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Abstract: With the rapid growth in the data and processing over the cloud, it has become easier
to access those data. On the other hand, it poses many technical and security challenges to the
users of those provisions. Fog computing makes these technical issues manageable to some extent.
Fog computing is one of the promising solutions for handling the big data produced by the IoT,
which are often security-critical and time-sensitive. Massive IoT data analytics by a fog computing
structure is emerging and requires extensive research for more proficient knowledge and smart
decisions. Though an advancement in big data analytics is taking place, it does not consider fog
data analytics. However, there are many challenges, including heterogeneity, security, accessibility,
resource sharing, network communication overhead, the real-time data processing of complex data,
etc. This paper explores various research challenges and their solution using the next-generation
fog data analytics and IoT networks. We also performed an experimental analysis based on fog
computing and cloud architecture. The result shows that fog computing outperforms the cloud in
terms of network utilization and latency. Finally, the paper is concluded with future trends.

Keywords: Internet of things; artificial intelligence; blockchain; fog computing; data analytics

1. Introduction

The world is changing rapidly, and novel and disruptive paradigms are shaping our
future. One such paradigm is the Internet of things (IoT), which was presented many years
ago but is constantly evolving. Everything we use in our daily lives becomes more intelli-
gent as sensors are integrated. Every device, such as radio frequency identification (RFID)
tags, actuators, mobile phones, and so on, permeates our daily lives in both industrial
and domiciliary fields [1]. It is projected that over 31 billion devices will be linked to the
Internet by 2020, and this figure will rise further as 5G technology matures. The industry is
estimated to be worth USD one trillion by 2025 [2].

IoT has now diffused into various domains that were never thought of earlier. These
include healthcare, home automation, aviation, industrial automation, vehicular networks,
data analytics, mobiles, smart cities, agriculture, and wearables, including watches, shoes,
t-shirts, etc. [3]. However, the most prominent effect of IoT is on industrial automation,
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or Industry 4.0, where every device or machine is connected and communicates among
themselves [4,5].

Human behavior is unpredictable and sometimes changes. Robotic systems should
receive assistance from the cloud’s backend, which collects data from wearables and sensors
to decide the activities that robotic systems should carry out. A robotic arm utilized in many
industrial applications is controlled using an IoT interface. By capturing the movement and
performing the same activities repeatedly, it minimizes human effort [6]. IoT and robotic
systems are closely collaborating as Industry 4.0 develops, reshaping their relationships
and enabling the creation of next-generation gadgets. The Internet of robotic things (IoRT)
is a notion that results from the combination of robotic agents and the Internet of things
(IoT), and it opens up new opportunities for both industrial and academic disciplines. The
fourth industrial revolution’s primary outcome is creating and spreading cyber–physical
systems (CPSs). Applications for CPS technology include gas distribution, transportation
systems, medical equipment, and electrical power grids, among many others. In CPSs,
networks interface with physical systems while conducting in-depth analysis and data
extraction. IoT and CPSs provide a good framework for the growth of a new field of
study called the Internet of robotic things (IoRT). In this scenario, IoRT represents the core
component of robotics-integrated IoT systems, where cloud computing and networking
can be implemented to accomplish elaborated tasks, enabling robots to share, network, and
gather various types of information from humans and others machines [7,8].

1.1. Background

Before we deeply understand the IoT paradigm, let us first understand the industry’s
evolution through the various revolutions taking place at stipulated time intervals, each
time having a novel, promising, and disruptive concept upon which that revolution has
been based. Figure 1 shows the timeline of manufacturing, starting from the first industrial
revolution and ending at the current state of Industry 4.0. We start with Industry 1.0,
the first industrial revolution, which took place around the late 18th/early 19th century.
Initially, human resources were involved in the production processes. Due to this, there
was a high chance of errors, and the industries needed to be more scalable. During this
revolution, the mechanization of production took place, with the introduction of steam
and water-propelled engines into the industrial realm, which resulted in a tremendous
increase in efficiency and scaling. Small-scale industries could now serve large companies
and increase their customer base. The next revolution, Industry 2.0, took place in the
19th/early 20th century. The main factor behind the second revolution was introducing and
developing machines running on electrical energy and assembly line production techniques
for increasing efficiency and bringing modularization into effect so that divisions of work
or labor based on skill sets could be made possible. The mass production of products
began during this era. The production efficiency increased significantly due to a further
decrease in human intervention as humans were now required more for monitoring and
maintenance purposes and less for production. The Industry 3.0 revolution started in the
late 20th century when electronic hardware such as transistors and integrated circuits were
introduced to machines. These electronic devices needed software to operate them. The
software also automated other tasks, including inventory management, optimum resource
utilization, etc. The involvement of fully automated machines reduced the risk of errors
and increased the production rate significantly. This era marked the era of computers and,
lately, the Internet too.

The next and most recent industrial revolution, which is still ongoing, is the Industry
4.0 revolution, which thrives on making machines or devices “smart” [9]. It adds more
value to the Industry 3.0 generation by adding communication between the connected
devices/machines to minimize human involvement in production. Industry 4.0 is a byprod-
uct of the IoT paradigm and focuses on real-time decision making by the devices based on
various external and internal stimuli.
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Figure 1. Industrial revolution.

1.2. Introduction to IoT and Fog Computing

As we have seen in the previous section, Industry 4.0 focuses on smart devices. The
devices become smart by getting equipped with sensors or actuators that help them to
identify their surroundings, process the data collected from them in the brain, make a
decision, and then react according to the decision. This brings us to the IoT paradigm and
the definition of IoT, which is somewhat as follows.

The network of all of these smart devices that are connected to sense, communicate,
and interact within them and with the external environment on real-time data and make
decisions by processing these data is collectively called the Internet of things or the IoT.
All IoT devices are connected centrally to the cloud to compute the enormous amount of
data that IoT devices collect [10,11]. The cloud also has a vast data storage capacity and
is generally remotely located from the devices. Furthermore, the cloud provides different
kinds of services, such as software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS), heading towards anything as a service (XaaS).

The vast number of interconnected devices drives out huge amounts of data in a raw
format that needs to be processed, and decision making needs to be performed based on
that data in real time. However, only one cloud is remotely situated and serves many
devices, all of which need to respond quickly to the data. Consider the case of a driverless
car that sends all of its sensors’ data to the cloud to make decisions [12,13]. The car’s camera
sends out the image of the signal turning red just now, but as the decision to stop comes
from the cloud, it has already crossed the signal, causing an accident. There are many such
use cases in the real world where decisions need to be made instantaneously. At that time,
it was clear that there were better things to carry out than sending all of the data directly to
the cloud and waiting for the response to act. Therefore, a new paradigm is known as edge
computing or fog computing. Although most people attribute both as the same thing, and it
is not easy to distinguish between them, there is a subtle difference separating them. Other
important paradigms similar to these have also been developed, such as dew computing
or mobile cloud computing or a hybrid of any of these, which will be discussed later in
the paper [14]. Fog computing aims at becoming a mediator between IoT devices and the
cloud by cloning activities performed by the cloud but with lesser strength than the cloud
itself. This process aims at bringing efficiency and scalability in two ways: vertical (by
reducing the time taken to reach the cloud) and horizontal (fewer data needed to process
and manage) [15,16]. However, the cloud now has a role. The high latency problem of the
cloud can be overcome by using idle resources of various devices near users. However,
fog computing still relies on the cloud for complex processing, which does not require
real-time attention. The fog itself addresses the tasks that need such real-time attention.
Its abstracted view is passed on to the cloud for complex data analytics, maintaining a
global view of the interconnected devices and pushing local updates to the connected fog
nodes [17].
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1.3. Need for Fog Computing in IoT

We have gone through the paradigms of IoT and the introduction of fog computing
into the IoT paradigm. Therefore, now, we will dive deep into the discussion as to why
we should be using fog or edge computing in the IoT-driven world and why it is so
disruptive [18]. We will first look at how our network would look with fog computing.

