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Abstract: This study evaluates accelerometer performance of three new state of the art smartphones
and focuses on accuracy. The motivating research question was whether accelerator accuracy obtained
with these off-the-shelf modern smartphone accelerometers was or was not statistically different
from that of a gold-standard reference system. We predicted that the accuracy of the three modern
smartphone accelerometers in human movement data acquisition do not differ from that of the Vicon
MX motion capture system. To test this prediction, we investigated the comparative performance
of three different commercially available current generation smartphone accelerometers among
themselves and to a gold-standard Vicon MX motion capture system. A single subject design was
implemented for this study. Pearson’s correlation coefficients® were calculated to verify the validity
of the smartphones’ accelerometer data against that of the Vicon MX motion capture system. The Intr-
aclass Correlation Coefficient (ICC) was used to assess the smartphones’ accelerometer performance
reliability compared to that of the Vicon MX motion capture system. Results demonstrated that
(a) the tested smartphone accelerometers are valid and reliable devices for estimating accelerations
and (b) there were not significant differences among the three current generation smartphones and the
Vicon MX motion capture system’s mean acceleration data. This evidence indicates how well recent
generation smartphone accelerometer sensors are capable of measuring human body motion. This
study, which bridges a significant information gap between the accuracy of accelerometers measured
close to production and their accuracy in actual smartphone research, should be interpreted within
the confines of its scope, limitations and strengths. Further research is warranted to validate our
arguments, suggestions, and results, since this is the first study on this topic.

Keywords: smartphones; performance evaluation; accelerometer sensors; accelerometer accuracy;
optoelectronic system; gait

1. Introduction

Smartphones are a new class of mobile (portable) or other cellular multimedia devices
that provide integrated services from modern communication, computing, information,
and mobile technology into one unit. Smartphones are increasingly intertwined into the
fabric of modern society in all spheres of human private and public life, including science,
technology, health, psychology, environment, economy, education, culture and art.

Life in the contemporary world is becoming more and more digital, networked, and
smartphone centric. As such, the world is literally at humans’ fingertips. Our lives are
controlled with light finger taps on tiny smartphone screens; hence, smartphones are rarely
far from hand. There is no doubt that the scope of the smartphone utility has expanded
beyond what was originally anticipated. The paper-thin smartphones of today are used as
multipurpose devices offering every feature users desire worldwide. It is not surprising,
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therefore, that the smartphone is described the as the “Swiss army knife for the 21st
century” [1].

Smartphones come equipped with an array of microelectromechanical sensors (MEMS)
capable of gathering information about the world around them, such as location-based and
motion sensors, environmental sensors, biometric sensors and activity and health sensors.
Current generation smartphones incorporates diverse and powerful sensors, which are
small in size and low cost, consume little energy, and feature high performance, making
them increasingly sophisticated and advanced.

Smartphone sensors are specific technologies able to sense a physical quantity and
translate it into electric signals, so that the particular quantity can be interpreted by the
smartphone computing system. They are, in effect, self-sensing devices aware of their
surrounding environment in real time, largely independent of location and time, operating
in an unobtrusive manner for the user [2]. With modern smartphones being open and
programmable, software developers have access to these sensors to create novel sensing
applications of increasing functionality and complexity in a wide range of fields, including,
but not limited to, health [3], rehabilitation [4], physical activity [5], social networks [6],
environment [7], transportation [8] and safety [9]; thus, mobile phone sensing became a
new field for scientific and clinical research [10].

Smartphone sensors can be categorized into two main types, based on their system
design and communication features: internal (built-in or embedded) sensors and external
sensors [11]. The internal sensors can be divided into two main groups: raw sensors, which
permit capturing data directly from hardware sensors, embedded into the device, and
derived sensors which provide processed and fused data from a few raw sensors all at
once, providing users of the system with different information [10,12]. Accordingly, the
external sensors can be grouped into two major kinds: wire sensors, which are physically
connected to a USB port or dock connector, and wireless sensors, which are connected via
Bluetooth to a wearable sensing module [11].

Among smartphone sensors, the accelerometer is one of the earliest and most ubiqui-
tous [13]. Recent generation of smartphones include MEMS-based accelerometer sensors
by default. The accelerometer sensor measures constant (gravity), time varying (vibrations)
and quasi static (tilt) acceleration forces, which affect the device on the three axes (x, y and
z) in meter per second squared (m/s2) [14].

Currently, with all these characteristics, smartphone accelerometers have been widely
used as a useful and powerful tool for laboratory [15] and field [16] research and have also
opened up new possibilities for mobile-sensing research [13]. A particular advantage of
utilizing modern smartphone accelerometer technology, is its ability, at least under certain
circumstances, to enhance testing schemes and influence measurement strategies [17],
as well as to replace more expensive scientific instruments and more established inertia
equipment [18].

