.47 0.02 0.05 0.43 0.30

Butyl butylate Other esters 0.11 c 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.34
Hexyl butyrate Other esters 0.25 a,e 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
Benzyl acetate Benzene and volatile phenols 0.75 e 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.02

Methyl salicylate Benzene and volatile phenols 0.004 c 0.00 0.01 0.01 0.49 0.07 0.02 0.08 0.52
Benzyl alcohol Benzene and volatile phenols 0.62 c 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01

The letters (a–e) in this table indicated published literatures to obtain the threshold values of aroma substances in strawberry. a [21]; b [17]; c [20]; d [18]; e [19]; WT represents cultivated
strawberry ‘Sachinoka’. Mut represents somaclonal mutant ‘Mixue’.
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2.5. Unique Volatile Components in the Somaclonal Mutant ‘Mixue’

To further compare the differences in volatile components between ‘Sachinoka’ and its
somaclonal mutant ‘Mixue’, a comparative analysis of the unique volatile components in the
fruits of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at four developmental stages was
performed. Nine unique volatile components were identified in ‘Sachinoka’. Among them,
seven unique volatile components in the green fruit, one unique volatile component in the
white fruit and one unique volatile component in the red fruit were identified, respectively
(Table S5). Eleven unique volatile components were identified in the somaclonal mutant
‘Mixue’. Among them, five unique volatile components in the green fruit, two unique
volatile components in the white fruit and four unique volatile components in the turning
fruit (Table S6). Ethyl butyrate and nerolidol are characteristic volatile components of
strawberry. Ethyl butyrate was detected in the green and white fruits of somaclonal mutant
‘Mixue’ fruits with OAVs greater than 1 (Table 1). During the turning stage, nerolidol was
only present in the somaclonal mutant ‘Mixue’. In the red stage, nerolidol dramatically
accumulated in both ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ fruits. However, the
content of nerolidol in the somaclonal mutant ‘Mixue’ was 1.69 times higher than that
in ‘Sachinoka’ (Table S3). In addition, ethyl hexanoate is considered as one of the fruit
characteristic aroma components in strawberry [22], which was a unique volatile substance
in the turning stage of the somaclonal mutant ‘Mixue’ fruit and the OAV was greater than
1 (Table 1). At the red fruit stage, ethyl hexanoate was significantly accumulated in both
‘Sachinoka’ and its somaclonal mutant ‘Mixue’ fruit, while the content of ethyl hexanoate
in the somaclonal mutant ‘Mixue’ was 1.70 times higher than that in ‘Sachinoka’ (Table S3).

2.6. Principal Component Analysis of Volatile Components

To identify volatile component differences between ‘Sachinoka’ and its somaclonal
mutant ‘Mixue’, principal component analysis (PCA) based on the contents of nine cate-
gories of volatile components was conducted. The first principal component (PC1) and the
second principal component (PC2) accounted for 80.50% and 11.28% of the total variance,
respectively (Figure 3). PC1 and PC2 successfully distinguished the contents of volatile
components of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at four developmental stages.
PC1 clearly distinguished the first three stages of fruit development from the red fruit
stage. The contents of volatile components of the first three stages of fruit development
were close to each other, indicating that these developmental stages had similar volatile
components. PC2 successfully distinguished ‘Sachinoka’ and its somaclonal mutant ‘Mixue’
(Figure 3). Benzene and volatile phenols, isoprenoids, acids were the main contributors
to the first component, while alcohols, aldehydes and ketones and ethyl esters were the
contributors to the second component (Table S7). Significant differences in the contents of
volatile components between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ were found
at different fruit development stages, even at the same fruit development stage between
‘Sachinoka’ and its somaclonal mutant ‘Mixue’.
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strawberry ‘Sachinoka’. Mut represents somaclonal mutant ‘Mixue’.