Cloud has more power, while fog has more agility, and agility will beat power when
real-time processing and decision making is involved. With great power comes great
responsibility, so the cloud has to make computations for all of the devices. In contrast, the
fog has to make computations related only to locally connected devices. The devices con-
nected mainly consist of sensors or actuators, which generate huge amounts of data every
second. These data are also very raw, contain noise, and need to be pre-processed before
some meaning can be derived. For example, it has been shown that a typical driverless car
generates several megabytes of data every minute. This is where fog computing might be
useful. Fog computing extends the already existing concept known as edge Computing.
The edge computing paradigm states that computing and storage are performed directly on
the end devices or near them. At the same time, fog computing addresses near computing
but is separated from edge devices. The fog computing model is a distributed computing
or decentralized model as opposed to the centralized model of the cloud [19]. Every fog
node forms a layer of the interconnected network with one another next to the layer of
interconnected IoT devices. The role of these fog nodes is not only to process data generated
by the devices but also to transmit the decisions to the cloud via other fog nodes so that all
of the fog nodes can have a common view of the system as a whole [20].

2. Integration of Fog Computing and IoT

The traditional cloud computing paradigm cannot resolve the low latency and faster
response needs of time-critical applications, and that is where fog provides a solution to
these problems. The fog computing paradigm effectively handles the problem of vast
data collection from IoT devices with a low latency and faster response time, and support
demands of quality of service [21]. Smart healthcare devices and wearable sensors mon-
itoring patients will need an immediate response in critical situations, and fog can meet
these requirements effectively. Fog’s architecture inherently supports agility and flexibility
compared to the cloud, which may be packed with much power but does not provide
agility, needing computation for sensor networks. Many works have proposed architecture
with different perceptions that are most suitable for dealing with various problems specific
to certain use cases. However, the fundamental architecture remains the same, with the
three-tier architecture consisting of cloud, fog, and IoT layers. Figure 2 describes the ar-
chitecture advocating programmability, flexibility, and efficient data analytics aspects of
fog nodes.

2.1. Cloud Layer

The cloud layer comprises a cloud server loaded with huge data storage and processing
capabilities and services provided as APIs or direct connections. This layer is responsible
for collecting pre-processed data from connected fog nodes and storing them in persistent
storage on the cloud. With ample computing and storage resources in the cloud, it will
perform tasks that are not feasible in the fog servers, ensuring global coordination and
control amongst all connected fog nodes and servers. It could also provide centralized
services such as maintenance and security enforcement policies and ensure flexibility for
accommodating future modifications. Inspired by modern trends in big data analytics
and artificial intelligence, the cloud layer can be programmed to further improve the
management and efficiency of fog layer components from centralized processing and to
learn from data collected from the fog layer.
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Figure 2. Layered architecture with fog computing.

2.2. Fog Layer

The fog layer resides between the cloud layer and the IoT layer and is a layer of
heterogeneous nodes. For example, fog nodes could range from high-end servers, gateway
devices, edge routers, computers, mobile devices, and smart vehicles to sensors with little
processing capabilities or supporting different networking technologies, such as high-speed
physical links or multiple wireless access technologies such as WiFi, 4G/5G, and LTE.
For that matter, fog nodes have an abstraction layer that abstracts out the discrepancy of
underlying hardware and technologies and exposes a uniform and seamless interface for
management and control. Furthermore, multiple fog nodes interact with each other for
data and processing coordination. Figure 3 shows the architecture of the typical fog node.
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Figure 3. Architecture of fog node.

2.2.1. Fog Agent

The fog agent handles the entire fog node management, which holds core function-
ality modules such as virtualization, network management, and resource allocation and
scheduling. Physical resources are abstracted to the upper layers and provide support
for creating virtual hardware components and environments for running processes and
services in the node. Due to this mechanism, it is easy to allocate resources according to
the processing needs at the run-time by creating virtual machine instances on top of the
virtualized infrastructure with the help of HyperVisor. Virtual machines are created to host
various services and applications to serve the IoT data processing needs with a dynamic
allocation of required virtualized hardware. This functionality helps to efficiently allocate
and scale processing needs to certain limits using resources in the node.

Fog has inherent challenges regarding networking, whether inter-VM networking or
with an external device. For that matter, the agent has networking modules that elegantly
handle complex networking tasks and provides an abstraction layer, simplifying it further.
It uses VNFs to provide network services with benefits of hardware independence, a
high resilience, quick replacement, and easy configuration and deployment. From recent
advancements in networking, it can also be customized to use case-specific networking
modes to improve the throughput and reduce the latency in data packet communication.

A fog node can deal with many simultaneous connections demanding various re-
sources and services for different tasks. In that situation, the fog agent acts as a resource
allocator and manager for serving virtualized resources and de-allocating when the task is
finished. The agent includes service orchestration functionality and policies for life-cycle
management with a global messaging bus to send control signals for synchronization. It
also deals with secure inter-process communication and consistent data resource shar-
ing between different VMs. Various resource allocation strategies are implemented in
the resource management module. These should be selected carefully because allocating
resources efficiently is necessary to reduce latency in communication.

In addition, the fog agent also provides APIs to satisfy programmability needs at a
low level in the node architecture. This feature supports the customization of fog nodes
to accommodate functionalities such as real-time data synchronization between multiple
devices, defining QoS, creating custom computing policies, and centralized control with
mobile devices.
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2.2.2. Interfacing Modules

Today’s easily accessible IoT devices pose a huge challenge of interfacing them with
some uniform access method. Therefore, fog nodes must have interfacing modules through
which data exchange between IoT devices is possible. They could be the standard interface
or follow some proprietary protocol. Interfacing modules will handle all complexities, such
as sense, the establishment of the communication channel, bandwidth, connection type,
and the nature of the data stream regarding connected device specifications. One service
loaded with these interfacing modules will be made available, continuously running in the
background for handling incoming requests and servicing them in combination with other
resources following the requirement of the connected device.

2.2.3. Data Storage and Quick Access Memory Space with Compute Node

This component corresponds to the primary advantage of the fog computing paradigm
by processing data on the network’s edge rather than the data going to the cloud. Fog
nodes have sufficient storage and processing power to process the data from IoT devices.
Devices working as fog nodes can have various types of memory and compute resources,
so this flexibility needs to be addressed by the fog agent through virtualization. There could
be many types of storage memory available at the fog node, such as local storage memory,
and faster memory, such as RAM and cache memory. For the processing, the compute
node will have processors and GPUs, and for machine learning and deep processing, the
compute node will have TPUs and ML processors. Virtualized resources will be available
for applications to serve incoming connections, and the fog agent will handle allocations
on a requirement base.

2.2.4. Data Pre-Processing and Analytics Modules

Data collected from IoT devices could be huge, so they need to be processed efficiently
without wasting much processing power and time. Various optimized pre-processing
and analytical modules are loaded in the memory to accommodate these facilities. They
are designed to process data in a parallel manner, which is crucial for serving multiple
devices requesting services. In addition, some fog nodes may have AI-enabled hardware for
advanced prediction and learning mechanisms with corresponding libraries. For example,
nodes with the Intel processor family “Myriad” have SDK with a neural network compiler
and Google Edge TPU with TPU libraries in order to use dedicated resources for deep
learning in fog computing [22].