However, performance variations of smartphone accelerometers across, e.g., manu-
facturers, models, applications, operating system types and central processing unit (CPU)
conditions, lead to heterogeneities in the collected data [13]. The heterogeneities in smart-
phone accelerometer sensing, along with the issues and challenges they come with, have
been investigated in previous studies.

Douangphachanh and Oneyama [19], for instance, estimated road roughness condition
using data collected by sensors from two different smartphones loosely placed within a
moving vehicle at realistic locations and under realistic manner. The results confirmed
that road roughness condition was linearly related to acceleration magnitude and average
speed. They also revealed that the strength of this relationship varies markedly at different
frequency ranges.

Dey et al. [20] hypothesized that due to hardware imperfections during the sensor
manufacturing, smartphone and tablet accelerometers possess unique fingerprints which
can be exploited for tracking users. To this end, they measured and classified 80 standalone
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accelerometer chips, 25 android phones, and 2 tablets. The results provided confirmation
that such fingerprints exist, and are readily visible even in uncontrolled, real-life settings.

Douangphachanh and Oneyama [21] collected accelerometer and gyroscope data
from four common smartphones installed at three different locations within four separate
vehicles running on road sections with varying roughness conditions. The magnitudes
of vibration, calculated from each axis of the accelerometers and gyroscopes, as well as
the average speed, were found to be strongly related with road roughness conditions.
Modeling the road roughness condition as a linear function of vibration magnitudes, which
includes both accelerometer and gyroscope data as well as average speed, offered better
estimation results than models that only take into account accelerometer magnitudes and
average speeds.

Feng et al. [22] investigated the use of three mainstream smartphone embedded
accelerometers for monitoring structural vibration and diagnosing structural health and
post-event damage. In both the temporal and frequency domains, the results demonstrated
good agreement between the reference and smartphone sensor readings, indicating the
smartphone sensors’ capacity to measure structural responses ranging from low-amplitude
ambient vibration to high-amplitude seismic response.

Mourcou et al. [23] evaluated the performance accuracy of three sensors and algo-
rithms embedded in three different smartphones against a very specific benchmark, a
true-to-standard industrial robot arm that utilizes inertial motion units for clinical research.
These comparisons were made using two protocols: static and dynamic. The findings
indicated that the two protocols were not affected by filters and hardware effects. In addi-
tion, they revealed that the smartphone performance results were comparable to those of
the benchmark.

Stisen et al. [13] examined sensor-, device- and workload-specific heterogeneities,
focusing on accelerometer sensors, employing 31 smartphones, one tablet and four smart-
watches, depicting 13 different models of four different manufacturers running variants of
iOS and Android. Additionally, they carried out tests with nine users and considered popu-
lar feature representation and classification techniques in research on recognition of human
activity. The results suggested that on-device sensor and sensor handling heterogeneities
significantly impair human activity recognition research performances. Furthermore, the
impairments differ considerably between devices and are dependent on the type of the
recognition technique that is used.

Figueiredo et al. [24] assessed the ability of smartphone built-in sensors to distinguish
between fall events and activities of daily living. Specifically, they explored the fall in-
formation provided by the accelerometer, magnetometer, and gyroscope sensors in two
smartphone models of the same brand. In their research, accelerometer was found to be the
most reliable sensor. Using the data provided by this sensor, a novel, simple and reliable
fall detection algorithm was proposed using a threshold-based approach. A comparative
study carried out on the same dataset with other existing smartphone-based fall detection
algorithms showed that the proposed algorithm was very competitive.

Kos, Tomažič, and Umek’s [25] study aimed to address whether smartphone inertial
sensor performance varies considerably among different smartphone models. Accordingly,
they evaluated the accuracy of 116 different smartphone devices of 61 different models,
all from 13 different manufacturers, and figured out biases between measurements from
smartphone devices. The results revealed that the measured parameters for smartphone
sensors were highly variable between smartphone models and, in some cases, even within
the same model.

Chen et al. [26] tested the effect of the specifications of four built-in smartphone
accelerometers of different brands and models on fall detection performance. An algorithm
for detecting falls was built, and its accuracy was then calculated and compared on these
smartphones. The results showed that the fall detection algorithm had varying values of
sensitivity and specificity when performed by smartphones of different manufacturers.
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Kask and Kuusik [27] compared the performance accuracy of two conventional smart-
phones and a specialized wearable sensor employed in prior clinical research. The results
of two specific clinical tests, the Romberg and the range of motion test, were analyzed. No
significant differences were found between the motion range measurements of the used
reference sensor and the two used smartphones. It was suggested that both contemporary
smartphones are adequate for angular motion detection and can serve as replacements for
specialized wearable equipment to assess human body movements.