2.7. Expression Levels of Anthocyanins-Related Genes

To investigate the reason for the white flesh phenotype of the somaclonal mutant
‘Mixue’, we detected the expression of 22 anthocyanins-related genes including 15 structural
genes and seven regulatory and transport genes at four developmental stages between
‘Sachinoka’ and its somaclonal mutant ‘Mixue’ (Figure 4A). Seven structural genes including
FaPAL1, FaCHS1, FaCHS2, FaCHI, FaDFR, FaF3H and FaANS had similar expression patterns
in ‘Sachinoka’ and its somaclonal mutant ‘Mixue’. The expression levels of these seven
structural genes were significantly increased in turning and red fruits in ‘Sachinoka’ and its
somaclonal mutant ‘Mixue’, whilst the expression levels of these seven structural genes in
turning and red fruits of somaclonal mutant ‘Mixue’ were significantly lower than those
in ‘Sachinoka’. In addition, the expression levels of FaTT19, FaMYB10, FaMYB11.2 and
FaWD40 in ‘Sachinoka’ at the turning stage were 6.73, 3.02, 2.48, and 2.52 times higher
than those in somaclonal mutant ‘Mixue’, respectively (Figure 4B). The expression of
FaMYB1 in red fruit was remarkably increased in the somaclonal mutant ‘Mixue’ compared
with ‘Sachinoka’ (Figure 4B). The differential expression of these key factors involved in
regulating and transporting anthocyanins between ‘Sachinoka’ and its somaclonal mutant
‘Mixue’ may be the key reason for the white-flesh phenotype in the red fruit stage of the
somaclonal mutant ‘Mixue’.
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Figure 4. (A) Anthocyanin biosynthetic and regulatory pathway. The green box represents the
precursor for anthocyanin biosynthesis; the yellow oval represents transcription factors regulating
anthocyanins accumulation; the yellow box represents the endoplasmic reticulum and vacuole; the
blue oval represents the anthocyanin transport gene. PAL is phenylalanine ammonia-lyase; C4H
is cinnamate 4-hydroxylase; 4CL is 4-coumarate-CoA synthase; CHS is chalcone synthase; CHI is
chalcone isomerase; F3H is flavanone 3-hydroxylase; DFR is dihydroflavonol-4-reductase; ANS
is anthocyanidin synthase; MYB is MYB transcription factor; WD40 is WD-repeat protein; bHLH
is basic helix-loop-helix transcription factor. (B) Expression levels of anthocyanins-related genes
of ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’ fruit at four developmental stages.
PAL is phenylalanine ammonia lyase; C4H is cinnamate 4-hydroxylase; 4CL is 4-coumarate-CoA
synthase; CHS is chalcone synthase; CHI is chalcone isomerase; F3H is flavanone 3-hydroxylase;
DFR is dihydroflavonol-4-reductase; UFGT is UDP glucose flavonoid-3-O-glycosyltranferase; TT19 is
transparent testa 19; TTG1 is testa glabra 1; MYB is MYB transcription factor; WD40 is WD-repeat
protein; ANS is anthocyanidin synthase.

2.8. Expression Levels of Genes Involved in Volatile Components Metabolic Pathway

To explore the reason for the differences in volatile components between ‘Sachinoka’
and its somaclonal mutant ‘Mixue’, we detected the correlation between the expression of
volatile-related genes and volatile components in the fruit of ‘Sachinoka’ and its somaclonal
mutant ‘Mixue’ at different developmental stages.

2.8.1. Fatty Acid Pathway

Esters are the characteristic volatile components in strawberry and are the most
abundant volatile components in strawberry [21]. There are 131 different types of esters in
strawberry, which account for 25–90% of all strawberry volatile components [19]. Therefore,
we analyzed the expression of 20 biosynthetic genes in this pathway between ‘Sachinoka’
and its somaclonal mutant ‘Mixue’ at different developmental stages (Figure 5A).

The biosynthetic genes involved in the fatty acid pathway such as FaLOX and FaADH
had a higher expression in the green and white stages of ‘Sachinoka’ and its somaclonal
mutant ‘Mixue’ fruits, which may provide sufficient substrates for the formation of esters
during the red fruit stage. Interestingly, a large amount of alcohols accumulated in the
green, white and turning fruits (Figure 5B). FaAAT directly affects the biosynthesis of esters,
especially ethyl hexanoate and ethyl isovalerate, which are characteristic aroma components
of strawberry and play important roles in the formation of strawberry fruit aroma [23].
The highest expression levels of FaAAT1 and FaAAT2 were found in the turning stage of
‘Sachinoka’ fruit, while the highest expression of FaAAT1 and FaAAT2 was found in the
red stage of the somaclonal mutant ‘Mixue’ fruit. In addition, we also found the transcript
levels of FaAAT1 and FaAAT2 in the red stage of the somaclonal mutant ‘Mixue’ fruit were
significantly increased compared with ‘Sachinoka’ (Figure 5B), which was consistent with
ethyl esters with higher content in the red stage of the somaclonal mutant ‘Mixue’ fruit
than in ‘Sachinoka’.
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Figure 5. (A) Fatty acid pathway. The green box represents the precursor for the fatty acid pathway;
the red boxes represent volatile components that play a major role in strawberry aroma (i.e., odor
activity values are greater than 1). FAD is fatty acid desaturase; ACX is Acyl-CoA oxidase; FAE is fatty
acid elongase; FAH is fatty acid hydroxylase; CYP is cytochrome P450; EH is epoxide hydrolase; PXG
is peroxygenase; LOX is lipoxygenase; HPL is hydroperoxide lyase; ADH is alcohol dehydrogenase;
AAT is alcohol acyltransferase. (B) Expression analysis of biosynthetic genes involved in the fatty acid
pathway of ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’ fruit at four developmental
stages. FAD is fatty acid desaturase; ACX is Acyl-CoA oxidase; FAE is fatty acid elongase; FAH is
fatty acid hydroxylase; EH is epoxide hydrolase; PXG is peroxygenase; LOX is lipoxygenase; HPL is
hydroperoxide lyase; ADH is alcohol dehydrogenase; AAT is alcohol acyltransferase.

