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Abstract

In many brain areas, neural populations act as a coordinated network whose state is tied to 

behavior on a millisecond timescale. Two-photon (2p) calcium imaging is a powerful tool to 

probe such network-scale phenomena. However, estimating network state and dynamics from 2p 

measurements has proven challenging because of noise, inherent nonlinearities, and limitations 

on temporal resolution. Here we describe RADICaL, a deep learning method to overcome 

these limitations at the population level. RADICaL extends methods that exploit dynamics in 

spiking activity for application to deconvolved calcium signals, whose statistics and temporal 

dynamics are quite distinct from electrophysiologically-recorded spikes. It incorporates a novel 

network training strategy that capitalizes on the timing of 2p sampling to recover network 

dynamics with high temporal precision. In synthetic tests, RADICaL infers network state more 

accurately than previous methods, particularly for high-frequency components. In 2p recordings 

from sensorimotor areas in mice performing a forelimb reach task, RADICaL infers network 

state with close correspondence to single-trial variations in behavior, and maintains high-quality 

inference even when neuronal populations are substantially reduced.

In recent years, advances in neural recording technologies have enabled simultaneous 

monitoring of the activity of large neural populations1–3. These technologies are enabling 

new insights into how neural populations implement the computations necessary for motor, 

sensory, and cognitive processes4. However, different recording technologies impose distinct 

tradeoffs in the types of questions that may be asked5–7. Modern electrophysiology enables 

access to hundreds to thousands of neurons within and across brain areas with high 

temporal fidelity2. Yet in any given area, electrophysiology is limited to a sparse sampling 

of relatively active, unidentified neurons6 (Fig. 1a). In contrast, two photon (2p) calcium 

imaging offers the ability to monitor the activity of vast populations of neurons - rapidly 

increasing from tens of thousands to millions3,8,9 - in 3-D, often with identified layers and 

cell types of interest10,11. Thus 2p imaging is a powerful tool for understanding how neural 

circuitry gives rise to function.

A key tradeoff, however, is that the fluorescence transients measured via calcium imaging 

are a low-passed and nonlinearly-distorted transformation of the underlying spiking activity 

(Fig. 1b). Further, because neurons are serially scanned by a laser that traverses the field 

of view (FOV), a trade-off exists between the size of the FOV (and hence the number 

of neurons monitored), the sampling frequency, and the pixel size (and therefore the signal-

to-noise with which each neuron is sampled). These factors together limit the fidelity 

with which the activity of large neuronal populations can be monitored and extracted 

via 2p, and thus limit our ability to link activity measured with 2p imaging to neural 

computation and behavior on fine timescales. Although a large amount of effort has 

been dedicated to improving the inference of spike trains from 2p calcium data12, recent 

benchmarks illustrate that a variety of algorithms to infer calcium events all achieve limited 

correspondence to ground truth spiking activity obtained with electrophysiology, particularly 

on fine timescales13,14.

Rather than focusing on the responses of individual neurons, an alternative approach is 

to characterize patterns of covariation across a neuronal population to reveal the multi-
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dimensional internal state of the network as a whole. These “latent variable models”, 

or simply “latent models”, describe each neuron’s activity as a reflection of the whole 

network’s state over time. For example, when applied to electrophysiological data, latent 

models assume that an individual neuron’s spiking is a noisy observation of a latent “firing 

rate”, which fluctuates in a coordinated way with the firing rates of other neurons in the 

population. Despite their abstract nature, the trajectory of network state inferred by latent 

models can reveal key insights into the computations being performed by the brain areas 

of interest4. Inferred network state can also enhance our ability to relate neural activity to 

behavior. For example, one state-of-the-art deep learning method to estimate network state 

from electrophysiological spiking data is Latent Factor Analysis via Dynamical Systems 

(LFADS)15,16. In applications to data from motor, sensory, and cognitive regions, LFADS 

uncovers network state that corresponds closely with single-trial behavior on a 5–10 

millisecond timescale16,17.

Building on the success of latent models for electrophysiological data, here we develop an 

approach to achieve accurate inference of network state from activity monitored through 

2p calcium imaging. We first begin with LFADS and evaluate network state inference 

using simulated 2p data in which activity reflects known, nonlinear dynamical systems, and 

with real 2p data from mice performing a water reaching task. LFADS uncovers network 

state with substantially higher accuracy then standard approaches (e.g., deconvolution plus 

Gaussian smoothing). We then develop the Recurrent Autoencoder for Discovering Imaged 

Calcium Latents (RADICaL) to improve inference over LFADS through innovations tailored 

specifically for 2p data. In particular, we modify the network architecture to better account 

for the statistics of deconvolved calcium signals, and develop a novel network training 

strategy that exploits the staggered timing of 2p sampling of neuronal populations to achieve 

precise, sub-frame temporal resolution. Our new approach substantially improves inference 

from 2p data, shown in synthetic data through accurate recovery of high-frequency features 

(up to 20 Hz), and in real data through improved prediction of neuronal activity, as well 

as prediction of single-trial variability in hand kinematics during rapid reaches (lasting 

200–300 ms). Ultimately, RADICaL provides an avenue to tie precise, population-level 

descriptions of neural computation with the anatomical and circuit details revealed via 

calcium imaging.

Results

Inferring network state from 2p imaging data using dynamics

Dynamical systems models such as LFADS rely on two key principles to infer network state 

from neural population activity. First, simultaneously recorded neurons exhibit coordinated 

patterns of activation that reflect the state of the network18,19. Due to this coordination, 

network state might be reliably estimated even if the measurement of individual neurons’ 

activity is unreliable. Second, these coordinated patterns evolve over time based on 

consistent rules (dynamics)4,20. Thus, while it may be challenging to accurately estimate 

the network’s state based on activity at a single time point, knowledge of the network’s 

dynamics provides further information to help constrain network state estimates using data 

from multiple time points.
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To apply these principles to improve inference from 2p data, we extended LFADS 

to produce RADICaL (Fig. 1c). Both LFADS and RADICaL model neural population 

dynamics using recurrent neural networks (RNNs) in a sequential autoencoder configuration 

(details in Methods, and in previous work15,16). This configuration is built on the assumption 

that the network state underlying neural population activity can be approximated by an 

input-driven dynamical system, and that observed activity is a noisy observation of the 

state of the dynamical system. The dynamical system itself is modeled by an RNN (the 

‘generator’). The states of the generator are linearly mapped onto a latent space to produce 

a ‘factors’ representation, which is then transformed to produce the time-varying output 

for each neuron (detailed below). The model has a variety of hyperparameters that control 

training and prevent overfitting, whose optimal settings are not known a priori. To ensure 

that these hyperparameters were optimized properly for each dataset, we built RADICaL 

on top of a powerful, large-scale hyperparameter optimization framework we recently 

developed known as AutoLFADS17,21.

Novel features of RADICaL

RADICaL incorporates two major innovations over LFADS and AutoLFADS. First, we 

modified RADICaL’s observation model to better account for the statistics of deconvolved 

events. In LFADS, discrete spike count data are modeled as samples from an underlying 

time-varying Poisson process for each neuron. However, deconvolving 2p calcium signals 

results in a time series of continuous-valued events, with imperfect correspondence to the 

actual spike times and counts13. These deconvolved events can be better approximated at 

each timepoint by a zero-inflated gamma (ZIG) distribution, which combines a gamma 

distribution to model the calcium event magnitudes and a point mass that represents 

the elevated probability of zero values22. In RADICaL, deconvolved events are therefore 

modeled as samples from a time-varying ZIG distribution whose parameters are taken from 

the output of the generator RNN (Fig. 1c; details in Methods). We define the network state 

at any given time point as a vector containing the inferred (i.e., de-noised) event rates of 

all neurons, where the de-noised event rate is taken as the mean of each neuron’s inferred 

ZIG distribution at each time point (equation (3) in Methods). The de-noised event rates are 

latent variables that are tied to the underlying network state at each time point. Because of 

the complicated transformation from generator states to individual neurons’ activity, we used 

the de-noised event rates as the model output for subsequent analyses to compare methods as 

directly as possible.

Second, we developed a novel neural network training strategy, selective backpropagation 

through time23 (SBTT), that leverages the precise sampling times of individual neurons 

to enable recovery of high-frequency network dynamics. Since standard 2p microscopes 

rely on point-by-point raster scanning of a laser beam to acquire frames, it is possible to 

determine the sample times for each neuron with high precision within the frame (Fig. 1d). 

To leverage this information to improve inference of high-frequency network dynamics on 

single trials, we recast the underlying interpolation problem as a missing data problem: we 

treat imaging a whole frame as sequentially imaging multiple, smaller bands containing 

different neurons. In this framing, each neuron is effectively sampled sparsely in time, i.e., 
the majority of time points for each neuron do not contain valid data (Fig. 1e). Such sparsely 

Zhu et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampled data creates a challenge when training the underlying neural network: briefly, 

neural networks are trained by adjusting their parameters (weights), and performing this 

adjustment requires evaluating the gradient of a cost function with respect to weights. SBTT 

allows us to compute this gradient using only the valid data, and ignore the missing samples 

(Fig. 1f; see Methods). Because SBTT only affects how we compute the gradient and 

update the weights, the network still infers event rates for every neuron at every time point, 

regardless of whether samples exist at that time point or not. This allows the trained network 

to accept sparsely-sampled observations as input, and produce high-temporal resolution 

event rate estimates as its output.

RADICaL uncovers high-frequency features from simulated data

We first tested RADICaL using simulated 2p data where the underlying network state 

is known and parameterizable. We hypothesized that the new features of RADICaL 

would allow it to infer higher-frequency features with greater accuracy than standard 

approaches, such as Gaussian-smoothing the deconvolved events (“smth-dec”), smoothing 

the simulated fluorescence traces themselves (“smth-sim-fluor”), or state-of-the-art tools for 

electrophysiology analysis, such as AutoLFADS. We generated synthetic spike trains by 

simulating a population of neurons whose firing rates were linked to the state of a Lorenz 

system15,24 (detailed in Methods and Extended Data Fig. 1a). We ran the Lorenz system at 

various speeds, allowing us to investigate the effects of temporal frequency on the quality of 

network state recovery achieved by different methods. In the 3-dimensional Lorenz system, 

the Z dimension contains the highest-frequency content (Extended Data Fig. 1b). Here 

we denote the frequency of each Lorenz simulation by the peak frequency of the power 

spectrum of its Z dimension (Extended Data Fig. 1c).

