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1. Reply

First of all, we thank Dr. Meier for his thorough reading and constructive remarks [1].
His remarks helped us to both take into account some relevant references that we previ-
ously missed and get the chance to clarify some points that, despite our efforts, were not
understandable enough. To make this paper more readable we organized it into paragraphs.

2. Background

We agree with the remark from Dr. Meier and with the points raised in its ref. 2 [2,3].
As a matter of fact, we should have made clearer this point in the description of raw
spectra analysis. A proper background drawing has always been a point of concern
for us, and this remark is always part of our lectures involving Raman spectra analysis.
Our approach is always (i) record the spectrum in the range 400–4000 cm−1; (ii) identify
a single background for the whole spectrum, by a superposition of curves (including
photoluminescence contribution when relevant); (iii) subtract this background from the
spectrum; and (iv) focus on the region of interest. For sake of simplicity, in the paper,
we limited ourselves to drawing figures of the region of interest without describing the
procedure in detail.

3. Physical Basis

Our use of this term has led to some confusion; hence, it has been improper. The two
physically sound points are:

(1) The Debye relaxation leading to a Lorentzian lineshape does not hold from τ0
(attempt-to-escape frequency) to ∞ [4]. The departure from Debye relaxation becomes
more relevant at short and long times, and becomes more relevant when more structural
disorder is present. The presence of the disorder modifiers of the time relaxation leads to a
Gaussian relaxation for fully disordered systems [4].

(2) In disordered materials, especially those with a high local coordination number (i.e.,
locally overconstrained), such as graphite-like carbon regions, it is common knowledge that
a stretched exponential relaxation decay occurs [5–7]. The TCF (Time Correlation Function)
of stretched relaxation has unfortunately no closed form.
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4. Approximations

On the basis of point 1, we assumed that the lineshape of Raman peaks in biochar
can be a mixture of Gaussian and Lorentzian. We accept that no strong physical reason
to impose (i) C1 constraint and (ii) symmetry of the Gaussian tail onset was identified.
However, several attempts with different stretched relaxation parameters showed that the
symmetrical GauLor is able to very closely mimic the lineshape arising from a stretched
exponential relaxation. For this reason, we selected the symmetric Gaulor as the lineshape
of interest.

5. Number of Components of D and G Peaks

We have carefully read the literature [8–10] in order to select a number of components
that were at the same time meaningful and substantiated by the experiment in our case.
We point out that the fit made with one D and one G component for materials such as
diamond-like carbon [11] is (i) based on a minimal number of components approach, and
(ii) often does not led to a nice fit of the spectrum. We picked our components in the
following way:

- As far as the G contribution is concerned, we started fitting the highest temperature
spectra. In such spectra a shoulder near 1610 cm−1 is evident, indicating the presence
of a second peak beside the main one. Its attribution followed the literature [12]. The
two peaks became barely distinguishable at lower temperatures due to structural
disorder-related broadening, but, following its attribution, we did not see a physical
reason to rule out the second peak.

- As far as the D contribution is concerned, the presence of the smaller contribution
on the left tail is supported by (i) literature reports [13–18] and (ii) by the presence of
slope changes in the spectrum shape that a single peak cannot justify.

As pointed out by Dr. Meier [19], with an appropriate choice of their parameters, a
Lorentzian and a Gaussian can be superimposed for most of the peak range. However,
this is not for the tail region as the Lorentzian has a more relevant tail. Hence, the careful
background subtraction procedure that we discussed before is a key point in discriminating
between the two lineshapes.

As the pseudo-Voigt is a linear combination of Gaussian and Lorentzian over the
full range, the issue raised in the previous paragraph affects the use of pseudo-Voigt too.
Although a fit using pseudo-Voigt can be carried out as reported by Naylor et al. [20],
the figures reported in the Supplementary Information of our paper show that there is
no reasonable trend for the components across the temperature range. As a final remark,
we point out that as the pseudoVoigt lineshape is a ‘computation friendly’ version of the
physical meaningful Voigt lineshap, the same can be said for the Gaulor: it is a ‘computation
friendly’ mimic of the lineshape determined by a stretched exponential relaxation.

6. Additional Remarks

We agree that a few points remain questionable, such as the 1300 ◦C spectrum fit (a fit
with a lower ‘left D’ component is possible). Some confusion about the labelling of D peaks
might also arise due to some misprints for which we apologize.
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