2.8.2. Terpenoid Metabolic Pathway

Terpenoids are mainly biosynthesized through the mevalonate (MVA) pathway or
the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The MVA pathway operates in
the cytoplasm and the MEP pathway functions in the plastid. The volatile monoterpenes
(C10) and sesquiterpenes (C15) are identified in most fleshy fruits [24]. Therefore, we
examined the expression of 21 biosynthetic genes in the terpenoid metabolic pathway
between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at different developmental stages
(Figure 6A).

In the MVA pathway, FaNES1 is one of the crucial genes involved in sesquiterpenoids
biosynthesis [25]. The highest expression of FaNES1 was found in the turning stage of
‘Sachinoka’ fruit, while the highest expression of FaNES1 was found in the red stage of
the somaclonal mutant ‘Mixue’, which was in accordance with the nerolidol having a
1.69 times higher content in the red fruit stage of the somaclonal mutant ‘Mixue’ than that
in ‘Sachinoka’ (Table S3). In addition, FaNES1 directly regulates the synthesis of the linalool
in the MEP pathway [26]. We found that the contents of linalool were almost the same in red
fruit stage of ‘Sachinoka’ and the somaclonal mutant ‘Mixue’ (Table S3). The expression of
genes related to MEP pathway such as FaDXR, FaCMS, FaCMK, FaMCS, FaHDS and FaHDR
reached the highest levels during the turning stage in the somaclonal mutant ‘Mixue’ and
the expression levels of these genes in the turning fruit of the somaclonal mutant ‘Mixue’
were significantly higher than those in ‘Sachinoka’. FaQR, FaOMT, FaGT2 and FaGT7 are
key genes of the carbohydrate pathway with sugar molecule as the precursors [27]. FaQR
and FaOMT had the highest expression in the red stage of the somaclonal mutant ‘Mixue’
fruit. FaGT2 and FaGT7 had the highest expression in the turning stage of the somaclonal
mutant ‘Mixue’ fruit. The expression of these genes in the turning and red stages of
the somaclonal mutant ‘Mixue’ were significantly increased compared with ‘Sachinoka’
(Figure 6B).
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‘Mixue’, which may be associated with an increased content of benzaldehyde in the green 
fruit of somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Figure 2A,B). 

Figure 6. (A) Terpenoid metabolic pathway. The green squares represent substrates of the terpenoid
metabolic pathway; the red squares represent volatile components that play a major role in strawberry
aroma presentation (i.e., OAV values greater than 1). MVA pathway is mevalonate pathway; MEP
pathway is 2-C-methyl-D-erythritol 4-phosphate pathway; G3P is glyceraldehyde 3-phosphate; DXS is
1-deoxy-D-xylulose 5-phosphate synthase; DXR is 1-deoxy-D-xylulose 5-phosphate reductoisomerase;
FaQR is Fragaria × ananassa quinone oxidoreductase gene; FaOMT is O-methyltransferase gene;
UGT is UDP-glucose transporter; MVK is mevalonate kinase; PMK is phosphomevalonate kinase;
FPS is farnesyl pyrophosphate synthase; NES is nerolidol synthase; CMS is 4-diphosphocytidyl-2-
C-methyl-D-erythritol synthase; CMK is 4-(cytidine 5′-diphospho) -2-C-methyl-D-erythritol kinase;
MCS is 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase; HDS is 4-hydroxy-3-methylbut-2-
en-1-yl diphosphate synthase; HDR is 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; IPP
is isopentenyl diphosphate; IDI is Isopentenyl diphosphate isomerase; DMAPP is dimethylallyl
diphosphate; FPP is farnesyl diphosphate; GPP is geranyl diphosphate; GGPP is geranylgeranyl
diphosphate; HMGR is 3-hydroxy-3-methylglutaryl coenzyme A reductase; CCD is carotenoid
cleavage dioxygenase; TPS is terpene synthase. (B) Expression analysis of biosynthetic genes involved
in terpenoid metableolic pathway of ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’ fruit
at four developmental stages: DXS is 1-deoxy- d-xylulose 5-phosphate synthase; DXR is 1-deoxy-
D-xylulose 5-phosphate reductoisomerase; FaQR is Fragaria × ananassa quinone oxidoreductase
gene; FaOMT is O-methyltransferase gene; UGT is UDP-glucose transporter; MVK is mevalonate
kinase; PMK is phosphomevalonate kinase; NES is nerolidol synthase; CMS is 4-diphosphocytidyl-2-
C-methyl-D-erythritol synthase; CMK is 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase;
MCS is 2-C-methyl-D-erythritol-2, 4-cyclodiphosphate synthase; HDS is 4-hydroxy-3-methylbut-2-
en-1-yl diphosphate synthase; HDR is 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; IPP is
isopentenyl diphosphate; CCD is carotenoid cleavage dioxygenase; TPS is terpene synthase.