We used the synthetic spike trains to generate realistic noisy fluorescence signals consistent 

with GCAMP6f (detailed in Methods and Extended Data Fig. 2). To recreate the variability 

in sampling times due to 2p laser scanning, fluorescence traces were simulated at 100 Hz 

and then sub-sampled at 33.3 Hz, with offsets in each neuron’s sampling times consistent 

with spatial distributions across a simulated FOV. We then deconvolved the generated 

fluorescence signals to extract events 25,26. Because RADICaL uses SBTT, it could be 

applied directly to the deconvolved events with offset sampling times. In contrast, for both 

AutoLFADS and smth-dec, deconvolved events for all neurons were treated as all having 

the same sampling times (i.e., consistent with the frame times), as is standard in 2p imaging 

(detailed in Methods).

Despite the distortions introduced by the fluorescence simulation and deconvolution process, 

RADICaL was able to infer event rates that closely resembled the true underlying rates (Fig. 

2a). To assess whether each method accurately inferred the time-varying state of the Lorenz 

system, we mapped the representations from the different approaches - i.e., the event rates 

inferred by RADICaL or AutoLFADS, the smoothed deconvolved events, and the smoothed 

simulated fluorescence traces - onto the true underlying Lorenz states using cross-validated 

ridge regression. We then quantified performance using the coefficient of determination 

(R2), which quantifies the fraction of the variance of the true latent variables captured by 

the estimates. Figure 2b shows the Lorenz Z dimension for example trials from three Lorenz 
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speeds, as well as the recovered values for three of the methods. RADICaL inferred latent 

states with high fidelity (R2>0.8) up to 15 Hz, and significantly outperformed other methods 

across a range of frequencies (Fig. 2c; performance for the X and Y dimensions is shown in 

Supp. Fig. 1; p<0.05 for all frequencies and dimensions, paired, one-sided t-Test, detailed in 

Methods). Notably, performance in estimating latent states was improved due to both of the 

innovations in RADICaL, with SBTT contributing more (Supp. Fig. 2). To test RADICaL’s 

ability in estimating single-trial dynamics for a task that lacks a repetitive trial-structure, we 

varied the simulation so that each trial had a unique initial condition for the Lorenz system. 

RADICaL accurately inferred the latent states on single trials (Extended Data Fig. 3a) and 

outperformed AutoLFADS and smth-dec at high Lorenz oscillation frequencies (Extended 

Data Fig. 3b).

To better understand the regimes in which RADICaL recovers the underlying latent variables 

well or poorly, we performed variants of the simulation experiments along 4 additional axes: 

imaging speed (Extended Data Fig. 4), high frequency structure in the latent variables (Supp. 

Fig. 3), noise levels (Supp. Fig. 4), and whether RADICaL could be effective when used 

with algorithms that infer spike times instead of event rates, such as MLspike27 (Supp. Fig. 

5). In all cases we found that RADICaL substantially outperformed alternate approaches. 

However, as expected, our analysis showed that deconvolution itself performs poorly at 

very slow sampling rates (e.g., 2Hz and below), and for very high frequency content (e.g., 

>20 Hz), and thus RADICaL’s performance in those regimes is limited by the use of 

deconvolution as a preprocessing step.

These simulations demonstrate RADICaL’s performance in various circumstances, but 

the parameter space of possible experiments is very large (calcium indicators, expression 

patterns, imaging settings, etc.) and an exhaustive search of this parameter space is 

infeasible. Thus, we next benchmarked performance on real data to demonstrate RADICaL’s 

utility in the real world.

RADICaL improves inference in a mouse “water grab” task

We next tested RADICaL on 2p recordings from mice performing a forelimb water grab task 

(Fig. 3a, top). We analyzed data from four experiments: two mice with two sessions from 

each mouse, in which different brain areas were imaged (M1, S1). Our task was a variant 

of the water-reaching task of Galiñanes & Huber28. In each trial, the mouse was cued by 

the pitch of an auditory tone to reach to a left or right spout and retrieve a droplet of water 

with its right forepaw (Fig. 3a, bottom; see Methods). The forepaw position was tracked 

at 150 frames per second with DeepLabCut29 for 420–560 trials per experiment. To test 

whether each method could reveal structure in the neural activity at finer resolution than left 

vs. right reaches, we divided trials from each condition into subgroups based on forepaw 

height during the reach (Fig. 3a, top right; see Methods). Two-photon calcium imaging from 

GCaMP6f transgenic mice was performed at 31 Hz, with 430–543 neurons within the FOV 

in each experiment (Fig. 3b).

With real datasets, a key challenge when benchmarking latent variable inference is the 

lack of ground truth data for comparison. A useful first-order assessment is whether the 

event rates inferred for individual trials match the empirical peri-stimulus time histograms 
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(PSTHs), i.e., the rates computed by averaging noisy single-trial data across trials with 

similar behavioral characteristics16,17. While this approach obscures meaningful across-

trial variability, it provides a ‘de-noised’ estimate that is useful for coarse performance 

quantification and comparisons. To compute empirical PSTHs, we averaged the smoothed 

deconvolved events (smth-dec rates) across trials within each subgroup.

We found that RADICaL-inferred event rates recapitulated features of individual neurons’ 

activity that were apparent in the empirical PSTHs, both when averaging across trials, 

but also on individual trials (Fig. 3c). Importantly, RADICaL is an unsupervised method, 

meaning that it was not provided any behavioral information, such as whether the mouse 

reached to the left or right on a given trial, or which subgroup a trial fell into. Yet the 

single-trial event rates inferred by RADICaL showed clear separation not only between left 

and right reach conditions, but also between subgroups of trials within each condition. 

This separation was not clear with the single-trial smth-dec rates. We quantified the 

correspondence between the single-trial inferred event rates and the empirical PSTHs via 

Pearson’s correlation coefficient (r; see Methods). RADICaL single-trial event rates showed 

substantially higher correlation with the empirical PSTHs than smth-dec rates (Fig. 3d) or 

those inferred by AutoLFADS (Extended Data Fig. 5). Importantly, these improvements 

were not limited to a handful of neurons, but instead were broadly distributed across the 

population. Within the trials modeled by RADICaL, we found there was a subset of right 

reaches from Mouse1/S1 that were “loopy” and atypical, showing multiple large peaks in 

hand speed (Fig. 3e, top). The RADICaL single-trial event rates exhibited distinct patterns 

of neural responses for these atypical trials (Fig. 3e, bottom), demonstrating RADICaL’s 

ability to automatically capture idiosyncrasies of single-trial activity that are common in 

experiments that constrain behavior less tightly.

We next tested whether the population activity inferred by RADICaL also showed 

meaningful structure on individual trials. We used principal component analysis (PCA) to 

produce low-dimensional visualizations of the population’s activity (detailed in Methods). 

The low-D trajectories computed from the RADICaL-inferred rates showed consistent, 

clear single-trial structure that corresponded to behavioral conditions and subgroups for 

all four experiments (Fig. 4a, top row; Extended Data Fig. 6, top row), despite RADICaL 

receiving no direct information about which trials belonged to which subgroup, or even 

the kinematics used to define the subgroups. In comparison, low-D trajectories computed 

from the smth-dec rates showed noisy single-trial structure with little correspondence to 

behavioral subgroups (Fig. 4a, bottom row; Extended Data Fig. 6, bottom row). To provide 

a quantitative summary, we measured the distance of the low-D trajectories between each 

trial and other trials across subgroups (dacross) vs. within the same subgroup (dwithin) for 

any given time and computed the distance ratio (detailed in Methods). The distance ratio 

(i.e., dacross / dwithin) of RADICaL-derived trajectories was higher than smth-dec-derived 

trajectories across time points, which was also consistent across four experiments (Fig. 4b).

RADICaL captures dynamics that improve behavioral prediction

We next tested whether the RADICaL-inferred event rates were closely linked to 

behavior by decoding forepaw positions and velocities from the inferred event rates 
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using cross-validated ridge regression (Fig. 5a; Extended Data Fig. 7). Decoding using 

RADICaL-inferred rates significantly outperformed results from smth-dec rates, or from the 

AutoLFADS-inferred rates (Fig. 5b; position: average R2 of 0.91 across all experiments, 

versus 0.75 and 0.85 for smth-dec and AutoLFADS, respectively; velocity: average R2 

of 0.62 across the mice/areas, versus 0.37 and 0.51 for smth-dec and AutoLFADS, 

respectively; p<0.05 for position and velocity for all individual experiments, paired, one-

sided t-test, detailed in Methods). Improvements achieved by RADICaL were shown on 

most trials (Supp. Fig. 6). Importantly, the performance advantage was not achieved by 

simply predicting the mean event rates for all trials of a given condition: RADICaL also 

outperformed AutoLFADS and smth-dec in decoding the kinematic residuals (i.e., the 

single-trial deviations from the mean; Supp. Fig. 7). To assess how decoding improvements 

were distributed as a function of frequency, we computed the coherence between the true 

and decoded positions and velocities for each method (Fig. 5c). RADICaL predictions 

showed higher coherence with behavior than predictions from smth-dec or AutoLFADS 

across a wide range of frequencies, and the difference in coherence between RADICaL 

and AutoLFADS widened (especially for position) at higher frequencies (5–15 Hz). This 

argues that RADICaL improved decoding particularly because it improved recovery of 

higher-frequency features of the neural activity. Notably, decoding was improved due to 

both innovations in RADICaL (i.e., modeling events with a ZIG distribution, and SBTT), 

and the combination of the two innovations significantly improved performance over each 

innovation alone (Supp. Fig. 8).

We next tested whether RADICaL could capture meaningful trial-to-trial variability by 

predicting reaction time (RT) from the inferred event rates using cross-validated logistic 

regression30 (detailed in Methods). The RT in a trial is defined as the time between water 

presentation and movement onset. RTs predicted from RADICaL-inferred rates showed high 

correlation with the true RTs (Fig. 5d), and outperformed results from smth-dec rates, or 

from the AutoLFADS-inferred rates (Fig. 5e; Extended Data Fig. 8; average r of 0.93 across 

all experiments, versus 0.71 and 0.86 for smth-dec and AutoLFADS, respectively).