Ahmed et al. [28] investigated measurement variability among smartphone sensors
from three different brands. A field experiment using the same vehicle, device mounting
method, traversal speed, and roughness index method demonstrated that accelerometer
sensitivities and maximum sample rates vary significantly within and between brands
of smartphones. The study found that calibrating smartphones is necessary for accurate
roughness measurements to be consistent across different models.

Kuhlmann, Garaizar, and Reips [29], using newly designed measurement equipment,
tested the accuracy of orientation data regarding the spatial position of 56 distinct smart-
phones. In addition, native apps were used to measure a subsample of 39 devices. With
the help of a software sensor, location data was gathered by integrating information from
different sensors on the smartphone to produce gravity acceleration data. Data gathered
from sensors via web browsers and native apps was compared to the objective status of
the smartphone’s vertical and horizontal orientation. The results obtained supported the
view that data collected from a variety of smartphone devices revealed heterogeneity in
orientation information.

Yang’s et al. [30] study aimed to identify differences in the sensitivity of smartphone
inertial sensors, which might result in measurement inconsistencies. Thus, they eval-
uated three calibration methods for calibrating the road roughness measurements us-
ing three different types of reference smartphones for both paved and unpaved roads.
It was demonstrated that roughness indices from each device and road type were nor-
mally distributed with unequal means under identical conditions of device mounting and
vehicle use.

Evidently, these existing studies evaluate performance variations of smartphone ac-
celerometers across different manufacturers, models and types. Such evaluations were
crucially needed to allow or not the use of the modern smartphone accelerometers to
perform experimental and clinical measurements in laboratory and field settings. However,
despite the significant research interest that has been devoted to assessing comparative
performance of previous generation smartphone accelerometers, there has been no study,
to the best of our knowledge, on their comparative or individual performance of recent
generation smartphone accelerometers against a gold-standard optoelectronic system, such
as the Vicon MX motion capture system (Vicon Motion Systems, Oxford, UK). The purpose
of the current study was to address this lack of information by rigorously and comprehen-
sively investigating the comparative performance of three different commercially available
modern smartphone accelerometers amongst themselves and to a gold-standard Vicon MX
motion capture system. The hypothesis that accelerator accuracy in human movement data
acquisition obtained with three new state-of-the-art smartphone accelerometers and the
gold-standard Vicon MX motion capture system was not statistically different was tested.

2. Materials and Methods
2.1. Sample

In order to eliminate or minimize threats to internal validity of the study, a single
subject design was implemented for this study. This design allows the researchers to
eliminate and hold constant extraneous variables, such as subjects’ sex, height, weight
and footwear that might otherwise contaminate the results of the study. The subject was
a 29-year-old male Ph.D. research student of mass 72 kg and height 1.78 m. He carefully
screened for health status and was found to be in good general health (he did not have a
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record or symptoms of psychiatric or neurological illness, physical or orthopaedic injury,
or specific deficits in motor control).

The subject was naive as to the purpose of the study and agreed to participate vol-
untarily with written and signed informed consent. He was informed about his right
to withdraw at any time for any reasons during the study, without any negative conse-
quences, and was guaranteed privacy and confidentiality of all gathered information and
the anonymous presentation of findings. Additionally, he was assured that the study would
not have any physical, psychological, social, or ethical risks. The subject was not with-
drawn from the study despite withdrawal of consent. Data collection was carried out in a
quiet and comfortable motor-behavior laboratory, in a nonstressing condition, under the
researchers’ supervision.

2.2. Instruments

Three of the most widely used brands and generations of smartphones, referred to
as Smartphone 1 (iPhone 12 Pro Max), Smartphone 2 (Samsung Galaxy S21 Ultra) and
Smartphone 3 (Huawei P Smart), were tested in this study (Table 1). Accelerometer data
was collected using the Apple’s iOS application “Accelerometer” (by DreamArc), installed
on Smartphone 1 and the Google’s Android application “Accelerometer Acceleration Log”
(by Alfa V), installed on Smartphone 2 and Smartphone 3. Both applications allow users to
screen, record and save triaxial acceleration data on a smartphone device and export them
to a semicolon separated CSV file (“Accelerometer” application) or to a comma separated
CSV file (“Accelerometer Acceleration Log” application).

Table 1. Smartphone accelerometer properties.