2.8.3. Amino Acid Pathway

In the amino acid pathway, we investigated the expression of 12 genes involved in this
pathway between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ at different developmental
stages (Figure 7A). Higher expression levels of FaPAL1 and FaDAHPS were identified in
the turning and red stages of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ than in
the green and white stages (Figure 7B), which may lead to a large amount of the trans-
cinnamic acid accumulation. In addition, a higher expression of FaCNL was found in
the green and white fruits of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’, which was
consistent with the accumulation of benzenoids components in the green and white fruits
of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ (Figure 7B). In particular, the content of
methyl salicylate and phenylethyl alcohol of the somaclonal mutant ‘Mixue’ were 19.19,
9.86 times higher in the green fruit and 2.72, 1.16 times higher in the white fruit compared
with ‘Sachinoka’(Table S3). In addition, the transcript level of FaCNL was significantly
lower in the green and white fruits of ‘Sachinoka’ compared with its somaclonal mutant



Plants 2023, 12, 82 11 of 19

‘Mixue’, which may be associated with an increased content of benzaldehyde in the green
fruit of somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Figure 2A,B).
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Figure 7. (A) Amino acid pathway. The red squares represent volatile components that play a
major role in strawberry aroma presentation (i.e., OAV values greater than 1). BCAT is branched-
chain aminotransferase; PDC is pyruvate decarboxylase isozyme; ADH is alcohol dehydrogenase;
AAT is alcohol acyltransferase; DAHPS is phospho-2-dehydro-3-deoxyheptonate aldolase; PAL is
phenylalanine ammonia lyase; CNL is CoA ligase. (B) Expression analysis of biosynthetic genes
involved in amino acid pathway of ‘Sachinoka’ strawberry and its somaclonal mutant ‘Mixue’
fruit at four developmental stages: BCAT is branched-chain aminotransferase; PDC is pyruvate
decarboxylase isozyme; ADH is alcohol dehydrogenase; AAT is alcohol acyltransferase; DAHPS is
phospho-2-dehydro-3-deoxyheptonate aldolase; PAL is phenylalanine ammonia lyase; CNL is CoA
ligase. ER: endoplasmic reticulum. WT represents cultivated strawberry ‘Sachinoka’. Mut represents
somaclonal mutant ‘Mixue’.

3. Discussion

Somatic variation is the main source of genetic diversity and plant breeding for asexu-
ally propagated plants. Somatic mutation in plants may be genetic [28] or epigenetic [29].
Somatic mutants have nearly identical genetic backgrounds to the parents and are con-
sidered as ideal genetic material for studying new traits of mutation [28]. In this study,
a somaclonal mutant ‘Mixue’ was identified in the progeny of a micropropagated plant
of ‘Sachinoka’. We explored the reasons for the white flesh and stronger aroma of the
somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’.