RADICaL retains high performance with reduced neuron counts

To evaluate RADICaL’s performance as a function of population size, we gradually 

reduced the number of neurons used in training RADICaL or AutoLFADS, either in a 

random fashion (Fig. 6), or in a FOV-shrinking fashion (Extended Data Fig. 9). In both 

cases, RADICaL retained relatively high decoding performance as the population size 

was reduced. Decoding performance declined gradually, with a steeper slope for velocity. 

Notably, however, performance when only 25% of the neurons were used for training 

RADICaL was similar to that of AutoLFADS - and higher than for smth-dec - when those 

methods were applied to the full population of neurons. These results provide an avenue to 

retain information when scanning sparser populations (such as when a cell type of interest 

is in the minority), smaller areas when imaging deep structures with a limited FOV due 

to a relay (GRIN) lens, or using smaller FOVs to capture multiple layers or regions while 

retaining overall frame rate (see Discussion).
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Discussion

2p imaging is a widely-used method for interrogating neural circuits, with the potential 

to monitor vast volumes of neurons and provide new circuit insights that elude 

electrophysiology. To date, however, it has proven challenging to precisely infer network 

state from imaging data, due in large part to the inherent noise, indicator dynamics, 

and low temporal resolution associated with 2p imaging. RADICaL bridges this gap. 

RADICaL is tailored specifically for 2p imaging, with a noise emissions model that is 

appropriate for deconvolved calcium events, and a novel network training strategy (SBTT) 

that takes advantage of the specifics of 2p laser scanning to achieve substantially higher 

temporal resolution. Through synthetic tests, we demonstrated that RADICaL accurately 

infers network state and substantially outperforms alternate approaches in uncovering high-

frequency fluctuations. Then, through careful validation on real 2p data, we demonstrated 

that RADICaL infers network state trajectories that are closely linked to single-trial 

behavioral variability, even on fast timescales. Finally, we demonstrated that RADICaL 

maintains high-quality inference of network state even as the neural population size is 

reduced substantially.

The ability to de-noise neural activity on single trials is highly valuable. First, de-noising 

improves the ability to decode behavioral information from neural activity, allowing 

subtle relationships between neural activity and behavior to be revealed (Fig. 5). Second, 

de-noising on single trials reduces the dependence on the stereotyped behaviors needed 

for de-noising through trial-averaging, which could allow greater insight in experiments 

with animals such as mouse and marmoset, where powerful experimental tools are 

available but highly repeatable behaviors are challenging to achieve. A move away from 

trial-averaging could also enable better interpretability of more complex or naturalistic 

behaviors17,31–34. Third, this de-noising capability will enable greater insight into processes 

that fundamentally differ from trial to trial, such as learning from errors35,36, variation in 

internal states such as arousal37,38, or paradigms in which tuning to uninstructed movements 

contaminates measurement of the task-related behavioral variables of interest39. Finally, 

this de-noising greatly improves inference of network state (Fig. 2), mitigating some of 

the known distortions of neural activity introduced by calcium imaging5. Importantly, 

electrophysiology and calcium imaging have distinct advantages and disadvantages, and 

both provide biased information about the underlying neural population6. Whereas LFADS 

has served as a powerful tool for denoising electrophysiology data and accurately inferring 

network state, no similar method existed for the complementary technique of calcium 

imaging; RADICaL fills this gap.

In recent years, a variety of computational methods have been developed to analyze 2p 

imaging data12. 2p preprocessing pipelines8,26 normally include methods that correct for 

brain motion, localize and demix neurons’ fluorescence signals, and infer event rates from 

fluorescence traces. Several studies have applied deep learning in attempts to improve 

spike inference40–42, while a few others have focused on uncovering population-level 

structure43–48 or locally linear dynamics underlying population activity, in particular via 

switching linear dynamical systems-based methods49,50. Here we built RADICaL on the 

AutoLFADS architecture, which leverages deep learning and large-scale distributed training. 
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This enables the integration of more accurate observation models (ZIG) and powerful 

optimization strategies (SBTT), while potentially inheriting the high performance and 

generalized applicability previously demonstrated for AutoLFADS17.

Many behaviors are performed on fast timescales (e.g., saccades, reaches, movement 

correction, etc.), and thus previous work has made steps in overcoming the limits of modest 

2p frame rates in attempts to infer the fast changes in neural firing rates that relate to 

these fast behaviors. Efforts to chip away at this barrier have relied on regularities imposed 

by repeated stimuli or highly stereotyped behavior51,52, or jittered inferred events on sub-

frame timescales to minimize the reconstruction error of the associated fluorescence40. 

RADICaL takes a different approach. In particular, it links sub-frame timing to neural 

population dynamics, representing a more powerful and generalizable approach that does not 

require stereotypy in the behavior or neural response and which could therefore be applied 

to datasets with more naturalistic or flexible behaviors. Broadly speaking, this approach 

provides a solution to the spatiotemporal tradeoff that is inherent to any scanning technique, 

enabling retention of temporal resolution while increasing the spatial area of sampling.

As shown in our simulated experiments, deconvolution places an upper bound on 

RADICaL’s performance, limiting its potential in slow sampling regimes (i.e., 2 Hz) with 

fast indicators or in more challenging inference cases (e.g., higher-frequency latent content, 

higher noise levels, etc). To mitigate these limitations, future work could build an end-to-

end model that integrates the generative rates-to-fluorescence process and operates on the 

fluorescence traces directly. Complementary work has begun exploring in this direction53, 

but our unique innovation of SBTT presents an opportunity to greatly improve the quality 

of recovering high-frequency features when the sampling rate is limited. More broadly, as 

benchmarking efforts are an invaluable resource for systematically comparing methods and 

building on advances from various different developers54, carefully-designed benchmarking 

efforts for network state inference from 2p data could accelerate progress in this field.

The ability to achieve high-quality network state inference despite limited neuronal 

population size opens the door to testing new choices about how to perform the experiments 

themselves. For example, it could enable understanding the role of an uncommon neuronal 

subtype, or the single-trial outputs of an area by imaging projection neurons that are sparsely 

distributed throughout that area. With subcortical structures that require relay lenses, it could 

extract more information from a smaller FOV, permitting the use of a smaller relay lens 

that causes less damage to overlying brain structures. Or, when hopping between different 

layers10,11 or brain areas55,56, fewer lines could be imaged per FOV to retain a higher 

overall frame rate while achieving good inference from each FOV. When the number of 

neurons within each FOV is limited, one further advantage that RADICaL inherits from 

LFADS is that it allows for multi-session stitching16, which could provide an avenue to 

combine data from different sessions to improve inference of the underlying dynamics for 

each FOV.

In sum, RADICaL provides a framework to push back the limits of the space-time 

tradeoff in 2p calcium imaging, enabling accurate inference of population dynamics in vast 

populations and with identified neurons. Future work will explore how best to exploit these 
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capabilities for different experimental paradigms, and to link the power of dynamics with the 

anatomical detail revealed with calcium imaging.

Methods

AutoLFADS and RADICaL architecture and training

The core model that AutoLFADS and RADICaL build on is LFADS. A detailed overview 

of the LFADS model is given in refs. 15,16. Briefly, LFADS is a sequential application 

of a variational auto-encoder (VAE). A pair of bidirectional RNNs (the initial condition 

and controller input encoders) operate on the spike sequence and produce initial conditions 

for the generator RNN and time-varying inputs for the controller RNN. All RNNs were 

implemented using gated recurrent unit (GRU) cells. At each time step, the generator state 

evolves with input from the controller and the controller receives delayed feedback from 

the generator. The generator states are linearly mapped to factors, which are mapped to the 

firing rate of the neurons using a linear mapping followed by an exponential nonlinearity. 

The optimization objective is to maximize a lower bound on the likelihood of the observed 

spiking activity given the rates produced by the generator network, and includes KL and 

L2 regularization penalties. During training, network weights are optimized using stochastic 

gradient descent and backpropagation through time.

Identical network sizes were used for both AutoLFADS and RADICaL runs and for both 

simulation and real 2p data. The dimension of initial condition encoder, controller input 

encoder, and controller RNNs was 64. The dimension of the generator RNN was 100. The 

generator was provided with 64-dimensional initial conditions and 2-dimensional controller 

outputs (i.e., inferred inputs u(t)) and linearly mapped to 100-dimensional factors. The initial 

condition prior distribution was Gaussian with a trainable mean that was initialized to 0 and 

a variance that was fixed to 0.1. The minimum allowable variance of the initial condition 

posterior distribution was set to 1e-4. The controller output prior was autoregressive with 

a trainable autocorrelation tau and noise variance, initialized to 10 and 0.1, respectively. 

The Adam optimizer (epsilon: 1e-8; beta1: 0.9; beta2: 0.99; initial learning rate: 1e-3, Supp. 

Table 1) was used to control weight updates. The loss was scaled by a factor of 1e4 prior 

to computing the gradients for numerical stability. To prevent potential pathological training, 

the GRU cell hidden states were clipped at 5 and the global gradient norm was clipped at 

300.

AutoLFADS is a recent implementation of the population based training (PBT) approach57 

on LFADS to perform automatic, large-scale hyperparameter (HP) search. A detailed 

overview of AutoLFADS is in refs. 17,21. Briefly, PBT distributes training across dozens of 

models in parallel, and uses evolutionary algorithms to tune HPs over many generations. To 

do so, trials were first split into training and validation sets. At the beginning of training, the 

value of the searchable HPs was randomly drawn from an initial range for each individual 

model. At the end of each generation, a selection process was performed to choose models 

with higher performance (i.e., lower negative log likelihood, or NLL) on the validation set 

and replace the poor models with the higher performing models. The HPs of the higher 

performing models were perturbed before the next generation to increase the HP search 

space.

Zhu et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Training and hyperparameter search varies in the number of generations needed to converge 

(typically 70 – 150 generations), depending on the data and hardware used (number and 

type of GPUs). With our data and hardware (10x NVIDIA GeForce RTX 2080 Ti GPUs), a 

run of RADICaL typically converges in 3 – 5 hours. RADICaL was built in Python 2 and 

TensorFlow 1.14, and cloud implementations of RADICaL on Google Cloud Platform and 

NeuroCAAS are also being made available. Links to code and tutorials are given in Code 
availability above.