2.2.5. Business Application

This is an essential component dictating the behavior of the fog node. It is easily
programmable on top of fog resources and defines the services provided by the fog. The
application will determine the role of the fog node in the network with IoT devices, which
could be simple interfacing and centralized monitoring, or much more complex, such
as deep analytics on real-time data and synchronization in combination with constant
checking with other services to provide complete IoT network management. Systems such
as smart health devices systems, home automation solution, parking space suggestion
systems, or smart city management could be developed with the help of a network of
multiple fog nodes leveraging a distributed nature. Furthermore, the architecture of the
applications could be inspired by a monolithic, micro-services-based model or distributed
containerization to exploit various advantages of scalability and QoS [23,24]. For example,
frameworks such as Fogernetes [25], based on Kubernetes, could be used to develop the
distributed application.

2.3. IoT Layer

The IoT layer includes all IoT devices on the network. There could be two types of IoT
devices: fixed and mobile. Fixed IoT devices are located in particular fields or locations,
such as smart home assistants, smart door locks and ambient light sensors, RFID tags
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and sensors, air quality monitoring systems, and smart alarm devices connected with
physical links or wirelessly. On the other hand, mobile IoT devices could be portable and
easily carried by users such as smartphones, wearable IoT devices, and vehicles. These
devices form a layer of IoT devices and are connected in an ad hoc fashion with the
network, generally via wireless access. Generally, these devices have restrictions on the
data that they can process, and a limited bandwidth. Therefore, their main function is to
collect data and provide it to the upper layer for processing and storage. Different devices
can have different interfaces to interact with each other, which poses a challenge in data
communication between IoT devices for automation needs. However, interfacing modules
in the fog agent solve this issue and provide a standard for easy data sharing amongst IoT
devices with greater agility.

3. Data Analytics
3.1. Data Generation Sources

Due to the IoT revolution, almost everything is becoming a source for data generation.
As a result, a tremendous amount of data are generated every second. These data need to
be pre-processed before something useful can be derived from them because only some of
the generated data are relevant or useful. This section will look at the various sources from
which data get generated.

As we can see from Figure 4, typical data sources include mobiles, various types
of sensors and actuators including thermostats, engines of airplanes, factories, mobiles,
computers, automobiles such as driverless cars, metros, human health data, smart devices
such as Google Home, Alexa Echo Dots, smart homes, smart shoes, watches, and, in general,
all wearables, etc., and the number of items on the list increases all of the time. The data
generated from these sources can be subtly classified into three major types of sources,
which are as follows.

Figure 4. Data generation sources.

3.1.1. Passive Data Sources

These data sources do not communicate data actively with the network or the interme-
diary nodes. These sources need to be pushed to the active state before data transmission
takes place, and they transmit the data only when requested to them. These typically have
a low power consumption and are present in remote places. We can take an example of a
sensor that measures salinity in a sample. Here, the sensor will get active only when an
API call is made to obtain readings.



Sensors 2023, 23, 199 9 of 31

3.1.2. Active Data Sources

These data sources generate data continuously in the form of streams of data bytes,
just like a driverless car. The data keep flowing to the nodes, as opposed to the passive
sources, where we have to request data. Thus, the data need to be accepted in real-time,
and the applications running on top need to be very accurate and sophisticated in the
data transfer, as no data should be lost or misplaced. They should be handled well for
further processing.

3.1.3. Dynamic Data Sources

The data sources are termed as smart data sources. Here, communication with the
application takes place instead of just data passing. The communication is bidirectional
and also dynamic or in real-time. We can take an example of a surveillance camera with
a small code of face detection embedded into it. When a criminal’s face is recognized,
the camera can send an alarm message to the cloud-based criminal dataset program and
communicate with it. Thus, these devices can not only send data but also alter the data
format; for example, the camera does not send the whole image to the cloud, but only sends
data in the form of whether the criminal has been identified.

3.2. Data Analytics: A Brief Introduction

Big data is a term that needs to be understood before we understand data analytics.
It has been a topic of propensity to talk about and is just a byproduct of the Industry 4.0
revolution. It is a term that refers to the large amount of the raw dataset directly generated
by the sensors or actuators. It can range from highly unstructured to highly organized and
comes in various combined formats, including text, image, video, etc. To deal with such a
huge amount of highly unstructured, complex, and hybrid data, we use data analytics or,
more specifically, big data analytics. Big data analytics refers to a vigorous and convoluted
analysis and deriving semantics to make accurate decisions [26]. Data analytics has become
the most important task in the IoT and fog paradigm, as everything today is data-driven.
The advent of big data also creates a new need in the market for data analysts and scientists,
who require great skill and expertise to obtain some value from the vast amount of data [27].
The basic flow of data analytics is depicted by Figure 5.

3.3. Current Trends in Data Analytics

Data analytics has many opportunities and a large scope for improvisation considering
its vast applications in the IoT and fog paradigm. Some of the current trends in data
analytics include:

• Continuous intelligence;
• Graph analytics;
• Commercial AI/ML
• Conversational AI analytics/ NLP;
• Augmented data analytics;
• Automatic data and content management;
• Persistent memory servers.

We will look at a couple of them in detail below.

1. Augmented Data Analytics
This is considered as the future of data analytics. The main motivation for a company
to perform data analytics is insight generation from data. In the present scenario, the
industry has a shortage of data scientists/analysts, and the need is increasing even
more. The McKinsey Global Institute estimated that the U.S. economy could be short
of around 250,000 data scientists by 2024. Even if the gap gets filled somehow, data
scientists are not business experts; they can perform all tasks independently and must
be under the constant scrutiny of business analysts. Thus, augmented data analytics is
emerging to overcome all of the barriers because it reduces a company’s dependence
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on data scientists by automatically generating insights. It does so with the help of
complex and advanced machine learning and artificial intelligence algorithms.

2. Persistent/In-memory storage
Persistent storage is also one of the emerging trends, and will help foster data analytics
even more. As the data generated are increasing exponentially, there is a current need
for better ways to store these data so that they can be accessed rapidly with fewer
latency issues. Persistent memory (PM) combines the byte-addressability of DRAMs
and the non-volatility of disks and flashes. PM can be supported either through
direct DAX or block access. The use of PM can be performed in three ways. Firstly,
the applications can use it as an external or augmented storage entity and are not
concerned about the non-volatility. In this case, the applications do not need any
changes. Secondly, the applications can use its non-volatility property against DRAMs.
Here, the applications themselves need to be modified to use the persistence property
of PM. In the third case, the applications may use just PM instead of flash or drives.

Figure 5. Flow diagram for data analysis.

3.4. Role of Fog Computing in Data Analytics

As we have already discussed, big data contain the following characteristics: volume,
velocity, variety, and veracity. Dealing with all of these for real-time applications by
ensuring availability and deliverability is a cumbersome task for the cloud. Data processing
and analytics need to rely on robust and highly scalable messaging systems, commanding
software engines for data stream processing and scalable data storage solutions. Fog
computing has much potential for solving issues with huge data storage and for quick
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data analysis to respond to numerous events that call for prompt decision making and
action [28]. Therefore, we introduced the paradigm of fog computing earlier in the paper.
Now, we will see how fog computing will help us to achieve all of the benefits that it is
known for, especially in data analytics. The role of fog computing in data analysis and the
segregation of jobs from the cloud is best explained by Figure 6.

Figure 6. Data analytics using fog computing.