3.1. The Reason for White Flesh of Somaclonal Mutant ‘Mixue’

The Somaclonal mutant ‘Mixue’ with white flesh in the red fruit stage was a somaclonal
variation of ‘Sachinoka’ strawberry. The white flesh of the red fruit stage of somaclonal
mutant ‘Mixue’ resulted from the significantly reduced accumulation of Cy3G and Pg3G in
the somaclonal mutant ‘Mixue’ (Figure 1B). The expression of anthocyanin biosynthesis
genes FaPAL, FaCHS, FaCHI, FaDFR, FaF3H and FaANS were significantly down-regulated
in the turning and red stages of the somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’.
Further studies on anthocyanin-related transcription factors and transporter revealed that
the expression levels of FaMYB10, FaWD40, FaMYB11.2, and FaTT19 were significantly
reduced in the somaclonal mutant ‘Mixue’ during the turning stage relative to ‘Sachinoka’,
while transcript level of FaMYB1 was significantly increased in the red fruit stage of the
somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Figure 4B). MYB10 is considered as
a critical positive regulator in apple [30], pear [31,32] and strawberry [33,34] for controlling
the accumulation of anthocyanins. The lack of anthocyanins in fruit from woodland
and cultivated strawberry is mainly derived from the variation in the coding region of
MYB10, such as a single amino acid change (G35C), 1 or 8 nucleotide insertion, long
terminal repeats of transposable element (LTR-TE) insertion [35,36]. Thus, we detected
the coding region of MYB10 between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’. We
found the 35th nucleotide in the first exon of the somaclonal mutant ‘Mixue’ was identical
to ‘Sachinoka’ and the MYB10 amino acids in the somaclonal mutant ‘Mixue’ did not
result in a frameshift and a premature stop codon (Figure S2A). These results indicate
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that the white flesh of somaclonal mutant ‘Mixue’ is not attributed to the variation in the
MYB10 coding region. Some literatures have indicated that deletion or insertion in the
strawberry MYB10 promoter may alter the expression of MYB10, which in turn affects the
expression of anthocyanins biosynthetic genes [35,37]. In this study, we also found that
the expression of FaMYB10 was significantly down-regulated in the somaclonal mutant
‘Mixue’ (Figure 4B). Moreover, we tested the FaMYB10 promoter between ‘Sachinoka’
and its somaclonal mutant ‘Mixue’ and found there were no large insertions or deletions
in the promoter of ‘Sachinoka’ and the somaclonal mutant ‘Mixue’ and the promoter
sequence similarity between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ was 99.26%
(Figure S2B). These results suggest that the white flesh of the somaclonal mutant ‘Mixue’
is associated with a lower expression of FaMYB10 and the lower expression of FaMYB10
in the somaclonal mutant ‘Mixue’ was different from the FaMYB10 promoter variations
affecting the expression of FaMYB10 [35–37]. DNA methylation regulates the expression of
MYB10, which in turn modulates the biosynthesis of anthocyanins and affects the fruit color
in pear [12,31,38]. Further work will be required to better understand whether the different
expression patterns of FaMYB10 in ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ are
related to promoter methylation. MYB1 is an important negative regulator of anthocyanin
biosynthesis in strawberry [39]. We found the coding region of FaMYB1 was identical
between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ (Figure S3A). Gene expression
analysis indicated that the expression of FaMYB1 was markedly increased in the red fruit
of the somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Figure 4B). The promoter
sequence similarity of FaMYB1 between ‘Sachinoka’ and its somaclonal mutant ‘Mixue’
was 99.55% (Figure S3B). FaWD40 can form a ternary complex with FaMYB10, FabHLH33
which regulates the expression of downstream anthocyanins structural genes [40]. In this
study, we also found that FaWD40 was significantly down-regulated in the turning and
red fruit stages of the somaclonal mutant ‘Mixue’. FaWD40 may interact with FaMYB10
and FabHLH33 to affect the expression of downstream anthocyanins structure genes. The
expression patterns of FaMYB11.2 and FaTT19 were consistent with FaMYB10 and FaWD40,
which had significantly lower expression in the somaclonal mutant ‘Mixue’ fruits during
the turning and red stages compared with ‘Sachinoka’ (Figure 5B). FaMYB9 and FaMYB11
encode two R2R3-MYB transcription factors which are homologs of Arabidopsis AtTT2,
which can restore the tt2-1 mutant phenotype and produce brown seeds [41]. Arabidopsis
TT19 is localized on the cytoplasm and vacuole and encodes a glutathione-S-transferase
(GST). Sun et al. found that tt19-7 mutants hardly accumulate anthocyanins [42]. Gao et al.
knocked out the RAP gene (Reduced Anthocyanins in Petioles) in octoploid strawberry
using CRISPR/Cas9, resulting in a white-fruited phenotype [43]. Therefore, a lower
expression of FaMYB11.2 and FaTT19 during the turning and red stages in the somaclonal
mutant ‘Mixue’, may lead to a reduction in anthocyanin or proanthocyanidin accumulation.

These results have demonstrated that the differential expression levels of FaMYB10,
FaWD40, FaMYB11.2, FaTT19 and FaMYB1 in ‘Sachinoka’ and its somaclonal mutant ‘Mixue’
were correlated with the white flesh of the somaclonal mutant ‘Mixue’ fruit. Further study
will be needed to determine whether methylation or large transposon, retrotransposon
insertion exist in the promoter of these key factors.