Property Smartphone 1 Smartphone 2 Smartphone 3

Sensor maker Bosch Sensortec STMicroelectronics STMicroelectronics
Sensor Model BMI260 LSM6DSL LSM6DSM

Phone Maker, model iPhone 12 Pro Max, 5G, IOS 14 Samsung Galaxy S21 Ultra, 5G,
Android 11 Huawei P Smart, 5G, Android 10

Type MEMS MEMS MEMS
Sensitivity error ±0.4% ±0.4% ±0.4%

Acceleration Range ±2/±4/±8/±16 g ±2/±4/±8/±16 g ±2/±4/±8/±16 g
Angular Range ±125/±245/±500/±1000/±2000 dps ±125/±245/±500/±1000/±2000 dps ±125/±250/±500/±1000/±2000 dps

Linear acceleration zero-g level offset
accuracy ±20 mg ±40 mg ±40 mg

Linear acceleration self-test output
change N/A 90–1700 mg 90–1700 mg

Linear acceleration output data rate 12.5 Hz . . . 1.6 kHz 1.6 . . . 6664 Hz 1.6 . . . 6664 Hz
Rate noise density in high

performance mode 160 µg/
√

Hz 0.008 dps/
√

Hz 4 mdps/
√

Hz 3.8 mdps/
√

Hz

Acceleration g for 0.2 ms 10,000 g 10,000 g 10,000 g
Analog supply voltage 1.71 V to 3.6 V 1.71 V to 3.6 V 1.71 V to 3.6 V

The sampling frequency of the “Accelerometer” application is adjustable from 1 Hz
to 30 Hz and of the “Accelerometer Acceleration Log” from 1 Hz to 60 Hz. The Vicon
MX motion capture system with 10 Bonita 3 optoelectronic cameras was used to record
three-dimensional data. Known as one of the most advanced digital optical motion capture
systems available today [31], this system is widely accepted as the gold standard for gait
assessment and multifactorial movement analysis [32]. The Vicon MX motion capture
system operates in the near-infrared spectrum and precisely records the 3D positions of
reflective markers within a millimeter accuracy and with a measurement update frequency
above 100 Hz in a capture volume of 6 × 6 × 2.5 m. The system calculates the accurate
3D locations of sparse reflective markers attached at bony anatomical landmarks of the
subject’s body according to the standard Vicon full-body marker placement protocol called
Plug-In-Gait (PIG) [33] to recover the body’s original shape and pose. The facility is
supplied with Vicon’s Nexus v. 1.8.5 software (Vicon Motion Systems, Oxford, UK) with
the Full-Body Plug-in Gait marker placement model, which is used to setup and calibrate
the system and capture and process data.
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2.3. Procedure

Data collection was conducted in one day, in a 4-h period, at the Laboratory of Motor
Behavior and Adapted Physical Activity of the Department of Physical Education and Sport
Sciences of the Aristotle University of Thessaloniki, Greece. At first, the three smartphones
were placed in a 3-piece (sandwich-style) smartphone horizontal, rugged belt holster
carrying case, firmly attached to the lumbar spine (lower back) via an elastic belt (Figure 1).
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To reduce the impact of external influences on accelerometer-sensing heterogeneities,
the data for this investigation was collected while maintaining the CPU load on all cell-
phones to a minimum (i.e., only running the data collection application) [34]. Then, after
collecting somatometric data of the subject, including weight, height and various extremity
length metrics, we calibrated the Vicon system capturing area (5 m × 5 m × 3 m) (Figure 2)
and started capturing.
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The capturing procedure lasted approximately 45 min. The capturing frequency of
the Vicon MX motion capture system and the three smartphones was set to 15 Hz. For the
3D video capture, we used the PIG (lower limbs model) [33] reflective market placement
using a total of 16 reflective markers placed on specific anatomical points of subject’s body
(Figure 3).

Before capturing gait trials, the subject was able to perform some walking trials in
order to become acquainted with the space environment and the process. Subsequently, we
performed a static subject calibration. Then we captured 9 gait trials (18 steps) from the
subject performing a 6 m walkway at his preferred (also known as the “spontaneous” or
“self-selected”) walking speed inside the Vicon system capturing area (Figure 4).
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The first 3 gait trials (six steps) of the captured walking task were used to verify the
validity and reliability of the variables of interest (i.e., the acceleration forces). The position
of the 10 infrared cameras remained unchanged from one gait trial to the next. Marker
position data along the three axes were assimilated using Vicon system software (Nexus
v. 1.8.5, Oxford, UK). Aiming at facilitating the post smartphones’ accelerometers data
synchronization, we asked the subject to start and stop each gait trial from the standing
position. In order to synchronize accelerometers’ raw data, the sampling rate of all devices
used in this experimental design was set to 15 Hz. In addition, the offset of each device
in each trial was calculated from the start of each recording till the beginning of gait. Six
walking steps were captured for each gait trial. After the subject’s performance of the
9 gait trials, we collected the accelerometers’ data from the three smartphones. Following
the 3D video capturing, we labelled reflective markers based on the lower body plug in
gait model and exported data concerning trajectories of each reflective marker (Figure 5).
After the post capturing data processing, we exported a c3d format type file containing the
trajectories of all reflective markers for further analysis.
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2.4. Data Processing and Statistical Analysis