Fog computing presents a distributed method of computing, as opposed to the holistic
approaches of the cloud [29]. Fog data analytics is a field where fog computing is used
for data analytics at the edge of the network to reduce latency for applications needing a
high availability and faster response times. The fog nodes are installed near the edge of the
network, and they distribute the load of data going to the cloud by using virtualization
techniques and absorbing all of the raw data from the IoT edge. A fog node can be thought
of as a mini cloudlet. Then, these nodes can also perform data analytics on their own,
responding directly to the devices, offloading local insights to the cloud in the background,
and communicating with neighbor nodes about the learning. Augmented data analytics is
widely used for automatic data processing and insight generation. The fog nodes cannot
perform all data analytics work like the cloud due to the little resources of the cloud, but
they are sufficient for local analytics. The cloud then performs a more complex analysis of
all of the data collected from different fog nodes for obtaining global and heuristic insights
into data [30].

4. Current State-of-the-Art

In the era of faster communication and even faster computational needs, fog com-
puting prevails in the industry with such requirements by processing data closer to the
source. Modern advancements such as big data analytics, machine learning, and deep
learning are combined with fog for generating data analytics on the fly with adaptive learn-
ing [31–34]. Leveraging the technology of blockchain to accommodate privacy and security
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features in the fog layer is proposed in [35–37]. Software-defined networks (SDNs) with
customized routing protocols are used to increase the energy efficiency and performance
between fog nodes [38]. With SDNs and named data networking (NDN) [39], traditional
networking concepts are redesigned to harness new advantages in fog computing. They
drive innovations in various fields and transform the experience for greater efficiency
and convenience. Recent developments such as quantum computing paradigms are also
considered to optimize the performance of fog-based systems for parallel processing and
dynamic load scheduling using quantum-computing-inspired optimization (QCIO) [40].
Finally, some areas harnessing the power of fog computing with IoT devices are explored
for state-of-the-art implementation.

4.1. Smart Factories

IoT has enabled automation and obviated the need for human interaction, adding new
capabilities, such as logging every event and making intelligent decisions at certain times.
Having such advantages, IoT is most suitable for driving automation at various levels in
the industry. For IoT technology used in the industry, there exists another specific term: the
industrial Internet of things (IIoT). These IIoT devices include actuators, RFID tags, robots,
flow control and conditioning devices, and sensors for various manufacturing, testing, and
quality control applications. The cloud with these devices provides centralized control and
helps to automate tasks with deploying applications on the cloud, managing IIoT devices
communication and data analytics [41]. However, this implementation needs to deliver
the expected value for some time-critical systems because of latency issues due to the
round-trip distance between IIoT devices and cloud services. Fortunately, the problem can
be remedied by enabling fog computing with IIoT to handle real-time data processing and
analytics. Fog nodes host monitoring and control services that make it possible to serve low-
latency requirements as they are closer to the IIoT devices, along with the implementation
of SDNs to develop control plane behavior and employing time-sensitive network (TSN)
protocols for optimizing and sustaining the network’s effectiveness [42]. With fog nodes
with a sufficient processing power, real-time data analytics, such as the prediction of quality
and estimation of faults, are generated with a high availability.

4.2. Healthcare

The healthcare industry is going through a total paradigm shift from cloud-based
applications to fog-based IoT device data management. This transition is due to its require-
ment of a high availability with geospatial awareness and an instant response to events
reported by health-monitoring sensors. Body area networks (BANs) are most popular
for monitoring the health of individuals without any human observer in a friendly way.
They also provide notifications to relatives and instantly contact emergency services with
complete automation. Fog computing power requirements of healthcare have severe time
constraints. Hospitals deploy fog nodes for collecting data from nearby IoT devices and
accommodate the need to monitor the health condition of many patients. Fog enables
smart healthcare, which notifies appropriate staff members when patients are in critical
condition with their geospatial location. Various methods have used deep learning to detect
epileptic seizures [43], heart disease [44], and cancer classification [45] in combination with
fog nodes and data from IoT devices on the fly. Systems such as fog ambient assisted living
(FAAL) [46] have been developed to help people suffering from neurological disorders, and
personalized healthcare support for remote patients with diabetes is making a tremendous
impact on people’s lives [47].

4.3. Home Automation

IoT devices have a huge role in home automation, making it a smart home with
connected devices and data synchronization over the network of IoT devices. These de-
vices are connected with wireless access technologies and can make intelligent decisions
according to situations and conditions. Devices such as intelligent lights that adjust the
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lights according to the available sunlight at a given time, smart thermostats that dynami-
cally adjust temperatures in combination with devices such as air conditioners or heaters,
and security cameras that intelligently recognize people and track their movements are
driving home automation and the quality of living to new heights. Data from all of these
devices need to be processed in real-time for the best experience and to receive immediate
support in emergencies. In addition, with adaptive learning mechanisms to constantly
shape the services of all of these smart devices to serve the best experience to the user,
fog nodes embedded with machine learning and deep learning hardware provide fully
customized and user-centric automation without any direct human interaction. In modern
scenarios, all smart IoT devices are connected to the central network and can be accessed
and controlled from mobile and wearable devices. These smart devices, in coordination
with each other, through sharing real-time data, have also resulted in an overall reduction
in energy consumption.

4.4. Vehicular Networks

The number of vehicles on the road significantly increases each year. Managing
communication more securely and effectively is more difficult due to urbanization and
population convergence. A driver mistake is a major factor in many accidents and catastro-
phes. Because of this, it is crucial to monitor driver behavior [48] continuously. The concept
of connected things is popular; it has made its way to the network of vehicles to exchange
data using wireless technology and several other devices, such as RSUs and computational
resources, present in the vehicles. Data aggregation and communication become even more
complicated when multiple sensors, in addition to sensors for the vehicle and surroundings,
perform this function. Intuitively, these networks are highly latency-sensitive and need a
quick response, which could be accommodated by using fog computing and computational
resources present in the vehicles to act as fog nodes. This implementation supports a
low latency in data communication between RSUs and vehicles, and vehicle-to-vehicle.
communication happens by sending different types of messages to nearby vehicles. These
messages could be a query, response, or cooperative, serving the purpose of intelligent data
sharing [49]. The vehicular network has great advantages as it helps the driver to safely
change the lane, provides estimated congestion at certain points, and suggests alternative
routes to avoid congestion. The smart network of connected vehicles implemented with the
SDN approach further amplifies its capabilities and advantages [50]. Many traffic signals
combined with vehicular networks would result in effective traffic management and a
reduced waiting time [51].

4.5. Disaster Management

Currently, many cameras and monitoring devices are available throughout the cities,
which can detect disasters such as fire, smoke, or crashes. Processing live streaming data
from the sources as a method of identification could be a task that needs immediate analytics
generation and decision making. Conventional cloud-based solutions would be scalable
but suffer from a lack of processing on edge devices to make quick decisions, resulting in
a higher latency. The implementation of fog makes edge computing possible, satisfying
real-time analytical needs for taking certain actions. Systems using fog computing to
forecast and monitor disastrous phenomena [52] at coastal areas and ensure the safety of
the people and infrastructure have also been proposed. The same could be implemented
in the smart home environment for fire and smoke detection [53] at any location with the
help of sensing devices and fog nodes. Disastrous events such as a gas leakage, fire, and
short-circuit could be averted with fog processing and IoT sensing.

5. Research Challenges
5.1. Low-Latency Transmission

IoT devices generate a large amount of data, so we need efficient data processing
capabilities to handle that large amount of data within certain time constraints. On the
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other hand, real-time latency-sensitive applications pose challenges that are not solved
only by efficient data processing but also stipulate that the processed data are within a few
milliseconds. Some solutions have been proposed to satisfy these requirements, but active
research remains because of the inherent complexity and design challenges.