3.2. The Reasons for Stronger Aroma in Somaclonal Mutant ‘Mixue’ than ‘Sachinoka’

In the last 30 years, the main goal of strawberry breeding has been to produce cul-
tivars with high-yield and large fruit, but the improvement of fruit quality has been
neglected [44,45]. During fruit development and ripening, the types and contents of straw-
berry volatile components are one of the most critical factors to determine the quality of
the strawberry [46]. The changes in strawberry fruit quality result from changes in gene ex-
pression and enzymatic activity during strawberry fruit development and ripening [47,48].
The content of volatile components in the fruits of ‘Sachinoka’ and its somaclonal mutant
‘Mixue’ gradually increased with the development of fruit. Among them, the contents of
acids, acetate, ethyl esters, other esters, benzene and volatile phenols, isoprenoids and
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furans reached their peak in the red fruit stage (Figure 2D). In addition, ripening fruit
of the somaclonal mutant ‘Mixue’ had a stronger aroma than ‘Sachinoka’. The possible
reasons are as follows: (1) During the red fruit stage, the content of ethyl hexanoate in the
somaclonal mutant ‘Mixue’ was significantly increased than that in ‘Sachinoka’ and ethyl
isovalerate had the same trend with ethyl hexanoate (Table S3), which may be related to
the significantly increased expression of FaAAT in the somaclonal mutant ‘Mixue’ at the
red fruit stage compared with ‘Sachinoka’ (Figure 5B). (2) Nerolidol was a unique volatile
component in the turning stage of the somaclonal mutant ‘Mixue’ fruit and the content of
nerolidol in the somaclonal mutant ‘Mixue’ was significantly higher than that in ‘Sachinoka’
during the red stage (Table S3). Although terpenoids account for less than 10.0% of total
strawberry volatile components, the threshold of nerolidol is very low [18], which leads
to the high OAVs for nerolidol and has a great contribution to fruit aroma in strawberry.
The OAVs in the somaclonal mutant ‘Mixue’ was 1.69 times higher than that in ‘Sachinoka’,
which laid the foundation for the stronger aroma in the red fruit stage of the somaclonal
mutant ‘Mixue’ than that in ‘Sachinoka’ (Table 1). FaNES1 is a key gene for the biosynthesis
of linalool and nerolidol in strawberry [25]. Increased expression of FaNES1 in the red
fruit stage of the somaclonal mutant ‘Mixue’ may be associated with a higher content of
nerolidol compared with ‘Sachinoka’ (Figure 6B). (3) In the amino acid pathway, the content
of benzaldehyde in the green fruit increased by 1.40 times in the somaclonal mutant ‘Mixue’
compared with ‘Sachinoka’, which may result from the increased expression of FaCNL in
the somaclonal mutant ‘Mixue’ than that in ‘Sachinoka’ (Figure 7B). In addition, the content
of benzenol in the somaclonal mutant ‘Mixue’ was 1.60 times higher than that in ‘Sachinoka’
during the turning stage (Table S3), which may be related to the significantly increased
expression of FaPAL1 and FaDAHPS in the somaclonal mutant ‘Mixue’ than in ‘Sachinoka’
during the turning stage (Figure 7B). (4) Furanones such as HDMF and its derivatives are
characteristic volatile components in strawberry. DMHF is the unique and most essential
volatile component in strawberry [49]. Although the content of furanones in strawberries
are low, it has a very low threshold [15]. Therefore, furanones have a great impact on the
aroma of strawberry. FaQR is the key gene for the biosynthesis of HDMF. FaERF9 interacts
with FaMYB98 to form the ERF-MYB complex, which can activate the promoter of FaQR
and promote HDMF biosynthesis [25]. FaOMT encodes the O-methyltransferase which
converts HDMF to DMMF [27]. HDMF can also be metabolized to HDMF-glucoside by a
UGT and further malonylated into HDMF malonyl-glucoside in strawberry fruit [25]. In
this study, the transcript level of FaQR during the turning and red stages was significantly
increased in the somaclonal mutant ‘Mixue’ than that in ‘Sachinoka’. During the turning
stage of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’, the expression levels of FaQR was
2.72 times higher relative to ‘Sachinoka’. In the red fruit stage, the expression level of FaQR
was 2.04 times higher relative to ‘Sachinoka’. Interestingly, FaOMT had the same expression
pattern with FaQR during the turning and red stages in ‘Sachinoka’ and its somaclonal mu-
tant ‘Mixue’ fruits. The expression levels of FaOMT in the turning fruit stage was 7.64 times
higher relative to ‘Sachinoka’, 15.56 times higher relative to ‘Sachinoka’ fruit during the
red stage. In addition, the expression level of FaGT2 and FaGT7 in the somaclonal mutant
‘Mixue’ were 2.63 and 8.18 times higher compared with ‘Sachinoka’ during the turning
stages, respectively (Figure 6B). However, furanone was not detected in ‘Sachinoka’ and
its somaclonal mutant ‘Mixue’ in this study, which may be associated with the very low
furanone content in strawberry or inappropriate detection method for furanone. Together,
the expression levels of FaQR, FaOMT, FaGT2 and FaGT7 were significantly up-regulated
in the somaclonal mutant ‘Mixue’ compared with ‘Sachinoka’ (Figure 7B), which may lead
to higher HDMF, DMMF, and DMMF-glucoside contents in the somaclonal mutant ‘Mixue’.
Further work will be required to compare the content of furanones in ‘Sachinoka’ and its
somaclonal mutant ‘Mixue’.