Accelerometer data from the three smartphones were exported on a CSV file format
from each trial. At the end of the performance task, we collected 27 CSV files (9 CSV
files from each smartphone). Post captured acceleration data from the Vicon system were
calculated. Specifically, the c3d files created by the Vicon system were opened and edited
using the Mokka (Motion Kinematic and Kinetic Analyzer, version 0.6.2) software. From
the c3d file we created an average marker from the two reflecting markers (LPSI and RPSI),
which were placed on the slight bony prominences that can be felt immediately below the
dimples (sacroiliac joints), at the point where the spine joins the pelvis. From the trajectories
of the average marker on the three-axis system we calculated the lineal acceleration using
the following formulas:

a(x) =
d
(

dx
dt

)
dt

, a(y) =
d
(

dy
dt

)
dt

, a(z) =
d
(

dz
dt

)
dt

(1)

All acceleration data were then imported in a data file in the statistical software
platform “Statistical Package for the Social Sciences” (SPSS) (26.0). Descriptive statistics
were conducted including means and standard deviations of acceleration in each axis of
each device and Pearson’s correlation coefficients (r) (i.e., a measure of the strength of
a linear association between two continuous variables). Furthermore, the acceleration
magnitude (AM) of each device was calculated in a single worksheet in Microsoft excel
for each axis using the formula AM =

√
x2 + y2 + z2, as has already been described in

previous research [35,36]. The intraclass correlation coefficient (ICC) was used in order
to test the absolute agreement between acceleration data from all devices used in this
experiment using the two-way mixed effects model. The appropriate forms of the ICC were
the ICC intra-rater reliability, absolute agreement, as reported by Shrout and Fleiss [37].
This ICC illustrated the absolute agreement for multiple measurements and was generally
considered as being either poor, moderate, good, or excellent reliability for values less than
0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90, respectively [38].
The p-value for both the Pearson’s correlation coefficients (r) and the ICC was set at the
level of 0.05. Finally, inferential statistics [namely, a three-way repeated measures ANOVA
(9 trials× 4 devices× 3 axis)] was used to test our hypothesis. The threshold for significance
was fixed at 0.05.
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3. Results
3.1. Descriptive Statistics

Descriptive statistics concerning each device acceleration data for the three axes during
the six steps trial are presented in Table 2.

Table 2. Acceleration data for the three axis during the six steps trials.

Device

Mean
Acceleration No of Steps Trials Smartphone 1

(Mean ± SD)
Smartphone 2
(Mean ± SD)

Smartphone 3
(Mean ± SD)

Vicon System
(Mean ± SD)

X axis

1

9

−0.0497 ± 0.0050 −0.0492 ± 0.0048 −0.0487 ± 0.0041 −0.0495 ± 0.0042
2 −0.0512 ± 0.0016 −0.0487 ± 0.0035 −0.0466 ± 0.0037 −0.0468 ± 0.0043
3 −0.0484 ± 0.0035 −0.0506 ± 0.0037 −0.0476 ± 0.0046 −0.0496 ± 0.0029
4 −0.0486 ± 0.0040 −0.0493 ± 0.0037 −0.0496 ± 0.0050 −0.0495 ± 0.0030
5 −0.0488 ± 0.0047 −0.0486 ± 0.0036 −0.0507 ± 0.0038 −0.0493 ± 0.0049
6 −0.0495 ± 0.0033 −0.0499 ± 0.0043 −0.0518 ± 0.0020 −0.0490 ± 0.0053

Total 54 −0.0494 ± 0.0038 −0.0494 ± 0.0038 −0.0492 ± 0.0042 −0.0489 ± 0.0041

Y axis

1

9

−0.0237 ± 0.0083 −0.0286 ± 0.0091 −0.0279 ± 0.0099 −0.0287 ± 0.0060
2 −0.0287 ± 0.0088 −0.0314 ± 0.0074 −0.0305 ± 0.0080 −0.0241 ± 0.0072
3 −0.0274 ± 0.0076 −0.0309 ± 0.0089 −0.0279 ± 0.0064 −0.0226 ± 0.0072
4 −0.0282 ± 0.0110 −0.0269 ± 0.0073 −0.0292 ± 0.0069 −0.0220 ± 0.0077
5 −0.0294 ± 0.0070 −0.0246 ± 0.0062 −0.0272 ± 0.0079 −0.0291 ± 0.0083
6 −0.0270 ± 0.0090 −0.0269 ± 0.0094 −0.0231 ± 0.0066 −0.0236 ± 0.0051

Total 54 −0.0274 ± 0.0085 −0.0282 ± 0.0081 −0.0276 ± 0.0077 −0.0250 ± 0.0073

Z axis

1

9

−0.0053 ± 0.0259 −0.0031 ± 0.0245 0.0176 ± 0.0274 0.0074 ± 0.0311
2 0.0017 ± 0.0351 0.0088 ± 0.0291 0.0186 ± 0.0199 0.0176 ± 0.0166
3 0.0066 ± 0.0249 0.0155 ± 0.0309 −0.0014 ± 0.0197 −0.0054 ± 0.0312
4 0.0073 ± 0.0268 0.0287 ± 0.0203 0.0051 ± 0.0299 0.0165 ± 0.0309
5 0.0070 ± 0.0270 0.0067 ± 0.0246 −0.0113 ± 0.0115 0.0124 ± 0.0240
6 0.0164 ± 0.0283 −0.0015 ± 0.0251 −0.0005 ± 0.0253 0.0068 ± 0.0281