For the PBT approach, 20 single models were trained in parallel for both AutoLFADS 

and RADICaL runs and for both simulation and real 2p data. Generations consisted of 50 

epochs, and KL and L2 regularization penalties were linearly ramped for the first 80 epochs 

of training during the first generation. Training was stopped when there was no improvement 

in performance after 25 generations. The HPs optimized by PBT were the model’s learning 

rate and six regularization HPs: scaling weights for the L2 penalties on the generator, 

controller, and initial condition encoder RNNs, scaling weights for the KL penalties on 

the initial conditions and controller outputs, and two dropout probabilities (“keep ratio” 

for coordinated dropout21; and RNN network dropout probability). Coordinated dropout is 

a regularization technique which prevents pathological overfitting by forcing the network 

to model only structure that is shared across neurons. The HP search ranges are detailed 

in Supp. Table 1. The magnitudes of the HP perturbation were controlled by weights and 

specified for different HPs (a weight of 0.3 results in perturbation factors between 0.7 and 

1.3; Supp. Table 1). The learning rate and dropout probabilities were restricted to their 

specified search ranges and were sampled from uniform distributions. The KL and L2 

HPs were sampled from log-uniform distributions and could be perturbed outside of the 

initial search ranges. Identical hyperparameter settings were used for both RADICaL and 

AutoLFADS and for both synthetic datasets and real 2p datasets.

RADICaL is an adaptation of AutoLFADS for 2p calcium imaging. RADICaL operates on 

sequences of deconvolved calcium events x(t). x(t) are modeled as a noisy observation of an 

underlying time-varying Zero-Inflated Gamma (ZIG) distribution22:

xn(t) 1 − qn(t) ⋅ δ(0) + qn(t) ⋅ gamma αn(t), kn(t), locn , (1)

where xn(t) is the distribution of observed deconvolved events, an(t), kn(t), and locn are 

the scale, shape, and location parameters, respectively, of the gamma distribution, and qn(t) 

denotes the probability of non-zeros, for neuron n at time t. locn was fixed as the minimum 

nonzero deconvolved event (smin). In the original AutoLFADS model, factors were mapped 

to a single time-varying parameter for each neuron (the Poisson firing rate) via a linear 

transformation followed by an exponential nonlinearity. RADICaL instead infers the three 

time-varying parameters for each neuron, an(t), kn(t), and qn(t), by linearly transforming 

the factors followed by a trainable scaled sigmoid nonlinearity (sign). sign is a positive 

parameter that scales the outputs of the sigmoid to be in a range between 0 and sign, 

and is optimized alongside network weights. An L2 penalty is applied between sign and 

a PBT-searchable prior (Supp. Table 1) to prevent extreme values. The training objective 

is to minimize the negative log-likelihood of the deconvolved events given the inferred 

parameters:
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∏p(xn(t) ∣ ZIG(αn(t), kn(t), qn(t))) (2)

The event rate for neuron n at time t was taken as the time-varying mean of the inferred ZIG 

distribution:

rn(t) = qn(t) ⋅ (kn(t) ⋅ αn(t) + smin) (3)

In AutoLFADS, the instantaneous intensity parameter of the Poisson process completely 

specifies the spike count distribution for a neuron, while in RADICaL, the ZIG distribution 

requires three parameters. The RADICaL generator RNN can therefore produce features 

that may not directly correspond to the biological network’s activity to produce the time-

varying, three-parameter distribution for each neuron at its output. To avoid analyzing these 

parameters, rather than using the intermediate factors representation as an estimate of the 

biological network’s state, we used the inferred event rates for the neuronal population. 

Doing so for both RADICaL and AutoLFADS allowed us to compare methods as directly as 

possible.

RADICaL uses an SBTT training strategy to achieve sub-frame modeling resolution. 

RADICaL operates on binned deconvolved calcium events, with bin size smaller than the 

frame timebase of imaging. Bins where the neurons were sampled were filled with the 

corresponding event rates, while bins where the neurons were not sampled were filled 

with NaNs. Choosing the sub-frame bin width involves a trade-off. Finer bins improve 

the possible temporal resolution, but if the data are binned too finely, there may be very 

few neurons in certain bins, leading to uncertainty about the estimated latent states. It is 

important to choose the sub-frame bin size to ensure a reasonable number of neurons in each 

bin. We recommend a neuron count greater than 20 per sub-frame bin based on the results 

from our neuron downsampling experiments.

The networks output the time-varying ZIG distribution at each sub-frame timestep; however, 

a mask was applied to the timesteps where the NaN samples were to prevent the cost 

computed from these timesteps being backpropagated during gradient calculation. As a 

result, the model weights were only updated based on the cost at the sampled timesteps. 

The reconstruction cost also excluded the cost calculated at the non-sampled timesteps so 

the PBT model selection was not affected by the cost computed from the non-sampled 

timesteps.

Simulation experiments

Generating spike trains from an underlying Lorenz system—Synthetic data were 

generated using the Lorenz system as described in the original LFADS work15,16. Lorenz 

parameters were set to standard values (σ: 10, ρ: 28, and β: 8/3), and Δt was set to 

0.01. Datasets with different speeds of dynamics were generated by downsampling the 

original generated Lorenz states by different factors. The speed of the Lorenz dynamics was 

quantified based on the peak location of the power spectra of the Lorenz Z dimension, with 
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a sampling frequency of 100 Hz. The downsampling factors were 3, 5, 7, 9, 11 and 14 for 

speeds 4, 7, 10, 13, 15 and 20 Hz, respectively. Each dataset/speed consisted of 8 conditions, 

with 60 trials per condition. Each condition was obtained by starting the Lorenz system with 

a random initial state vector and running it for 900 ms. The trial length for the 4 Hz dataset 

was longer (1200 ms) than that of other datasets (900 ms) to ensure that all conditions had 

significant features to be modeled - with shorter windows, the extremely low frequency 

oscillations caused the Lorenz states for some conditions to have little variance across the 

entire window, making it trivial to approximate the essentially flat firing rates. We simulated 

a population of 278 neurons with firing rates given by linear readouts of the Lorenz state 

variables using random weights, followed by an exponential nonlinearity. Scaling factors 

were applied so the baseline firing rate for all neurons was 3 spikes/sec. Each bin represents 

10 ms and an arbitrary frame time was set to be 30 ms (i.e., one “imaging frame” takes 3 

bins). Spikes from the firing rates were then generated by a Poisson process.

Generating fluorescence signals from synthetic spike trains—Realistic 

fluorescence signals were generated from the spike trains by convolving them with a kernel 

for an autoregressive process of order 2 and passing the results through a nonlinearity 

that matched values extracted from the literature for the calcium indicator GCaMP6f5,58 

(Extended Data Fig. 2a & b). Three noise sources were added to reproduce variability 

present in real data59–61: Gaussian noise to the size of the calcium spike, and Gaussian and 

Poisson noise to the final trace (Extended Data Fig. 2a & b). This fluorescence generation 

process was realized as follows: First, spike trains s(t) were generated from the Lorenz 

system as mentioned above. Independent Gaussian noise (sd = 0.1) was added to each spike 

in the spike train to model the variability in spike amplitude. Next, we modeled the calcium 

concentration dynamics c(t) as an autoregressive process of order 2:

c(t) = γ1c(t − 1) + γ2c(t − 2) + s(t) (4)

with s(t) representing the number of spikes at time t. The autoregressive coefficients γ1 

and γ2 were computed based on the rise time, decay time (τon = 20 ms, τoff = 400 ms 

for GCaMP6f) of the calcium indicators, and the sampling frequency. Note that while there 

is substantial variability in taus across neurons in real data5, selecting and mimicking this 

variability was not relevant in our work, because we compared the methods (i.e., RADICaL, 

AutoLFADS, and smth-dec) after deconvolution. The calcium concentration dynamics were 

further normalized so that the peak height of the calcium dynamics generated from a 

single spike equalled one, regardless of the sampling frequency. Subsequently, we computed 

the noiseless fluorescence signals by passing the calcium dynamics through a nonlinear 

transformation estimated from the literature58 for the calcium indicator GCaMP6f (Extended 

Data Fig. 2c & d). After the nonlinear transformation, the relationship between spike size 

and trace size was corrupted, and therefore we assumed the baseline of fluorescence signals 

to be zero and the signals were rescaled to the range in [0,1] using min-max normalization. 

Finally, Gaussian noise (~N(0,sn)) and Poisson noise (simulated as gaussian with mean 0 

and variance proportional to the signal amplitude at each time point via a constant d) were 

added to the normalized traces. The resulting fluorescence traces had the same sampling 

frequency as the synthetic spike trains (100 Hz).
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A crucial parameter is the noise level associated with each fluorescence trace. High noise 

levels lead to very poor spike detection and very low noise levels enable a near-perfect 

reconstruction of the spike train. In order to select a realistic level of noise we matched the 

correlations between real and inferred spike trains of the simulated data to those observed 

in a recent benchmarking study13. We found that a truncated normal distribution of noise 

level for Gaussian and Poisson noise best matched the correlations. More specifically, for 

each neuron, sn=d was sampled independently from a truncated normal distribution N(0.12, 

0.02) with the tail below 0.06 removed. With the above noise setting, the mean correlation 

coefficient r between the deconvolved events and ground truth spikes was 0.32, which is 

consistent with the standard results reported in the “spikefinder” paper13 for OASIS. In our 

additional tests of model tolerance to spike inference noise, the Gaussian noise added to the 

fluorescence traces was increased by 2x or 4x. It is worth stressing that real data feature 

a broad range of noise levels that depend on the imaging conditions, depth, expression 

level, laser power and other factors. Here we did not attempt to investigate all possible 

noise conditions, but instead, we aimed to create a simulation with known latent variables 

(i.e., low-dimensional factors and event rates) that reasonably approximated realistic signal-

to-noise levels, in order to provide a tractable test case to compare RADICaL to other 

methods before attempting comparisons on real data.