The challenge of low latency is amplified dramatically when many devices depend
on each other for data and responses. Data must often be processed to some extent so
that they can be served to another device because of that particular device’s interfacing
and structural data needs. At this point, if the latency constraint is not taken into account
correctly, it will hugely impact the performance and effectiveness of the system of inter-
dependent IoT devices because there is already a delay due to some level of pre-processing.
A higher latency will worsen the situation, resulting in a waiting time for data and a poor
performance, eliminating the comparative advantage of fog computing. Table 1 compares
various works that show latency sensitiveness in different areas.

As a partial solution, Dew Computing can be considered by packing pre-processing
capabilities within the devices and establishing a direct communication path between them.
However, if devices could use data from multiple devices, this approach could be more eco-
nomical, and another alternative should be explored. For example, Magurawalage et al. [54]
suggest the concept of aqua computing for improving the user experience and offer clone
architecture to accommodate lower latency requirements by cloning user-specific data in
the edge devices so that they are directly accessible to the user without any delay. The
Internet provider is considered to manage these clones to serve the user on demand and is
responsible for updating them for the time being. However, managing user-specific clones
would be costly in terms of resources.

Additionally, no perfect universal solution can exist for low-latency applications, and
some trade-off is needed for the high availability, latency, and redundancy. If we consider
an application-specific solution, then a large amount of heterogeneity would be added to
the network, resulting in difficult tasks to manage.

Table 1. Research work on latency sensitivity in different areas.

Work Scope Focused Aspects Strength Weakness

Naranjo et al. [55] Smart city Latency,
energy consumption

Lower energy consumption,
heterogeneous communications
between IoT devices

Low scalability,
lack of real-time
data processing

Singh et al. [56] Smart grid
Network utilization,
latency,
energy utilization

Context-aware information
with reduced latency, better
energy and network usage

Lack of resource cost
measures, high computational
complexity, unevaluated
overhead

Mahmud et al. [57] e-Healthcare
Latency,
energy consumption,
network utilization

Lowered energy consumption
with low response time

Mobility is ignored,
latency caused by
high computation

Chamola et al. [42] Fog implementation
with cloudlets Response time reduced network latency for SDN

Energy consumption was
not evaluated, latency caused
by high computation

Romeo et al. [7] Robotics application Power consumption,
latency

Modeled battery discharge
profiles, reduction in power
consumption, low latency

Accuracy was not investigated,
low scalability

Alam et al. [58] Mobile application Response time,
energy consumption

Low execution time and
low latency, suited for
multi-agent architecture

Mobility, privacy, and
context awareness were lacking

Ahn et al. [59] General Energy,
wait time

Considered gap in the wait
time, energy expenditure
for different devices, latency

Heterogeneity was not
considered, inter-dependency
of IoT devices, high
computational complexity

5.2. Heterogeneity and Interoperability

Myriad IoT devices [60] present in the market have a different set of data and interfac-
ing requirements, which poses a great challenge in integrating it with an entire network
without incurring the additional cost of computation and hardware. Devices such as ther-
mostats, ambient light sensors, fire and smoke detection sensors, digital voice assistants,
smart door locks, and connected media devices induce a large amount of heterogeneity in
the network, and data communication between these devices needs a uniform interface.
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Fog nodes solve interfacing issues by abstracting the interfacing complexity and providing
a uniform standardized interface for easy communication and real-time data stream sharing.
Furthermore, fog node communication protocols should be designed in a way that can
cope with future changes. Some protocols proposed in [55,61] are used for energy-efficient
routing and navigation in heterogeneous networks.

The fog layer could be deployed as distributed fog nodes with someone acting as the
controller node for larger system requirements. Here, too, nodes need to be of different
types, and they still should work in harmony. In case of failure of the controller node, some
other node should act as a controller to handle the operations without any problems and
continue to serve connected devices. Devices should be easily connected to the network,
and data transmission between different types of devices should be seamless to support
the best user experience. In smart homes, most devices are connected to a central wireless
network and can be easily operated and controlled with different mobile devices. For
example, digital assistance and a stereo system connected with the wireless network are
controlled using smartphones or tablets, which should support platform independence
and uniform APIs. The heterogeneity of devices can be observed from Figure 7.

Figure 7. Fog network of heterogeneous devices.

5.3. Programmability

Applications deployed on top of the fog nodes are meant to serve the user’s specific in-
terests. The type of data storage and nature of pre-processing and data sharing could differ
from one use case to another. Therefore, fog nodes should accommodate programmability
needs without restricting the platform and underlying hardware. For example, a computer
operating on a Windows operating system could act as a fog node or a smartphone with
Android; different characteristics and capabilities of devices are taken into account when
deploying an application. A smartphone cannot handle continuous data processing tasks
because of battery constraints; therefore, the programmability of these types of devices is
limited, and similar considerations should be figured out when designing a fog computing
environment. It may be challenging to develop a generic fog node setup that is compatible
with many devices.

If the fog node is equipped with high-end processing resources, it could be leveraged
to improve data analytics and storage capabilities, which would help to adjust fog network
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parameters to maximize the quality of the user experience. Machine learning and deep
learning can be employed for that purpose. Many works have proposed such solutions
in [62–64], helping to reduce the energy consumption [56], low-latency delivery, and QoS,
as well as bandwidth optimization. However, the complexity of the technology stack and
architecture of the fog node will directly affect the effectiveness of the data analytics services
deployed on the fog node. Fog nodes have a limited data storage capacity compared to the
cloud, so data that could be cached into the fog node for quick access are limited. Therefore,
appropriately policy managing the cache in such a way that minimum external contact is
needed and no unnecessary data remain present is necessary. The author in [65] proposes
a new caching scheme known as the Steiner tree-based optimal resource caching scheme.
Fog nodes use this tree to reduce total path costs and minimize resource caching costs.
However, if the fog layer is composed of many other fog nodes, it further complicates the
policy that provides a high availability, consistency, and coherency.

5.4. Quality of Service

The sheer amount of requests and network traffic from connected devices jeopardize
the network performance. This results in significant delays, broken data streams, dropped
calls, and glitches in video calls. Moreover, only some of the services in the network
hold equal priority; some time-sensitive application [66] needs to be serviced quickly and
continuously with required resources; otherwise, it would result in troublesome delays and
fragmented data packets. On the other hand, applications such as a file transfer could bear
some delay in the data transfer and still have intact packets. Therefore, ensuring the QoS
is essential for managing the network effectively and delivering the values demanded by
different services.

The need for QoS parameters such as reliability, the continuous availability of band-
width and low-latency servicing, resource provisioning, high-priority data transfer, and
mobility poses a great system design challenge. Real-time data application needs a contin-
uous bandwidth and low-latency servicing for the best user experience. A revolutionary
black-box multi-algorithm described in [67] shows how end-to-end latency might be re-
duced by 60%–70% while largely utilizing the temporal locality. The processing and
networking time are the two parameters used to measure the end-to-end latency. Similarly,
the fog node must be able to prioritize data processing needs and serve required resources
so that the execution does not introduce any further delay. Authors in [68] proposed a
method for estimating resource allocation, based on how many resources will be utilized
according to historical data and customer usage patterns, named media fog resource esti-
mation (MeFoRE). Table 2 compares various works by authors in their research and shows
which QoS aspects were considered by them.

With traditional networking, fog computing is refrained from its true potential for
QoS and flexibility with a lower latency by constantly learning solutions from modern de-
velopments. SDN gracefully decouples the control plane from the data plane and emulates
centralized control over the data plane. A fog layer implementing SDN networking would
benefit from flexibility and data forwarding control offered by SDN. A fog node can work
as an SDN controller that guides the data plane according to network requirements, which
will ultimately help to improve the QoS and efficiency of data analytics tasks, eliminating
latency issues.