Total 54 0.0056 ± 0.0276 0.0092 ± 0.0270 0.0047 ± 0.0245 0.0092 ± 0.0273

Regarding linear acceleration data from each device on the x axis, Pearson’s cor-
relation coefficient (r) showed significant correlations between (a) Smartphones 1 and
Vicon (Pearson r = −0.409, sig = 0.039), (b) Smartphones 2 and Vicon (Pearson r = −266,
sig = 0.025), (c) Smartphone 3 and Vicon system (Pearson r = −0.464, sig = 0.000). Pearson r
correlation from each device linear acceleration’s data on the X axis are presented in Table 3
and Figure 6.
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Table 3. Pearson r correlations from each device linear acceleration’s data on the X axis.

X Axis
Smartphone 1

X Axis
Smartphone 2

X Axis
Smartphone 3 X Axis Vicon

X axis smartphone 1
Pearson Correlation 1 −0.386 −0.206 0.409

Sig. (2-tailed) 0.001 0.084 0.039
N 71 71 71 71

X axis smartphone 2
Pearson Correlation −0.386 1 0.460 −0.266

Sig. (2-tailed) 0.001 0.000 0.025
N 71 71 71 71

X axis smartphone 3
Pearson Correlation −0.206 0.460 1 −0.464

Sig. (2-tailed) 0.084 0.000 0.000
N 71 71 71 71

X axis Vicon
Pearson Correlation −0.409 −0.266 −0.464 1

Sig. (2-tailed) 0.039 0.025 0.000
N 71 71 71 71

Concerning linear acceleration data from each device on the Y axis, Pearson’s corre-
lation coefficient (r) showed significant correlations between (a) Smartphone 1 and Vicon
system (Pearson r = −0.415, sig = 0.000), (b) Smartphone 2 and Vicon system (Pearson
r = −0.354, sig = 0.002) and (c) Smartphones 3 and Vicon system (Pearson r = 0.292,
sig = 0.001). Pearson r correlation from each device linear acceleration’s data on the Y axis
are displayed in Table 4 and Figure 7.

Table 4. Pearson r correlations from each device linear acceleration’s data on the Y axis.

Y Axis
Smartphone 1

Y Axis
Smartphone 2

Y Axis
Smartphone 3 Y Axis Vicon

Y axis smartphone 1
Pearson Correlation 1 0.212 −0.163 −0.415

Sig. (2-tailed) 0.075 0.175 0.000
N 71 71 71 71

Y axis smartphone 2
Pearson Correlation 0.212 1 0.239 −0.354

Sig. (2-tailed) 0.075 0.045 0.002
N 71 71 71 71

Y axis smartphone 3
Pearson Correlation −0.163 0.239 1 0.292

Sig. (2-tailed) 0.175 0.045 0.001
N 71 71 71 71

Y axis Vicon
Pearson Correlation −0.415 −0.354 0.392 1

Sig. (2-tailed) 0.000 0.002 0.001
N 71 71 71 71
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Referring to linear acceleration data from each device on the Z axis, Pearson’s corre-
lation coefficient (r) showed significant correlations between (a) Smartphone 1 and Vicon
system (Pearson r = −0.306, sig = 0.009), (b) Smartphone 2 and Vicon system (Pearson
r = −0.255, sig = 0.032) and (c) Smartphone 3 and Vicon system (Pearson r = −0.330,
sig = 0.002). Pearson r correlation from each device linear acceleration’s data on the Z axis
are depicted in Table 5 and Figure 8.

Table 5. Pearson r correlations from each device linear acceleration’s data on the Z axis.

Z Axis
Smartphone 1

Z Axis
Smartphone 2

Z Axis
Smartphone 3 Z Axis Vicon

Z axis smartphone 1
Pearson Correlation 1 0.304 −0.232 −0.306

Sig. (2-tailed) 0.010 0.052 0.009
N 71 71 71 71

Z axis smartphone 2
Pearson Correlation 0.304 1 −0.078 −0.255

Sig. (2-tailed) 0.010 0.518 0.032
N 71 71 71 71

Z axis smartphone 3
Pearson Correlation −0.232 −0.078 1 −0.330

Sig. (2-tailed) 0.052 0.518 0.002
N 71 71 71 71

Z axis Vicon
Pearson Correlation −0.306 −0.255 −0.330 1

Sig. (2-tailed) 0.009 0.032 0.002
N 71 71 71 71
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Figure 8. Pearson r correlations from each device linear acceleration’s data on the Z axis.