Recreating variability in sampling times due to 2p laser scanning—The 

fluorescence traces were simulated at 100 Hz as mentioned above. A subsampling step 

was then performed with sampling times for each neuron staggered in time to simulate 

the variability in sampling times due to 2p laser scanning (as in Fig. 1e). This produced 

fluorescence traces where individual neurons were sampled at 33.3 Hz, with phases of 0, 11, 

22 ms based on each neuron’s location (top, middle and bottom of the FOV, respectively). To 

break this down, each neuron was sparsely sampled every three time points and the relative 

sampled times between neurons were fixed. For example, in trial 1, neuron 1 was sampled at 

time points 1, 4, 7, … and neuron 2 was sampled at time points 2, 5, 8, …; in trial 2, neuron 

1 was sampled at time points 2, 5, 8, … and neuron 2 was sampled at time points 3, 6, 9, …. 

Thus, the sampling frequency for each individual neuron was 33.3 Hz, while the sampling 

frequency for the population was retained at 100 Hz by filling the non-sampled time points 

with NaNs. The resulting 33.3 Hz simulated fluorescence signals for each individual neuron 

(i.e., with NaNs excluded) were deconvolved using OASIS25 (as implemented in CaImAn26) 

using an auto-regressive model of order 1 with smin of 0.1. For experiments with slower 

imaging speeds, the same steps were repeated but the simulated 100 Hz fluorescence signals 

were subsampled at different rates (i.e., 16 Hz, 8 Hz and 2 Hz).

Data preparation for each method—Four methods (RADICaL, AutoLFADS, smth-

dec and smth-sim-fluor) were compared by their performance on recovering the ground 

truth latent states across different datasets/speeds. Trials (480 total for each simulated 

dataset) were split into 80/20 training and validation sets for modeling AutoLFADS and 

RADICaL. To prepare data for non-RADICaL methods, non-sampled bins were removed 

so all the sampled bins were treated as if they were sampled at the same time and each 

bin then represented 30 ms (i.e., sampling frequency = 33.3 Hz). Preparing the data 

for AutoLFADS required discretizing the deconvolved events into spike count estimates, 
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because AutoLFADS was primarily designed to model discrete spiking data. In the 

discretizing step, if the event rate was 0, it was left as 0; if the event rate was between 

0 and 2, it was cast to 1 (to bias toward the generally higher probability of fewer spikes). 

If the event rate was greater than 2, it was rounded down to the nearest integer. We note 

that this is one of many possible patches to convert continuously-valued event intensities 

to natural numbers for compatibility with the Poisson distribution and AutoLFADS; a more 

principled solution would be to modify the network to use the ZIG distribution, as we have 

done in RADICaL. With smth-dec, the deconvolved events were smoothed by convolution 

with a Gaussian filter (6 ms s.d.) to produce event rates. With smth-sim-fluor, the generated 

fluorescence signals were smoothed by convolution with a Gaussian filter (6 ms s.d.) to 

produce event rates. The choice of filter width was optimized by sweeping values ranging 

from 3 to 40 ms. Smoothing with a 6 ms s.d. filter gave the highest performance in 

recovering the ground truth Lorenz states for experiments with higher Lorenz frequencies 

(i.e., >= 10 Hz). The event rates produced from RADICaL had a sampling frequency of 

100 Hz, while the event rates produced from the non-RADICaL methods had a sampling 

frequency of 33.3 Hz. The non-RADICaL rates were then resampled at 100 Hz using linear 

interpolation.

Mapping to ground truth Lorenz states—Since our goal was to quantify modeling 

performance by estimating the underlying Lorenz states, we trained a mapping from the 

output of each model (i.e., the event rates) to the ground truth Lorenz states using ridge 

regression. First, we split the trials into training (80%) and test (20%) sets. We used 

the training set to optimize the regularization coefficient using 5-fold cross-validation, 

and used the optimal regularization coefficient to train the mapping on the full training 

set. We then quantified state estimation performance by applying this trained mapping 

to the test set and calculating the coefficient of determination (R2) between the true and 

predicted Lorenz states. We repeated the above procedure five times with train/test splits 

drawn from the data in a complementary fashion. We reported the mean R2 across the 

repeats, such that all reported numbers reflect held-out performance. We tested whether 

the difference of R2 between each pair of methods was significant by performing a paired, 

one-sided Student’s t-test on the distribution of R2 across the five folds of predictions. In 

our simulations we observed a delay caused by deconvolution, where the deconvolved events 

came systematically later than the true spikes, consistent with findings in a recent study41. 

We swept across different lags between the event rates and the true latent states in the latent 

mapping analysis and chose to include a 30 ms lag correlation which gave the highest latent 

recovery performance empirically.

Additional tests of deconvolution using MLspike—To test whether RADICaL 

works on deconvolved events that have a spike-time-like structure, we tested MLspike27 

as an alternative for deconvolution. Calcium traces were generated using the identical 

steps as described above. For MLspike, the cubic polynomial model was chosen as the 

nonlinearity model consistent with GCaMP6f. The drift parameter was set to 0.001. The 

decay time constant tau was set to 0.4s. We did not use auto calibration in MLspike because 

it produced inconsistent results in our tests. Instead, to give MLspike the best chance at high 

performance, we manually tuned the remaining parameters in MLspike by reducing the error 
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rates for inferred spikes compared to ground truth spikes using a small subset of neurons. 

Transient amplitude was set to 1 and the noise parameter sigma was set to 0.15. Spikes 

inferred by MLspike were then prepared for AutoLFADS and RADICaL as described above. 

Note that the discretizing step was omitted here when preparing data for AutoLFADS.

Real 2p experiments

Subjects and surgical procedures—All procedures were approved by the University 

of Chicago Animal Care and Use Committee. Two male Ai148D transgenic mice (TIT2L-

GC6f-ICL-tTA2, stock 030328; Jackson Laboratory) were used. Mice were individually 

housed in a reverse 12-hour light/dark cycle, with an ambient temperature of 71.5 degree 

fahrenheit and a humidity of 58%. Experiments were conducted during the animal’s dark 

cycle. Each mouse underwent a single surgery. Mice were injected subcutaneously with 

dexamethasone (8 mg/kg) 24 hours and 1 hour before surgery. Mice were anesthetized 

with 2–2.5% inhaled isoflurane gas, then injected intraperitoneally with a ketamine-

medetomidine solution (60 mg/kg ketamine, 0.25 mg/kg medetomidine), and maintained 

on a low level of supplemental isoflurane (0–1%) if they showed any signs that the depth of 

anesthesia was insufficient. Meloxicam was also administered subcutaneously (2 mg/kg) 

at the beginning of the surgery and for 1–3 subsequent days. The scalp was shaved, 

cleaned, and resected, the skull was cleaned and the wound margins glued to the skull 

with tissue glue (VetBond, 3M), and a 3 mm circular craniotomy was made with a 3 

mm biopsy punch centered over the left CFA/S1 border. The coordinates for the center of 

CFA were taken to be 0.4 mm anterior and 1.6 mm lateral of bregma. The craniotomy 

was cleaned with SurgiFoam (Ethicon) soaked in phosphate-buffered solution (PBS), then 

virus (AAV9-CaMKII-Cre, stock 2.1*1013 particles/nL, 1:1 dilution in PBS, Addgene) was 

pressure injected (NanoJect III, Drummond Scientific) at two or four sites near the target 

site, with 140 nL injected at each of two depths per site (250 and 500 μm below the 

pia) over 5 minutes each. The craniotomy was then sealed with a custom cylindrical glass 

plug (3 mm diameter, 660 μm depth; Tower Optical) bonded (Norland Optical Adhesive 

61, Norland) to a 4 mm #1 round coverslip (Harvard Apparatus), glued in place first with 

tissue glue (VetBond) and then with cyanoacrylate glue (Krazy Glue) mixed with dental 

acrylic powder (Ortho Jet; Lang Dental). A small craniotomy was also made using a dental 

drill over right CFA at 0.4 mm anterior and 1.6 mm lateral of bregma, where 140 nL 

of AAVretro-tdTomato (stock 1.02*1013 particles/nL, Addgene) was injected at 300 μm 

below the pia. This injection labeled cells in left CFA projecting to the contralateral CFA. 

Here, this labeling was used solely for stabilizing the imaging plane (see below). The small 

craniotomy was sealed with a drop of Kwik-Cast (World Precision Instruments). Two layers 

of MetaBond (C & B) were applied, then a custom laser-cut titanium head bar was affixed to 

the skull with black dental acrylic. Animals were awoken by administering atipamezole via 

intraperitoneal injection and allowed to recover at least 3 days before water restriction.

Behavioral task—The behavioral task (Fig. 3a) was a variant of the water reaching task 

of ref. 28 which we term the “water grab” task. This task was performed by water-restricted, 

head-fixed mice, with the forepaws beginning on paw rests (eyelet screws) and the hindpaws 

and body supported by a custom 3D printed clear acrylic tube enclosure. After holding the 

paw rests for 700–900 ms, a tone was played by stereo speakers and a 2–3 μL droplet of 
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water appeared at one of two water spouts (22 gauge, 90-degree bent, 1” blunt dispensing 

needles, McMaster) positioned on either side of the snout. The pitch of the tone indicated 

the location of the water, with a 4000 Hz tone indicating left and a 7000 Hz tone indicating 

right, and it lasted 500 ms or until the mouse made contact with the correct water spout. 

The mouse could grab the water droplet and bring it to its mouth to drink any time after the 

tone began. Both the paw rests and spouts were wired with capacitive touch sensors (Teensy 

3.2, PJRC). Good contact with the correct spout produced an inter-trial interval of 3–6 s, 

while failure to make contact (or insufficiently strong contact) with the spout produced an 

inter-trial interval of 20 s. Because the touch sensors required good contact from the paw, 

this setup encouraged complex contacts with the spouts. The mice were trained to make all 

reaches with the right paw and to keep the left paw on the paw rest during reaching. Training 

took approximately two weeks, though the behavior continued to solidify for at least two 

more weeks. Data presented here were collected after 6–8 weeks’ experience with the task. 

Control software was custom written in MATLAB R2018a using PsychToolbox 3.0.14, and 

for the Teensy. Touch event monitoring and task control were performed at 60 Hz.