In conclusion, the contents of Cy3G and Pg3G were significantly increased in the red
fruit stage of ‘Sachinoka’ compared with its somaclonal mutant ‘Mixue’ and the white
flesh of the somaclonal mutant ‘Mixue’ may result from the differentially expressed factors
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involved in anthocyanins accumulation, such as FaMYB10, FaMYB11.2, FaWD40, FaMYB1,
and FaTT19. There were significant increases in the characteristic strawberry volatile
components in the red fruit of ‘Mixue’, such as nerolidol, benzaldehyde, ethyl hexanoate,
ethyl isovalerate, which led to enhanced volatiles in the somaclonal mutant ‘Mixue’ and
might result from the up-regulated expression of FaNES1, FaCNL and FaAATs in ‘Mixue’
compared with ‘Sachinoka’. In addition, the significant up-regulation expression of FaQR,
FaOMT, FaGT2 and FaGT7 in the somaclonal mutant ‘Mixue’ during the turning and red
fruit stages may result in accumulating more furanones in the somaclonal mutant ‘Mixue’
(Figure 8). These results provide some insights for the somaclonal mutant ‘Mixue’ with
white flesh and stronger aroma compared with ‘Sachinoka’.
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4. Materials and Methods
4.1. Plant Material

The materials used in this study were cultivated strawberry (Fragaria × ananassa
Duch.) cultivars ‘Sachinoka’ and ‘Mixue’. ‘Mixue’ is a somaclonal mutant produced
from the tissue culture of apices of runner tips from ‘Sachinoka’. The somaclonal mutant
‘Mixue’ was observed in the field for 3 years and its phenotype was stable. ‘Sachinoka’ and
its somaclonal mutant ‘Mixue’ were grown in the greenhouse of Shenyang Agricultural
University, China. For different developmental stages of ‘Sachinoka’ and its somaclonal
mutant, fruit at 8 days (green stage), 16 days (white stage), 24 days (turning stage) and
32 days (ripening stage) after pollination were collected for HPLC, HS-SPME-GC-MS and
RT-qPCR analysis, respectively.

4.2. HPLC Analysis

The red stage of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ fruits were harvested
and immediately frozen in liquid nitrogen. Twenty fruits from twenty plants were mixed
and ground to fine powder. Some 0.2 g of the powder was added into 2 mL methanol
with 1% (v/v) hydrochloric acid and extracted at 4◦C for 48 h under dark condition.
Centrifugated the extracts at 13,000 rpm for 20 min and collected the supernatant. The
residues were re-soaked with 2 mL methanol containing 1% hydrochloric acid and the
supernatant collected. Then, hydrochloric acid was added to 5 mL.
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The contents of anthocyanins in strawberry fruit were analyzed with the Agilent
1260 Infinity HPLC system equipped with G1314B variable wavelength UV detector
(VWD) (Agilent Technologies, Santa Clara, CA, USA). Cyanidin-3-O-glucoside (Cy3G)
and pelargonidin-3-O-glucoside (Pg3G) were purchased from Yuanye Bio-Technology Co.,
Ltd. (Shanghai, China). These standards were dissolved in methanol to 100 µg/mL. The
chromatographic column was Intertsil ODS-35 UM (4.6 mm × 250 mm, 5 µm) and Cy3G
and Pg3G were detected at 520 nm. The column temperature was 30◦C. The mobile phase
A was formic acid dissolved in ultrapure water (1/9, v/v) and mobile phase B was 10%
formic acid dissolved in 90% acetonitrile (v/v). The injection volume was 10 µL. The flow
rate was set at 1 mL/min and the running time was 75 min. Linear gradient elution was
used (Table S1). Compositions were distinguished by comparing their retention times with
standards under the same condition.