Pertaining to the Intraclass Correlation Coefficient (ICC) of the acceleration magni-
tude among the four devices used in this experiment, ICC values ranged from −0.348
to 0.796. Specifically, acceleration magnitude ICC between (a) Smartphones 1 and Vicon
system was −0.348, sig = 0.008 (b) Smartphones2 and Vicon system was 0.796, sig = 0.001,
(c) Smartphone 3 and Vicon system was 0.270, sig = 0.001 All ICC measures were statis-
tically significant at p < 0.05. ICC values concerning acceleration magnitude of the four
devices are illustrated in Table 6 and portrayed in Figure 9.
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Table 6. Intraclass Correlation Coefficient values among device’s acceleration magnitude.

AM
Smartphone 1

AM
Smartphone 2

AM
Smartphone 3 AM Vicon

AM smartphone 1
ICC - 0.491 0.632 −0.348
Sig. - 0.003 0.977 0.008
N - 71 71 71

AM smartphone 2
ICC 0.491 - −0.110 0.796
Sig. 0.003 - 0.666 0.001
N 71 - 71 71

AM smartphone 3
ICC 0.632 −0.110 - 0.270
Sig. 0.977 0.666 - 0.001
N 71 71 - 71

AM Vicon
ICC −0.348 0.796 0.270 -
Sig. 0.008 0.001 0.001 -
N 71 71 71 -
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3.2. Inferential Statistics

There was no statistically significant three-way interaction between device, axis and
step F(30,288) = 1,302, p = 0.140. There was, also, no statistically significant two-way interac-
tion between device and axis F(6,288) = 0.408, p = 0.874 (Figure 10).
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There was no statistically significant two- way interaction between device and step,
F(15,144) = 1.162, p = 0.308 (Figure 11).
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There was no statistically significant two-way interaction between axis and step,
F(10,96) = 1.210, p = 0.294. There was, also, no statistically significant simple main effect of
the factor device F(3,144) = 0.704, p = 0.551.

4. Discussion

This study sought to identify whether accelerator accuracy obtained with three new
state-of-the-art smartphone accelerometers was or was not statistically different from
that of the gold-standard Vicon MX motion capture system. We found that the tested
smartphone accelerometers seem to be valid and reliable devices for estimating linear
accelerations. The terms’ reliability and validity describe psychometric properties of a
measuring instrument. Although they are closely related concepts, they express different
properties of the measuring instrument. A valid measuring instrument is one that measures
the behavior or quality it is intended to measure. A reliable measuring instrument is
one that is stable and consistent over time. Consequently, a valid and reliable measuring
instrument ensures the quality of measurement and data collected.

We then predicted that the accuracy of the three modern smartphone accelerometers
do not differ from that of the Vicon MX motion capture system. Results showed that there
were not significant differences between the three current generation smartphone and the
Vicon MX motion capture system mean acceleration data.

This evidence extends and advances previous research endeavors on performance
evaluation of different commercially available smartphone accelerometers [13,19–29] and
indicates how well recent generation smartphone accelerometer sensors are capable of
measuring human body motion, which although is not exceptionally rapid, is decidedly
complex. Our findings further suggest that off-the-shelf modern smartphone accelerometers
(a) can be used as valuable and effective devices for measuring movement under various
conditions of performance, (b) can be employed as useful tools for experimental and
clinical research, (c) can open up new possibilities for sensing research, (d) can improve and
optimize testing methods, and (e) can substitute or take the role of sophisticate scientific
instruments when certain circumstances are met (e.g., unavailability of expertise, facilities,
money and time).

It should be indicated here, however, that smartphone accelerometer sensors were
initially developed to meet the needs of the consumer electronics market—not as scientific
sensing systems for measuring human body motion, but as self-sensing devices aware of
their surrounding environment in real time for common smartphone functions (e.g., for
changing the device’s screen orientation vertically or horizontally). Following the evolution
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of the smartphone, from being “phone-centric” to being “data-centric” [2], smartphone
accelerometer sensors have demonstrated extreme capabilities in quantifying human motor
behavior, with potentially far-reaching applications in research and clinical areas [39].

This study, therefore, bridges a significant information gap between the accuracy of
accelerometers measured close to production and their accuracy in actual smartphone
research. After all, for accelerometer data to be useful to researchers, it must be accurate,
valid and reliable indicator of behavior. A large amount of error in the data from the
implemented devices will inevitably make conclusions drawn from them unreliable [29].