Behavior was also recorded using a pair of cameras (BFS-U3-16S2M-CS, FLIR; varifocal 

lenses COZ2813CSIR2, Computar) mounted 150 mm from the right paw rest at 10° apart to 

enable 3D triangulation. Infrared illuminators enabled behavioral imaging while performing 

2p imaging in a darkened microscope enclosure. Cameras were synchronized and recorded 

at 150 frames per second with real-time image cropping and JPEG compression, and 

streamed to one HDF5 file per camera (areaDetector module of EPICS, CARS). The 

knuckles and wrist of the reaching paw were tracked in each camera using DeepLabCut29 

and triangulated into 3D using camera calibration parameters obtained from the MATLAB 

Stereo Camera Calibration toolbox62,63. To screen the tracked markers for quality we 

created distributions of all inter-marker distances in 3D across every labeled frame and 

identified as problematic frames with any inter-marker distance exceeding the 99.9th 

percentile of its respective distribution. Trials with more than one problematic frame in 

the period of −200 ms to 800 ms after the raw reach onset were discarded (where reach onset 

was taken as the first 60 Hz tick after the paw rest touch sensor fell below contact threshold). 

The kinematics of all trials that passed this screening procedure were visualized to confirm 

quality. Centroid marker kinematics were obtained by averaging the kinematics of all paw 

markers, locking them to behavioral events and then smoothing using a Gaussian filter (15 

ms s.d.). To obtain velocity and acceleration, centroid data was numerically differentiated 

with MATLAB’s diff function and then smoothed again using a Gaussian filter (15 ms s.d.).

Two-photon imaging—Calcium imaging was performed with a Neurolabware two-

photon microscope running Scanbox 4.1 and a pulsed Ti:sapphire laser (Vision II, 

Coherent). Depth stability of the imaging plane was maintained using a custom plugin that 

acquired an image stack at the beginning of the session (1.4 μm spacing), then compared 

a registered rolling average of the red-channel data to each plane of the stack. If sufficient 

evidence indicated that a plane not at the center of the stack was a better match to the 

image being acquired, the objective was automatically moved to compensate. This typically 

resulted in a slow and steady upward (outward) movement of the objective over the course 

of the session. This plane drift is probably due to ETL warming, as it occurred when 
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imaging slides at high power but not low power. The power range used in imaging was 

approximately 50–65 mW average power, including the net power reduction due to end-of-

line blanking.

Offline, images were run through Suite2p to perform motion correction, region-of-interest 

(ROI) detection, and fluorescence extraction from both ROIs and neuropil. ROIs were 

manually curated using the Suite2p GUI to retain only those corresponding to somas. We 

then subtracted the neuropil signal scaled by 0.77. Neuropil-subtracted ROI fluorescence 

was then detrended by performing a running 10th percentile operation, smoothing with a 

Gaussian filter (20 s s.d.), then subtracting the result from the trace. This result was fed into 

OASIS25 using the ‘thresholded’ method, AR1 event model, and limiting the tau parameter 

to be between 300 and 800 ms. Neurons were discarded if they did not meet a minimum 

signal-to-noise (SNR) criterion. To compute SNR, we took the fluorescence at each time 

point when OASIS identified an “event” (non-zero), computed (fluorescence − neuropil) / 

neuropil, and computed the median of the resulting distribution. ROIs were excluded if this 

value was less than 0.05. To put events on a more useful scaling, for each ROI we found 

the distribution of event sizes, smoothed the distribution (ksdensity in MATLAB, with an 

Epanechnikov kernel and log transform), found the peak of the smoothed distribution, and 

divided all event sizes by this value. This rescales the peak of the distribution to have a 

value of unity. Data from two mice and two brain areas (4 sessions in total) were used 

(Mouse1/M1: 510 neurons, 560 trials; Mouse1/S1: 543 neurons, 506 trials; Mouse2/M1: 439 

neurons, 475 trials; Mouse2/S1: 509 neurons, 421 trials).

Data preparation for modeling with RADICaL and AutoLFADS—To prepare data 

for RADICaL, the deconvolved events were normalized by the s_min value output by 

OASIS so that the minimal event size was 0.1 across all neurons. The deconvolved events 

for individual neurons had a sampling rate equal to the frame rate (31.08 Hz). For modeling 

with RADICaL, the deconvolved events were assigned into 10ms bins using the timing of 

individual measurements for each neuron to achieve sub-frame resolution (i.e., 100 Hz). The 

non-sampled bins were filled with NaNs. To prepare data for AutoLFADS, the deconvolved 

events were rescaled using the distribution-scaling method described above, and casted using 

the casting step described in the simulation section. For both AutoLFADS and smth-dec, the 

deconvolved events were assigned into a single time bin per frame (i.e., 32.17 ms bins) to 

mimic standard processing of 2p imaging data, where the sub-frame timing of individual 

measurements is discarded. Trials were created by aligning the data to 200 ms before and 

800 ms after reach onset (100 time points per trial for RADICaL, and 31 time points per trial 

for AutoLFADS and smth-dec). An individual RADICaL model and AutoLFADS model 

were trained for each dataset (4 total). Failed trials (latency to contact with correct spout > 

15 s for Mouse1, 20 s for Mouse2), or trials where the grab to the incorrect spout occurred 

before the grab to the correct spout, were discarded. For each dataset, trials (Mouse1/M1: 

552 total; Mouse1/S1: 500 total; Mouse2/M1: 467 total; Mouse2/S1: 413 total) were split 

into 80/20 training and validation.

Trial grouping—PSTH analysis and low dimensional neural trajectory visualization were 

performed based on subgroups of trials. Trials were sorted into two subgroups per spout 
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based on the Z dimension (height) of hand position. The hand position was obtained by 

smoothing the centroid marker position with a Gaussian filter (40 ms s.d.). Time windows 

where the height of hand was used to split trials were hand-selected to present a good 

separation between subgroups of hand trajectories. For Mouse1/M1, a window of 30 ms to 

50 ms after reach onset was used to split left condition trials and a window of 180 ms to 200 

ms after reach onset was used to split right condition trials; for Mouse1/S1, a window of 140 

ms to 160 ms after reach onset was used to split both left and right condition trials; for both 

Mouse2/M1 and Mouse2/S1, a window of 30 ms to 50 ms after reach onset was used to split 

both left and right condition trials. For both left or right conditions and for all mice/areas, 55 

trials with the lowest and highest heights were selected as group 1 and group 2, respectively; 

trials with middle-range heights were discarded.

PSTH analysis and comparing RADICaL and AutoLFADS single-trial rates—
RADICaL was first validated by comparing the PSTHs computed using RADICaL inferred 

event rates and the empirical PSTHs. Empirical PSTHs were computed by trial-averaging 

smth-dec rates (40 ms kernel s.d., 32.17 ms bins) within each of the 4 subgroups of 

trials. RADICaL inferred rates were first downsampled from 100 Hz to 31.08 Hz with 

an antialiasing filter applied, to match the sampling frequency (i.e., the frame rate) of 

the original deconvolved signals. RADICaL PSTHs were computed by similarly averaging 

RADICaL rates. Single-trial inferred rates were then compared to the empirical PSTHs 

to assess how well each method recapitulated the empirical PSTHs on single trials. The 

correlation coefficient (r) was computed between inferred single-trial event rates and the 

corresponding empirical PSTHs in a cross-validated fashion, i.e., each trial’s inferred event 

rate was compared against an empirical PSTH computed using all other trials within the 

subgroup. r was assessed for the time window spanning 200 ms before to 800 ms after reach 

onset, and computed by concatenating all trials across the four subgroups, yielding one r 
for each neuron. Neurons that had fewer than 40 nonzero events within this time window 

(across all trials) were excluded from the analysis.

Low-D analysis—To visualize the low-dimensional neural trajectories that RADICaL 

produced, principal component analysis (PCA) was performed on RADICaL inferred rates 

and smth-dec event rates. RADICaL or smth-dec rates (aligned to 200 ms before and 800 

ms after reach onset) were log-transformed (with 1e-4 added to prevent numerical precision 

issues) and normalized to have zero mean and unit standard deviation for each neuron. PCA 

was applied to the trial-averaged rates and the projection matrix was then used to project the 

log-transformed and normalized single-trial rates (aligned to 200 ms before and 400 ms after 

reach onset) onto the top 3 PCs.

Subgroup distance ratio analysis—To quantitatively measure how informative 

RADICaL was about the subgroup identity of each trial, a subgroup distance ratio analysis 

was performed in the inferred rate space. For each trial at each time point, we measured 

the Euclidean distances to the corresponding time point of each other trials within the same 

subgroup as well as the distances to the corresponding time point of each trial from the 

other subgroup of the same condition. The distance ratio was computed as the ratio of the 

mean across-subgroup differences to the mean within-subgroup distances. A distance ratio 
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greater than one indicates that the trial is more closely grouped with the trials within the 

same subgroup compared to the other subgroup. An averaged distance ratio was computed 

across all trials for each time point.

Decoding analysis—RADICaL-inferred rates, AutoLFADS-inferred rates, and smth-dec 

(Gaussian kernel 40 ms s.d.) rates were used to decode hand position and velocity using 

ridge regression. The hand position and velocity were obtained as described above and 

binned at 10 ms (i.e., 100 Hz). The non-RADICaL rates were retained to a sampling 

frequency of 100 Hz using linear interpolation. For simplicity, we did not include a lag 

between the neural data and kinematics. Trials with an interval between water presentation 

and reach onset that was longer than a threshold were discarded due to potential variations 

in behavior (e.g., inattention). The threshold was selected arbitrarily for different sessions 

based on the actual distribution of the intervals in the session (Mouse1/M1: 500 ms; 

Mouse1/S1: 600 ms; Mouse2/M1: 400 ms; Mouse2/S1: 600 ms). The data were aligned 

to 50 ms before and 350 ms after reach onset. The decoder was trained and tested using 

cross-validated ridge regression. First, we split the trials into training (80%) and test 

(20%) sets. We used the training set to optimize the regularization coefficient using 5-fold 

cross-validation, and used the optimal regularization coefficient to train the decoder on the 

full training set. This trained decoder was applied to the test set, and the coefficient of 

determination (R2) was computed and averaged across x-, y- and z-kinematics. We repeated 

the above procedure five times with train/test splits drawn from the data in an interleaved 

fashion. We reported the mean R2 across the repeats, such that all reported numbers reflect 

held-out performance. We tested whether the difference of R2 between each pair of methods 

was significant by performing paired, one-sided Student’s t-Tests on the distribution of R2 

across the five folds of predictions.