Fog-based systems can deliver a high-quality user experience to end users. First, the
preference of services is decided based on the behavioral usage patterns, geographical
location, and mobility context, and then the user experience is optimized from gained values
of parameters. The work of [69] describes delivering the QoS to users in IoT ecosystems
that leverage a virtual infrastructure proposed as the self-organizing fog of things (SOFT-
IoT). The fog of things gateway has been set up to work as a smart device based on fog
computing in the environment.
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5.5. Scalability

Scalability is among the main characteristics, the need of which gave birth to cloud
capabilities near the end devices so that, instead of overwhelming the cloud with a huge
amount of data, fog focuses on filtering it at the fog layer. By 2022, USD 2.5 million will be
spent every minute on the IoT, and one million new IoT devices will be sold every hour.
Now, processing at the edge would help to overcome the problem more efficiently at this
scale. However, not only computing at the edge but also the coordination of such a large
number of devices needs to be handled as requirements grow over time. This presents
the challenge of designing a scalable solution to accommodate the data analytics needs of
collected data from connected devices.

A variety of use cases have different approaches for solving the particular problem, and
they might be inherently disparate, serving those specific requirements. For example, for
the management of smart home devices, one fog node equipped with sufficient resources
might be enough. However, regarding connected devices throughout the city, a large
number of fog nodes is certainly required. In addition, the resources need to be scaled with
the increased number of users. The relevance of placing services at various levels of the
tree topology, which is rooted at the cloud data center, is discussed in [59] to optimize the
performance and scalability. The work [70] presented multi-tier fog architecture consisting
of ad hoc and dedicated nodes with dedicated and opportunistic computing resources,
primarily focusing on maximizing analytics service utilities. The authors in [71,72] proposed
systems that support real-time efficient data processing for vehicular fog networks and
easy traffic management.

Table 2. Comparison of QoS aspects from various works.

Work Scope Quality of
Experience

Energy
Efficiency

Delay
Sensitiveness Reliability In-Network

Caching

Stojme vic et al. [68] Machine-to-machine
networks X X

Huang et al. [66] Vehicular networks X X

Craciunescu et al. [73] e-health applications X X

Dantu et al. [74] Smartphone-based
applications X X

Sarkar et al. [75] loT-based applications X X

Dastjerdi et al. [76] IoT-based applications X X X

Zhu et al. [77] Website rendering X X

Hu et al. [78] Mobile applications X X

Hao et al. [79] Ubiquitous computing X X X

Mubeen et al. [80] Automation applications X

Shih et al. [81] Radio access networks X X X

Prazeres et al. [69] loT-based applications X X X

Flores et al. [82] Social-aware device-to-
device communication X X

Fan et al. [83] Web-based applications X X

Wang et al. [54] Device-to-device
communications X X X X

Su et al. [65] Latency-sensitive
applications X X X
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Not only the placement and efficiency of fog nodes but also the number of fog nodes
and type are the factors affecting the network’s performance. It is also a necessity for the
placement of nodes to be flexible according to the demand at a certain time. In the case of
a smart city, fog placement should be dynamic enough to support changing the number
of users at any time and to continue operating and servicing users. To support this goal,
ref. [84] leverages the mobility characteristic of buses to deploy fog nodes, presenting a
fuzzy-based real-time auto-scaling (FRAS) mechanism. Auto-scaling will surely help to im-
prove the overall performance and QoS, even at times when there is a high load on resources.
The author of [85] integrated the hypervisor technique with container virtualization and
constructed an integrated virtualization fog platform for deploying industrial applications
based on a virtual network function. The FRAS mechanism presented in the paper provides
a dynamic, rapid, lightweight, and low-cost solution to service auto-scaling problems.

5.6. Authentication and Access

As we have mentioned earlier, IoT devices are increasing exponentially. These devices
access and share resources/services such as storage, PaaS, and SaaS with the omnipotent
cloud [86]. Thus, the authentication of these devices becomes the responsibility of the
cloud in order to identify legitimate users and keep any other person or bot with malicious
intent at bay. Sometimes, these illicit users attack the servers and keep their servers busy
by bombarding spam requests. IoT devices are quite vulnerable to cyber-attacks, especially
Dos and DDos attacks [87]. Thus, a robust authentication technique with a quick response
time must be used. Some people claim that using a cloud-based technique prevents the
devices from malicious attacks [88]. Although authentication via the cloud is secure and
robust, it has a latency problem and is also not scalable[89]. Hence, we have to accept
the help of fog nodes by performing some authentication processes at the edge in fog
nodes [30].

Authentication and access for the end devices is a challenge in the fog architecture
due to many reasons. Firstly, the fog architecture already comes with a resource constraint
as it has to serve many devices with limited resources. Thus, ensuring the continuous
availability of fog nodes is also a challenge in the authentication scheme. Secondly, if
fog nodes have to carry out authentication at the edge, they either have to perform the
authentication or communicate with the authenticating agent through API calls. This task
increases the workload of the data transfer channels of the fog node, and the available
bandwidth also reduces security-related threats because of the transfer of sensitive data,
such as credentials near the edge. Therefore, many authentication schemes have been
proposed to date. One of the techniques used is the single sign-on (SSO) authentication
scheme. In SSO, a single login is required, and it provides access to all of the services within
the system, where no further authentication is necessary, but this scheme has a backdoor for
man-in-middle attacks [90–92]. Moreover, if the SSO provider gets compromised, then the
security of all other devices under that are compromised as well [86]. Therefore, multi-tier
and multi-factor authentication schemes are used to ensure that the security of users is
not compromised.

From the above discussion, it is clear that authentication and access is a double-
edged sword. If more focus is placed on making the authentication system more robust
by introducing a multi-tier authentication architecture, user experience and convenience
is at risk. On the other hand, if user convenience is catered for, the security might get
compromised. Dealing with both simultaneously by maintaining the right amount of
balance between the two is one of the greatest challenges in authentication in fog-enabled
architecture. Table 3 summarizes the various authentication techniques implemented to
date, along with their pros and cons.
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Table 3. Comparison of authentication techniques.

Authors Features Auth Tiers Control Agent Pros Cons

Banyal RK et al. [93]
Arithmetic-based CAPTCHA
calculation, OTP, and IMEI-based
authentication mechanism

3 Server Resistance to multiple
attack type

Computational
complexity

Emam AHM [94] Authentication through dynamic link
sent on registered email address 2 Server Cost-effective Email address may get

compromised

Kumar S et al. [95] OTP entered through personal device 2 Client and
Server

OTP needs to be entered
using personal device

Access lost if registered
Device is lost or damaged

Usman AA et al. [96]
Security token generated using
preshared pin numbers, location,
and time

2 Client and
Server Cost-effective Clock synchronization

problem

Liu S et al. [97] Sends QR code to register mobile
device’s Bluetooth address 2 Server Cost-effective Mutual authentication

not considered

Ahmad S et al. [98] Smart card and biometric scanning 3 Server Multiple factors required
to access services Smart card mandatory

Singh TG et al. [56] Based on graphical patterns 2 Server User convenience Patterns are predictable

Soni P et al. [99] Splitting and distribution of OTP
over different channels 3 Server Difficult to listen covertly User onconvenience

Dhamija A [100] Requires hardware token 2 Server Resistant to different
types of attacks Expensive solution

5.7. Prediction and Optimization

One of the major applications of fog architecture is vehicular networks because of their
low latency requirements and continuous and uninterrupted availability. Much is at stake
regarding handling vehicular networks through the fog environment. The main intricacy
here is that the vehicles are constantly moving at different speeds [101]. On the contrary,
the fog nodes that they connect to do not move and are stationary or anchored at specific
points on the streets. Thus, during motion, the vehicles need to constantly connect and
disconnect to different fog nodes that come their way very quickly so that they can perform
the actual communication that they intend to. This is where the role of prediction becomes
important. Latest and state-of-the-art machine learning and deep learning algorithms are
used for a better prediction accuracy. Some authors have also emphasized using caching
policies [102,103] for content popularity and user preference prediction using the online
gradient descent (OGD) method [104], prediction in terms of choosing the nearest fog
node, and also cost prediction. The challenge here also lies in the state transfer during the
constant connection and disconnection with the fog nodes. As the vehicles move, they
detach from present fog nodes and reconnect to the next. Therefore, the vehicle’s state
needs to be transferred to the next fog node to perform further computations and reduce
the overhead of calculating everything repeatedly.