4.3. HS-SPME-GC-MS Analysis

The extraction of volatile components from fruit samples was performed following
methods previously described un [50]. Weighed 50 g of fruit sample, added 0.5 g of D-
gluconolactone and 1 g PVPP (polyvinylpolypyrrolidone), ground into powder. Placed the
powder in a 50 mL centrifuge tube, extracted at 4 ◦C for 4 h, and then centrifuged at 4 ◦C
and 8000 rpm for 10 min to derive strawberry-clarified juice for solid phase microextraction
(SPME) and gas chromatography-mass spectrometry (GC-MS) analysis. Extracted the
volatile components from strawberry-clarified juice using an SPME fiber coated with
50/30-µm DVB/CAR/PDMS (Superco, Bellefonte, PA, USA) extracts. Divided the aliquot
(5 mL) of strawberry clarified juice and 10 µL 4-methyl-2-pentanol (1.002 mg/mL water,
internal standard) were mixed in a 15 mL closed vial containing a magnetic stirrer. After
30 min of equilibration at 40 ◦C, the sample was extracted with SPME fiber (treated at
270 ◦C for 1 h before use) for 30 min and continuously heated and stirred. The separation
and identification of the volatile components were based on Agilent 6890 GC coupled
with an Agilent 5975 MS and 60 m × 0.25 mm id HP-INNOWAX capillary column with
0.25 µm film thickness (J&W Scientific, Folsom, CA, USA). The GC-MS in this study was
based on methods detailed previously [51]. Under the same chromatographic conditions,
the retention index was calculated using C7-C24 n-alkane series (Supelco, Bellefonte, PA,
USA). The retention index was based on the reference standard and the mass spectrum
matching in the NIST 05 library of standards. When reference standards were not available,
the preliminary identification was carried out based on the mass spectrum matching in
the NIST 08 library and the identification of retention index was through comparison
with the NIST standard reference database (NIST Chemistry WebBook. Available online:
https://webbook.nist.gov/chemistry/ (accessed on 14 December 2022).

Take 4-methyl-2-pentanol as the internal standard (add 10 µL of 1.002 mg/mL internal
standard aqueous solution to each sample and standard solution) to quantitatively ana-
lyze the determined compounds. Two synthetic substrates containing 1% and 11% (v/v)
ethanol were prepared in distilled water (having 3.0 g/L malic acid and pH 3.6). Volatile
standard solution was dissolved in a 1% and 11% synthetic matrix, and the concentra-
tion was usually the concentration of strawberry-clarified juice, respectively. Then the
volatile standards were extracted and analyzed under the same conditions as strawberry-
clarified juice samples. The quantitative data of volatile components were calculated by the
following formula:

The concentration of analyte = (the area of analyte/the area of 4-methyl-2-pentanol) ×
concentration to 4-methyl-2-pentanol

4.4. Quantitative Real-Time PCR

The four developmental stage fruits (more detailed descriptions were shown in Plant
material) of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ fruits were harvested and
immediately frozen in liquid nitrogen. At each stage of fruit development, twenty fruits

https://webbook.nist.gov/chemistry/
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from twenty plants were mixed and ground to fine powder, respectively. Total RNA from
four developmental stage fruits of ‘Sachinoka’ and its somaclonal mutant ‘Mixue’ was
extracted using the CTAB method. Then, cDNA was synthesized based on PrimeScript TM
RT reagent Kit (TaKaRa, Dalian, China). Quantitative real-time RT-PCR (RT-qPCR) was
conducted using UltraSYBR Mixture (CWBio, Beijing, China) with quantitative primers
(Table S2). RT-qPCR was performed with the QuantStudio TM 6 Flex Real-Time PCR System
including 5 µL UltraSYBR Mixture, 0.2 µM quantitative primers, 0.5 µL diluted cDNA
and 3.5 µL ddH2O. The first step of thermal cycling denaturation was 95 ◦C for 10 min,
followed by 40 cycles for denaturation at 95 ◦C for 15 s and annealing/extension at 60 ◦C for
1 min. The relative mRNA levels were calculated using the 2−∆∆Ct method. All data were
normalized with the expression level of the 26S and then normalized with the expression
of ‘Sachinoka’. Each sample was analyzed in triplicate with three biological replicates.

4.5. Statistical Analysis

SPSS 18.0 was applied for statistical analysis (SPSS Inc., USA). An independent t-test
was used to evaluate the significant difference between the two treatments in the nine
categories of volatile components (* p < 0.05; ** p < 0.01). A one-way analysis of variance
(ANOVA) was used to analyze the content of volatile substances at different developmental
stages employing Duncan’s multiple range tests at a level of p < 0.05. The volatile compo-
nents and OAVs were presented as the mean ± SD of triplicate measurements. Origin 2021
(OriginLab Inc., Northampton, MA, USA) was used to visualize the data.

5. Conclusions

The white flesh in the ripening fruit of ‘Mixue’ was due to the lower expression
of FaMYB10, FaMYB11.2, FaWD40 and FaTT19 and higher expression of FaMYB1 genes.
Fifteen volatile components in the ripening fruit of ‘Mixue’ were significantly increased
compared with ‘Sachinoka’, such as nerolidol, benzaldehyde, ethyl hexanoate, ethyl iso-
valerate, which led to an enhanced aroma in ‘Mixue’. The enhanced aroma in ‘Mixue’
was related to the up-regulated expression of FaNES1, FaCNL and FaAATs. These results
provide useful information on the effect of somaclonal variation on metabolic components
of strawberry fruit and lay the foundation for the improvement in quality of strawberry.
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