One possible concern is that RADICaL improves decoding not because the single-trial 

traces are better denoised, but instead because they for some reason result in learning a 

better decoder. To address this, we performed a “cross-decoder” analysis where the decoder 

trained with smth-dec rates was applied to the RADICaL inferred rates. Note that it is not 

guaranteed that the cross-decoder would give better performance even if RADICaL’s rates 

are better denoised, because this is also a task of generalization - during training, the decoder 

did not see the RADICaL rates which might have different distributions of signal-to-noise 

across neurons or might require a different level of regularization. Despite this being a 

difficult task, the cross-decoder analysis shows improved performance over the original 

smth-dec decoding (Supp. Fig. 10). This suggests that the improvement seen in Fig. 5a & 

b does not merely reflect the training performance of the decoder but also demonstrates the 

higher quality of the inferred rates themselves.

Coherence analysis—Coherence was computed between the true and predicted 

kinematics (window: 200 ms before and 500 ms after reach onset) across all trials and across 

all x-, y- and z-dimensions using magnitude-squared coherence (MATLAB: mscohere). The 

power spectral density estimation parameters within mscohere were specified to ensure a 

robust calculation on the single trial activity: Hanning windows with 35 timesteps (i.e., 
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350 ms) for the FFT and window size, and 25 timesteps (i.e., 250 ms) of overlap between 

windows.

Although the coherence analysis presents the performance of each method as a function of 

frequency (Fig. 5c), the values are not directly comparable to the latent recovery analysis 

in simulation (Fig. 2c). In the simulations, the known, true underlying latent states can be 

used to directly measure success. In contrast, with real data the true underlying latent states 

are unknown and the behavioral measurements (hand position and velocity) are indirect 

correlates. The coherence metric therefore includes other sources of error such as muscle 

and tracking noise. Both the quicker drop as frequency increases, and the smaller difference 

between methods, could potentially be explained by the limitations of indirect measurement. 

In addition, the relationship between neural activity and hand position/velocity may be 

nonlinear or history-dependent, while our decoding was linear and instantaneous.

Reaction time prediction analysis—RADICaL-inferred rates, AutoLFADS-inferred 

rates, and smth-dec (Gaussian kernel 40 ms s.d.) rates were used to predict reaction time 

(RT) using logistic regression. This analysis follows the same procedure used in ref. 30. 

Reaction time was defined as the interval from water presentation to movement onset. 

Movement onset was defined as the time when the speed of the paw centroid exceeded 

20% of this trial’s peak speed. Single-trial rates by the three methods were first aligned 

to movement onset, then projected into the top 10-PC space. Data were binned into a 

“premovement” time point (100ms before to movement onset) and a “movement” time point 

(movement onset to 100ms after). Trials were split into training (75%) and test (25%) sets. 

A logistic regression classifier was trained using the training set and returned a projection 

dimension that best discriminated between premovement and movement data. The projection 

returned by logistic regression was then used to project the test trials binned at original bin 

size (i.e., 100 Hz). The RT was predicted as the time when the projected activity crossed a 

50% threshold. The correlation coefficient (r) was computed between the true and predicted 

RTs for the test trials, such that the reported numbers reflect held-out performance.

t-SNE analysis on the weights mapping from factors to ZIG parameters—
RADICaL relies on sub-frame bins in which neurons are grouped based on their spatial 

locations within the FOV. Because this strategy results in consistent neuron grouping, it 

could potentially result in different groups of neurons corresponding to different latent 

factors. To test whether such an artifact existed, we visualized the transformation from 

latents to neurons by using t-SNE to reduce the 300-dimensional weights vector (100 factors 

* 3 ZIG parameters) into a 2-D t-SNE space for each individual neuron (510 neurons total) 

(Supp. Fig. 11). We did not observe a relationship between neurons’ position within the 

field of view (i.e., top, middle, and bottom) and the underlying factors. This suggested that 

the model did not use distinct factors for sets of neurons that were sampled with different 

phases, despite neurons in distant portions of the FOV never being grouped in the same bin.

Neuron downsampling—Two neuron downsampling experiments were performed with 

different procedures to test the methods’ tolerance to low neuron counts. The first procedure 

was designed to mimic scanning a sparse population of neurons. To do so, the number 

of neurons included when training RADICaL or AutoLFADS was gradually reduced by 
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randomly dropping a subset of neurons from the previous subset, with a fraction kept of 

1, 3/4, 1/2, 1/4, 1/8 or 1/16. This results in 439, 329, 219, 109, 54 or 27 neurons kept for 

the Mouse2/M1 dataset, and 543, 407, 271, 135, 67 or 33 kept for the Mouse1/S1 dataset. 

One RADICaL model and one AutoLFADS model were trained for each number of neurons. 

Decoding was performed using ridge regression (see above).

The other procedure was designed to emulate scanning a smaller field of view, such as 

when using a lens relay to image deep structures., Here, the number of neurons included 

when training RADICaL or AutoLFADS was gradually reduced by limiting the area of 

FOV that the neurons were sampled from. The area was shrunk from the entire FOV with 

an area-to-FOV ratio of 1, 25/36, 9/16, 1/4, and 1/9, resulting in the number of included 

neurons being 439, 321, 262, 121 or 59 for Mouse2/M1. An individual RADICaL model 

and AutoLFADS model were trained for each number of neurons. Decoding was performed 

using ridge regression (see above). Note that this analysis represents a lower bound on 

performance: for this proof-of-concept, we simply artificially excluded data from outside the 

restricted FOVs, which resulted in substantial time periods that lacked data entirely (e.g., 2/3 

of the total sampling time for the smallest FOV considered). In a real application, those time 

periods that were artificially excluded could instead be used to monitor other brain areas or 

layers, or to monitor the same neurons with higher sampling rates, either of which might be 

expected to provide additional information.

Extended Data

Extended Data Fig. 1. Simulation of Lorenz system at different speeds.
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This figure illustrates the underlying dynamical system used for the simulation experiments. 

(a) An example Lorenz trajectory in a 3-dimensional state space (far left) and with three 

dynamic variables plotted as a function of time (middle left) for a system with Z-oscillation 

peak frequency of 7 Hz (i.e., the power spectrum of the Lorenz system’s Z-dimension had 

a pronounced peak at 7 Hz). Firing rates for the simulated neurons were computed by 

a linear readout of the Lorenz variables followed by an exponential nonlinearity (middle 

right). Spikes from the firing rates were then generated by a Poisson process (far right). 

The example trial shown here is identical to “Trial 2” in Fig. 2a, but with a wider plotting 

window. (b) Power spectrum of the individual Lorenz variables for the system with a 

Z-oscillation peak frequency at 7 Hz. Because only the Z variable has a clear peak in the 

power spectrum, this variable was used exclusively for all further analyses in simulations 

except Supp. fig. 1. (c) Power spectrum of the Z dimension for Lorenz systems simulated 

with different Z-oscillation peak frequencies.
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Extended Data Fig. 2. Simulation pipeline to generate artificial fluorescence traces from the 
underlying Lorenz system.
(a) This pipeline begins from the Poisson-random spikes generated in the far-right panel of 

Supplementary Figure 1. Calcium traces were generated by first corrupting the spikes with 

amplitude noise, then modeling the dynamics of calcium indicators in response to a spike 

with an autoregressive process of order 2 transformed by a piecewise-linear non-linearity. 

Sources of noise corrupting this fluorescence trace were then added. The nonlinearity 

and noise sources were chosen to approximate the variability observed in real data. (b) 

Example ground truth and simulated data using a GCaMP6f model. From top to bottom: 
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original ground truth spikes fed into the simulator, perturbed spikes, idealized calcium 

trace, fluorescence trace with nonlinearity and noise sources added, fluorescence trace 

after subsampling, deconvolved spikes, and finally original ground truth spikes fed into 

the simulator (shown again for comparison; same as top). (c) Estimated nonlinearities for 

GCaMP6f from ref. 58. (d) Example traces generated by the simulator for a train of 10 Hz 

stimuli, with and without nonlinearity applied.

Extended Data Fig. 3. RADICaL retains high latent recovery performance in a simulation 
experiment that lacks stereotyped conditions.
This analysis was targeted at determining whether RADICaL simply ‘memorized’ the 

stereotyped trajectories for a limited number of conditions, or whether it could generalize 

to cases where each trial was more unique. To answer this question, we designed a “zero 

condition” simulation experiment, where each trial had its own unique Lorenz initial state 

and there were no repeated trials with the same underlying latent trajectories. (a) Example 

true (top left) and estimated Lorenz trajectories by RADICaL (top right), AutoLFADS 

(bottom left), and smth-dec (bottom right). Each trajectory is an individual trial, colored by 

the location of the initial state of the true Lorenz trajectory. The initial states of the trials are 

indicated by the dots in the same colors as the trajectories. (b) Performance in estimating 

the Lorenz Z dimension as a function of Lorenz oscillation frequency was quantified by 

variance explained (R2) for all 4 methods.
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Extended Data Fig. 4. RADICaL retains high latent recovery performance at slower imaging 
speeds, but there are limits to deconvolution with slower sampling.
To understand the extent to which the model performance depends on imaging speeds, 

we simulated data at different sampling rates ranging from 2 Hz to 33.3 Hz. (a) Example 

ground truth spikes, simulated fluorescence, and deconvolved signals at different sampling 

rates. Sample times are denoted by gray triangles. Deconvolution performance degraded at 

slower sampling rates, particularly in regimes when transients could be missed entirely. In 

our simulation we used a GCaMP6f model with a decay time of 400ms (see Methods). 

At an imaging rate of 2Hz, the majority of transients were missed and the estimate of 

the decay time constant tau was inaccurate (916.8 +/− 49.4ms, compared to the ground 

truth 400ms). Because deconvolution performs poorly at these sampling rates (i.e., <= 2Hz) 

with fast indicators, we do not recommend using RADICaL under such circumstances. (b) 

Performance in estimating the Lorenz Z dimension as a function of sampling rate was 

quantified by variance explained (R2) for all 3 methods, for Lorenz oscillation frequencies 

of 10Hz (top) and 15Hz (bottom). Squares with solid lines denote experiments with 278 

neurons. Triangles with dashed lines denote experiments with 500 neurons. RADICaL 

retained high performance and outperformed AutoLFADS and smth-dec in recovering the 

latent states of a 10 Hz Lorenz system at moderately slow sampling rates (8 and16 Hz; 
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top). In real experiments, there may be benefits to slower sampling, e.g., one can image 

more neurons using a larger FOV. Increasing the number of neurons boosted RADICaL’s 

performance, while AutoLFADS and smth-dec showed negligible improvement (bottom).