Optimization is the biggest challenge in fog computing at present. Optimization,
both in terms of availability and cost, is necessary to ensure on-demand serviceability,
efficient resource allocation, energy consumption, security, reliability, resource usage, and
bandwidth optimization, as well as thwarting unnecessary overheads. Optimization can
also be talked of in terms of data-driven, code-driven, task-driven, or a combination of
these. Many parameters can be considered for optimization in the fog-driven environment,
as the performance depends on many parameters. An optimization problem can be defined
according to the application by setting constraints on some parameters to achieve desired
results [105]. For example, the power consumption constraint applies to end devices
because they run on batteries, whereas this is not the case with fog nodes as they do
not operate on batteries. The challenge here is that, although individual optimization
problems have been defined, they are yet to be integrated into one coherent and cohesive
unit for overall optimization. Thus, we need to find different optimization techniques for
different sub-optimizations within the system. As we already know, the fog environment is
a distributed environment, so any algorithm applied for any purpose in the fog should be
distributed. This is also a challenge in optimization, as designing a distributed algorithm
requires special skills and knowledge of the distributed architecture domain.

In big and convoluted networks, there is generally a multi-tier fog architecture with
more than one layer of fog nodes. The computation power of a fog node is directly
proportional to its distance from the edge, which means that the farther a fog node is from
the edge, the more computation power it has. Still, because of being far away, it is associated
with a latency overhead. This imbalance is termed the power–latency tradeoff. Therefore,
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when the workload on a particular fog node increases, it can offload part of its workload
to the next layer’s nodes, and this is where optimization is needed. The authors in [106]
mentioned a novel approach for predictive offloading and stochastic network optimization
in resource allocation by using a queuing model for optimization.

5.8. Orchestration

The fog paradigm has envisioned a distributed computing and allocation approach
as opposed to the centralized approach of the cloud paradigm. Different orchestration
techniques have been implemented in the cloud. Orchestration can be defined as a sole,
uniform, and centralized approach that accounts for coordinating communications among
different applications and services. Thus, orchestration is related to automating the inter-
action processes among various services, but applies to centralized systems. However, as
we have seen, fog uses a decentralized approach with benefits. Moreover, fog has some
other characteristics apart from its decentralized approach, such as resource constraints
and heterogeneity. Thus, introducing orchestration into the fog paradigm is a challenge. In
this context, a novel concept called choreography can be employed. Choreography refers
to maintaining a global view of all applications or services across the edge devices through
information sharing, thereby updating all local changes to the global view. Thus, choreogra-
phy uses a distributed approach, performs orchestration-related functionalities, and could
be our solution for implementing at the fog–edge interface/link or the southbound region.

Many different orchestration agents have been proposed by different authors with their
detailed architecture, which is summed up in the paper by Karima Velasquez et al. [107].
The concept of virtualization has been used by many authors for the same purpose [108],
while some authors have also proposed containerization in orchestration in the fog environ-
ment [109]. Most authors also propose software-defined networking (SDN) for obtaining
centralized control of the network and an automatic management of the global view of the
network as soon as any local changes occur. However, Jaeger [110] proposed an orchestra-
tion architecture based on network function virtualization (NFV). The general approach
by many of the authors has been focused on sub-problems, and very few authors tend to
choose a hybrid approach involving both orchestration and choreography, with orchestra-
tion at the north-bound region (between the cloud and the fog) and choreography at the
southbound region (between the edge devices and the fog). Table 4 shows some related
work in the field of orchestration.

5.9. Resource Scheduling and Allocation

Cloud computing can be thought of as an infinite warehouse of resources. Still, latency
is always an issue due to the plethora of devices connected to the cloud, limited bandwidth
available, and geographical separation of the cloud from devices. To tackle this, we intro-
duced the concept of fog computing. However, due to the geographical vicinity of the edge
devices, fog nodes are generally less powerful than the cloud. Moreover, they contain lim-
ited resources compared to the cloud. This makes achieving maximum throughput through
scheduling and resource allocation challenging. When the term resource management is
discussed, it is an amalgamation of load balancing, task offloading, resource provisioning,
and allocation. Here, we discuss resource scheduling and resource allocation.
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Table 4. Comparison of various works on orchestration.

Author Network
Architecture Type Unique Feature

Zaalouk et al. [111]

SDN-based

Orchestration-focused

Security-oriented, in charge of turning on/off
applications that deal with security issues.

Mayoral et al. [108] Migration of virtual machines between differ-
ent network domains.

Vilalta et al. [112]

Hierarchical SDN architecture for heteroge-
neous wireless and optical networks. Also
introduces end-to-end provisioning and recov-
ery procedures in a multi-domain network.

Jaeger [110] NFV-based

Focused on extending the European Telecom-
munications Standards Institute (ETSI) NFV
reference architecture to manage and orches-
trate security functions.

Furtado et al. [113] -

Choreography-focused

Uses middleware for choreography able to au-
tomatically deploy and execute services. The
middleware is also responsible for monitor-
ing the service composition execution and for
performing automatic resource provisioning
and service reconfiguration to achieve agreed
QoS levels.

Cherrier et al. [114] SDN-based

Studies the impact of using orchestration and
choreography in wireless sensor and actuator
networks (WSANs) using mathematical anal-
ysis and also application experiments.

Velasquez et al. [107] - Hybrid approach
Uses orchestration along with choreography
to achieve distributed as well as centralized
management simultaneously.

Resource scheduling can be thought of as the optimization of the assignment of various
tasks submitted by the edge devices to the fog by meeting the required QoS levels while
also ensuring time complexity. Thus, resource scheduling is an optimization solution for
scheduling a set of submitted tasks T1, T2, T3, . . . , Tk, to a set of fog nodes F1, F2, F3, . . . ,
Fp, with various QoS requirements, such as cost, time minimization, or the availability
and optimization of the optimization function for scheduling time [115]. The resource-
scheduling problem is considered an NP-hard problem and uses meta-heuristic algorithms
to find feasible and near-optimal solutions in linear time. The resource scheduling approach
is divided into three categories based on the time when the scheduling takes place. Static
scheduling takes place when tasks simultaneously reach the fog nodes, and the decisions
for scheduling are made before submitting tasks [116–119]. Thus, there should be prior
knowledge of the demands and available resources for this type of schedule to take place,
which is not always the case, as obtaining all knowledge beforehand is not possible in all
cases in the fog environment. However, the dynamic scheduling algorithms [76,83,120–124]
do not require all prior knowledge, and the scheduling of the tasks takes place after the tasks
get submitted to the fog nodes, thus allowing for more flexibility for scheduling algorithms.
Some authors [57] used a hybrid approach involving both static and dynamic scheduling
according to the use case. Table 5 recapitulates all different scheduling techniques.
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Table 5. Comparison of resource-scheduling techniques.