In general, the current study can serve as a foundation for creating basic technical stan-
dards for smartphone accelerometry in human subjects. Additionally, it can be employed
to emphasize the state of commercially available smartphone accelerometry technology in
terms of technical requirements and capture environment needs that might act as obstacles
to the experimental and clinical adoption of human body motion capture. Furthermore,
it can guide improvements in the structure and functionality of smartphone accelerome-
try technology in order to enable broader adoption of these devices in experimental and
clinical fields. Finally, it can suggest testing methods of measuring human motor behavior
with high ecological validity in naturalistic settings in which the behavior being measured
would normally operate. Whether these expectations are realistic or not, presently remains
an open question that will require further experimental and clinical experimentation.

Albeit not the focus of this study, it should be briefly mentioned, however, that as with
any complex technological system, motion capture systems are not without strengths and
weaknesses in theory and in application. Each one has its distinctive technological merits
and limitations and, therefore, it is not entirely correct to consider that one system surpasses
the other overall, or each system stands on its own as an amazing piece of technological
innovation. Consequently, the motion capture system that is chosen for a particular inves-
tigation depends on the researcher’s objectives, theoretical background, methodological
expertise, time, prior knowledge of the phenomenon being studied, available resources
and decision to study a phenomenon connected or separated from its context (e.g., in a
natural or a controlled environment). The strengths and weaknesses of the motion capture
systems used in the current study, presented below in Table 7, can be applied to inform
implementation of experimental and clinical motion capture research and development.

This research was limited by the number of smartphone accelerometers tested. Al-
though selected for comparison with the situation in typical smartphone studies, the study
design did not cover the full range of possible devices. However, this was not the purpose
of this study. Another limitation was the nature of the design. The study employed single-
subject design and, as with all single-subject design studies the external validity of these
results requires verification through systematic replication before they can be safely applied
as generalizations. Furthermore, whenever a single-subject design is used, the small sam-
ple size restricts the type of data analyses that can be undertaken. Nonetheless, this type
of design accords with the state of art of gait analysis kinematics variability assessment
studies (e.g., [40,41]). Notwithstanding these limitations, it is expected that this study will
contribute to the evidence base around the accuracy of smartphone accelerometers and will
open new research avenues for future exploration.

Future studies could aim to expand the number of devices tested, as well as to enlarge
the sample size investigated to enhance the external validity of the research and to allow
more robust statistical analysis of the data. Increasing the type of investigated user devices
beyond smartphones and to other, popular or emerging mobile and wearable devices, such
as tablets, smartwatches, smart wristbands, smart headbands and smart earbuds, would be
a natural extension of the study. Nonetheless, additional research is warranted to validate
our arguments, suggestions, and results, since this is the first study on this topic.

Overall, smartphone sensor technology is a highly dynamic and fast-evolving field,
limited only by scientific imagination which means, in essence, that anything developed
now will be outdated by the time it is available. To paraphrase Miller [2], “the question is
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not whether smartphone accelerometer sensors will revolutionize motion capture research,
but how, when, and where the revolution will happen.

Table 7. Strengths and weaknesses of the study’s motion capture systems.

System Strengths Weaknesses

Vicon MX

• Large application segment
• Unlimited volume data
• Direct measurement of

spatiotemporal variables
• Multiple performance capture
• Suitable for extensive motion

capture research
• Long history of use in research

• Expensive
• Time-consuming and complex

to operate
• Small capture area
• Needs checkerboard calibration

procedures
• Needs controlled environment
• Low external validity
• Needs markers on the body
• Needs line of sight “capture

environment
• Limited movement freedom
• Unobtrusiveness for users
• Noise sources and

environmental interference

Smartphone
Accelerometers

• Inexpensive
• Fast and simple to operate
• Big capture area
• Extremely portable and compact
• Automatic processing
• No need for a controlled

environment
• High external validity
• No need for calibration

procedures
• No need for markers on the

body
• No need for line of sight

“capture environment”
• Unlimited movement freedom
• Unobtrusiveness for particants
• No noise sources and

environmental interference

• Small application segment
• Limited volume data
• Indirect measurement of

spatiotemporal variables
• Single performance capture
• Not suitable for extensive

motion capture research
• Brief history of use in research

5. Conclusions

This study investigated the hypothesis that accelerator accuracy obtained with three
current generation smartphone accelerometers and the gold-standard Vicon MX motion
capture system was not statistically different. Results demonstrated two findings. First, the
tested smartphone accelerometers are valid and reliable devices for estimating accelerations.
Second, there were not significant differences among the three current generation smart-
phone and the Vicon MX motion capture system mean acceleration data. The evidence
presented here indicates how effectively modern smartphone accelerometer sensors can
measure and quantify human body motion, despite the fact that these sensors are designed
not for gathering motor behavior data, but for common smartphone functions. Our work
brings new insights to the understanding of the smartphone sensor validity, reliability
and accuracy and suggests interesting perspectives for experimental and clinical research.
However, much is still unknown and requires further investigation. Nonetheless, studies
on this topic can help to inform experimental and clinical scientist how to better achieve
desired performance outcomes.
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