Extended Data Fig. 5. Performance of RADICaL and AutoLFADS in capturing the empirical 
PSTHs on single trials in the mouse water grab experiments.
This figure is related to Figure 3d, but compares RADICaL with AutoLFADS instead of 

smth-dec. Correlation coefficient r was computed between the inferred single-trial event 

rates and empirical PSTHs. Each point represents an individual neuron. These results 
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demonstrate that RADICaL captures the key features of individual neurons’ responses from 

single-trial activity better than AutoLFADS in nearly every case.

Extended Data Fig. 6. Single-trial neural trajectories for additional mouse water grab 
experiments.
This figure is related to Figure 3e, and shows the remaining datasets. Single-trial, log-

transformed event rates were projected into a subspace computed by applying PCA to the 

trial-averaged, log-transformed rates, colored by subgroups. Lift onset times are indicated by 

the dots in the same colors as the trajectories. Gray dots indicate 200 ms prior to lift onset 

time. Top row: single-trial neural trajectories derived from RADICaL rates; Bottom row: 

single-trial neural trajectories derived from smth-dec rates.
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Extended Data Fig. 7. Hand trajectories for additional mouse water grab experiments.
This figure is related to Figure 4a, and shows the remaining datasets. True and decoded hand 

positions for Mouse1/S1 (left) and Mouse2/M1 (right).
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Extended Data Fig. 8. Prediction of single-trial reaction times for additional mouse water grab 
experiments.
This figure is like Figure 4d, for the remaining datasets. Each dot represents an individual 

trial, color-coded by the technique. Correlation coefficient r was computed between the true 

and predicted reaction times. Data from Mouse2/M1 (left) and Mouse2/S1 (right).
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Extended Data Fig. 9. RADICaL retains high decoding performance in an FOV-shrinking 
experiment.
This is an alternative method for evaluating performance with reduced neuron counts to the 

method in Figure 5. (a) The area selected to include was gradually shrunk to the center of 

the FOV to reduce the number of neurons included in training RADICaL or AutoLFADS. 

(b) Decoding performance measured using variance explained (R2) as a function of the 

number of neurons used in each technique (top: Position; bottom: Velocity). Error bar 

indicates the s.e.m. across 5 folds of test trials. Data from Mouse2/M1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Improving inference of network state from 2p imaging.
(a) Calcium imaging offers the ability to monitor the activity of many neurons 

simultaneously, in 3-D, often with cell types of interest and layers identified. In contrast, 

electrophysiology sparsely samples the neurons in the vicinity of a recording electrode, and 

may be biased toward neurons with high firing rates. (b) Calcium fluorescence transients 

are a low-passed and lossy transformation of the underlying spiking activity. Spike inference 

methods may provide a reasonable estimate of neurons’ activity on coarse timescales (left), 

but yield poor estimates on fine timescales (right; data from ref. 7). (c) RADICaL uses 
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a recurrent neural network-based generative model to infer network state - i.e., de-noised 

event rates for the population of neurons - and assumes a time-varying ZIG observation 

model. For any given trial, the time-varying network state can be captured by three 

pieces of information: the initial state (i.e., “initial condition”) of the dynamical system 

(trial-specific), the dynamical rules that govern state evolution (shared across trials), and 

any time-varying external inputs (i.e., “inferred inputs”) that may affect the dynamics (trial-

specific). (d) Top: in 2p imaging, the laser’s serial scanning results in different neurons being 

sampled at different times within the frame. Bottom: individual neurons’ sampling times 

are known with sub-frame precision (colors) but are typically analyzed with whole-frame 

precision (gray). (e) Sub-frame binning precisely captures individual neurons’ sampling 

times but results in neuron-time points without data. The numbers in the table indicate the 

deconvolved event in each frame. (f) SBTT is a novel network training method for sparsely 

sampled data that prevents unsampled time-neuron data points from affecting the gradient 

computation.
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Figure 2 |. Application of RADICaL to synthetic data.
(a) Example firing rates and spiking activity from a Lorenz system simulated at 7 Hz, 

deconvolved calcium events (inputs to RADICaL), and the corresponding rates and factors 

inferred by RADICaL. Simulation parameters were tuned so that the performance in 

inferring spikes using OASIS matched previous benchmarks13 (see Methods). (b) True and 

inferred Lorenz latent states (Z dimension) for a single example trial from Lorenz systems 

simulated at three different Lorenz oscillation frequencies. Black: true. Colored: inferred. (c) 

Performance in estimating the Lorenz Z dimension as a function of simulation frequency 

was quantified by variance explained (R2) for all 4 methods.
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Figure 3 |. Application of RADICaL to real two-photon calcium imaging of a water grab task.
(a) Task. Top left: Mouse performing the water grab task. Pink trace shows paw centroid 

trajectory. Bottom: Event sequence/task timing. RT: reaction time. ITI: inter-trial interval. 

Top right: Individual reaches colored by subgroup identity. (b) Top: an example field of 

view (FOV), identified neurons colored randomly. Bottom left: dF/F from a single trial for 

5 example neurons. Bottom right: Allen Atlas M1/S1 brain regions imaged. (c) Comparison 

of trial-averaged (left) and single-trial (right) rates for 8 individual neurons for two different 

brain areas (left vs. right) and two different mice (top half vs. bottom half) for smth-dec 
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and RADICaL (alternating rows). Left: each trace represents a different reach subgroup (4 in 

total) with error bars indicating s.e.m. Right: each trace represents an individual trial (same 

color scheme as trial-averaged panels). Odd rows: smth-dec event rates (Gaussian kernel: 

40 ms s.d.). Even rows: RADICaL-inferred event rates. Horizontal scale bar represents 200 

ms. Vertical scale bar denotes event rate (a.u.). Vertical dashed line denotes lift onset time. 

(d) Performance of RADICaL and smth-dec in capturing the empirical PSTHs on single 

trials. Correlation coefficient r was computed between the inferred single-trial event rates 

and empirical PSTHs. Each point represents an individual neuron. (e) Kinematic profiles 

and neural representations of atypical trials. Top: Z-dimension of hand velocity profile. 

Each trace represents an individual trial, colored by typical vs. atypical. Atypical trials are 

identified as the trials that have a second peak in Z-dimension of the hand velocity that is 

larger than 50% of the first peak. Middle and Bottom: Comparison of single-trial rates for 2 

example neurons (data from Mouse1/S1) for smth-dec (middle row) and RADICaL (bottom 
row). Each trace represents an individual trial (same color scheme as top row). Horizontal 

scale bar represents 200 ms. Vertical scale bar denotes event rate (a.u.). Vertical dashed line 

denotes lift onset time.
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Figure 4 |. RADICaL produces neural trajectories reflecting trial subgroup identity in an 
unsupervised manner.
(a) Single-trial neural trajectories derived from RADICaL rates (top row) and smth-dec 

rates (bottom row) for two experiments (left: Mouse2/M1; right: Mouse1/S1), colored by 

subgroups. Each trajectory is an individual trial, plotting from 200 ms before to 400 ms 

after lift onset. Lift onset times are indicated by the dots in the same colors with the 

trajectories. Grey dots indicate 200 ms prior to lift onset time. Neural trajectories from 

additional experiments are shown in Extended Data Fig. 6. (b) Performance of RADICaL 

and smth-dec in revealing distinct subgroups in single-trial neural trajectories. The ratio 

of the cross-group distance to the within-group distance was computed for each individual 

time point in a window from 200 ms before to 400 ms after lift onset. Horizontal scale bar 

represents 100 ms. Vertical dashed line denotes lift onset time. Error bar indicates the s.e.m. 

across individual trials. Dots indicate the maximum ratio for each method.
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Figure 5 |. RADICaL improves prediction of behavior.
(a) Decoding hand kinematics using ridge regression. Each column shows an example 

mouse/area. Row 1: true hand position trajectories, colored by subgroups. Rows 2–4: 

predicted hand positions using ridge regression applied to the event rates inferred by 

RADICaL or AutoLFADS, or smth-dec rates (Gaussian kernel: 40 ms s.d.). Hand positions 

from additional experiments are shown in Extended Data Fig. 7. (b) Decoding accuracy 

was quantified by measuring variance explained (R2) between the true and decoded position 

(top) and velocity (bottom) across all trials across each of the 4 datasets (2 mice for 

M1, denoted by squares, and 2 mice for S1, denoted by triangles), for all 3 techniques. 

Error bar indicates the s.e.m. across 5 folds of test trials. (c) Quality of reconstructing 
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the kinematics across frequencies was quantified by measuring coherence between the true 

and decoded position (top) and velocity (bottom) for individual trials across all 4 datasets, 

for all 3 techniques. (d) Predicting single-trial reaction times using RADICaL or smth-dec 

rates. Each dot represents an individual trial, color-coded by event rate inference method. 

Correlation coefficient r was computed between the true and predicted reaction times. 

Prediction of single-trial reaction times from additional experiments are shown in Extended 

Data Fig. 8. (e) Performance of predicting single-trial reaction times across each of the 4 

datasets (2 mice for M1, denoted by squares, and 2 mice for S1, denoted by triangles), for all 

3 techniques.
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Figure 6 |. RADICaL retains high decoding performance in a neuron downsampling experiment.
Decoding performance was measured as a function of the number of neurons used in each 

technique (top: Position; bottom: Velocity). Data are from Mouse2/M1 (left) and Mouse1/S1 

(right). Performance was quantified using variance explained (R2). Figure insets indicate the 

selected neurons in the FOV for the full population of neurons and examples for different 

subsets. Error bar indicates the s.e.m. across 5 folds of test trials. Each black dot in the insets 

represents a neuron. Analyses were robust to the seed used for selecting different random 

subsets of neurons (Supp. Fig. 9).
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