Authors Case Study Algorithm Used Performance
Measurement Pros Cons

Static approaches

Bitam et al. [118] General Bees life algorithm CPU execution time,
Allocated memory

-Managing allocated memory
-Low CPU execution time

-Static scheduling
-Low scalability

Fan et al. [83] General Ant colony optimization Total profit,
Guarantee Ratio

Maximizing profits
of fog providers High time complexity

Rahbari et al. [123]
EAHD application,

Intelligent surveillance
application

Symbiotic organisms search
Energy utilization,

Network usage,
Cost

-Minimizing energy
utilization

-Low execution cost
High execution time

Kabirzadeh et al. [125] Intelligent surveillance
application Hyper-heuristic based

Energy consumption,
Execution time,

Network usage, Cost

-Minimizing energy
consumption

-Low cost and low time
Low scalability

Dynamic approaches

Sun et al. [117] Word count NSGA-II Service latency,
Stability

-Low execution time
-High scalability

-Low latency
High cost

Cardellini et al. [119] Word count,
Log stream processing Adaptive-based

Node utilization,
Application latency,

Inter-node traffic

-Enhancing runtime
scheduling

-Low Latency
-Low execution time

-Low availability
-Low scalability

-Centralized topology

Zeng et al. [122] Image Tasks Heuristic-based Task completion time -Low computation complexity
-Low response time -High memory consumption

Chen et al. [67] Vehicular cloud
application Heuristic-based Response time,

Queue length

-High dynamic efficiency
-Using a formal method

-Low time
Simple case study

Urgaonkar et al. [126] Mobile application Lyapunov optimization Queue length,
Cost

-Reducing state space
-Performing a

cost-optimal solution

-High cost
-Low scalability

Hybrid approaches

De Benedetti et al. [127] Distributed robotics
application Adaptive-based Scalability,

Fault tolerance

-High interaction with IoT devices
-Low latency

-Low execution time

-Low scalability
-High cost

Resource allocation is considered to be an important factor in resource management.
Resource allocation in the cloud is different than that in the fog. This is because the cloud is
a single cohesive unit with infinite resources, so resource allocation is not a big issue in a
cloud environment. Still, the fog nodes are geographically widely distributed and there
are limited resources available. As a result, resource allocation in the fog environment is
difficult [128] because, in addition to the fog’s distribution, there are also QoS requirements
for IoT devices that must be met. The approaches to resource allocation can be broadly
classified into two categories: auction-based and optimization-based. The auction-based
approach [129–132] is similar to a real-time auction, where the IoT devices bid for the
available fog nodes and the fog node is sold (allocated) to the highest bidder. A specified
auction mechanism is employed to allocate the fog nodes to the IoT resources. The fog
nodes listed for bidding are according to the required QoS and other constraints that specific
IoT devices require. In the optimization-based technique [58,133–140], a double-matching
problem is formulated wherein cloud devices and the fog nodes are coupled for the IoT
devices. The problem is considered to be an NP-hard problem for finding an optimal set of
fog–cloud pairs for IoT devices while fulfilling various QoS requirements.

6. Case Study: Fog Data Analytics in Healthcare

Advancements in technology have significantly benefited the area of healthcare. Re-
cent developments in IoT and healthcare have improved patient healthcare services. Health-
care services are critical; we need instant solutions to problems and real-time patient ser-
vices. Smart healthcare devices are increasing significantly and generate huge amounts of
data that need to be processed and analyzed in real time. Fog computing plays a vital role
in managing large volumes of health data and has benefits of a reduced latency, improved
energy efficiency, increased reliability, and improved energy efficiency. This case study
focused on the health monitoring system using fog computing. Rather than sending the big
data generated by the health devices to the cloud layer, they will be processed and analyzed
at the fog layer through fog nodes (FNs) to make real-time decisions. Fog computing
plays a vital role in healthcare applications: they can decrease the network’s data flow and
provide an improved latency, security, and preventive care to patients [141].

In this case study, a fog-based healthcare scenario was implemented, where patient
health data were collected and transferred to the fog nodes at the fog layer. These data
were filtered, pre-processed, and analyzed, and real-time decisions were made for the
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better treatment of the patients. Figure 8 represents the IoT-based fog-enabled model for
healthcare. Patient data were collected from ECG sensors attached to the patient’s body
and sent to a smart gateway. Based on the criticality level of the data, the captured data
were sent to either the cloud or the fog layer by the smart gateway. The data received at
the fog layer will be processed and analyzed to provide timely medical treatment to the
patients, reducing latency. If the gathered data are not urgent, they will be sent to the cloud
for further analysis and long-term storage. The patient’s health information is accessible
remotely by family members and medical personnel from both the fog and cloud layers.

Figure 8. Fog data analytics in healthcare.

The performance of the proposed fog computing model was analyzed through a
simulation and experiments using the iFogSim simulator. The simulation measures latency
and network utilization in cloud and fog computing environments. The physical topology
in iFogSim includes various ECG sensors, fog devices, and cloud servers. The simulation
was conducted with five different physical topology configurations—conf1, conf2, conf3,
conf4, and conf5—with monitoring devices 4, 8, 16, 32, and 64, respectively, and measured
the latency and network utilization. The monitoring devices used in the configurations had
a CPU length of 1200 million instructions and a network length of 20,000 bytes. Tables 6
and 7 present the simulation results of latency and network utilization, respectively, for
each configuration in the fog and cloud environment.

Table 6. Comparison of latency.

Physical Topology Latency (ms)
Cloud Layer Fog Layer

Conf-1 221.32 56.32
Conf-2 248.91 64.20
Conf-3 282.45 66.12
Conf-4 1352.67 70.65
Conf-5 3452.77 90.78

Table 7. Comparison of network utilization.

Physical Topology Network Utilization (KBs)
Cloud Layer Fog Layer

Conf-1 151.23 40.43
Conf-2 168.43 43.95
Conf-3 334.78 51.56
Conf-4 890.67 108.37
Conf-5 1098.04 175.46
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Figures 9 and 10 show a graphical comparison of the results for the different configu-
rations. The simulation results show that using fog computing will improve the latency
and the network utilization. Fog computing improves the quality of service of the complete
healthcare system.

Figure 9. Latency.

Figure 10. Network utilization.

Fog devices have limited resources compared to the cloud. We evaluated the request
service ratio in both the fog and cloud environment. The simulation results show that the
cloud environment has the better request service ratio compared to the fog environment
due to the limited computational capability of fog devices. Figure 11 shows a graphical
comparison of the request service ratio in the fog and cloud environment for a different
number of requests.
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Figure 11. Request service ratio.

7. Conclusions

The exponential growth in sensors and smart devices produces significant heteroge-
neous data. To manage such data, we need efficient solutions deployed near the devices.
Fog computing, which works as a middle layer between the cloud layer and the IoT devices,
is a solution to the problem of real-time data delivery, especially in critical applications
such as e-healthcare systems. Fog data analytics is an emerging solution for handling the
huge amount of data produced by smart IoT devices. This paper gave an overview of fog
computing, the need for fog computing in IoT, data analytics, and the need for fog data an-
alytics in IoT. The current state-of-the-art in fog data analytics in IoT with various use cases
was also covered in this paper. Furthermore, research challenges in processing big data
in IoT networks were discussed. Finally, a case study on fog data analytics in healthcare
was presented, along with an experimental analysis using fog and cloud computing. The
future work motivates researchers to carry out an in-depth review of current state-of-the-art
techniques for adopting security in fog data analytics.
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