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ABSTRACT

Recent advances in spatial transcriptomics (ST) have
brought unprecedented opportunities to understand
tissue organization and function in spatial context.
However, it is still challenging to precisely dissect
spatial domains with similar gene expression and
histology in situ. Here, we present DeepST, an accu-
rate and universal deep learning framework to iden-
tify spatial domains, which performs better than the
existing state-of-the-art methods on benchmarking
datasets of the human dorsolateral prefrontal cor-
tex. Further testing on a breast cancer ST dataset,
we showed that DeepST can dissect spatial domains
in cancer tissue at a finer scale. Moreover, DeepST
can achieve not only effective batch integration of
ST data generated from multiple batches or differ-
ent technologies, but also expandable capabilities for
processing other spatial omics data. Together, our re-
sults demonstrate that DeepST has the exceptional
capacity for identifying spatial domains, making it a
desirable tool to gain novel insights from ST studies.

INTRODUCTION

Tissue is composed of diverse cells whose spatial organiza-
tion is of high importance to exert their biological functions.
Recent advancements in spatial transcriptome (ST), such as
the 10 × Visium (https://www.10xgenomics.com/), Slideseq

(1,2) and Stereoseq (3), make it possible to understand the
tissue functions and cellular architectures on transcriptomic
level via sequencing in situ.

Identifying spatial domain (i.e. a region that are spatially
coherent in both gene expression and histology) is one of
the most important topics in spatial transcriptomics. At
present, the methods to identify spatial domains could be
mainly divided into two categories, non-spatial and spatial
clustering methods. Traditional non-spatial clustering algo-
rithms, such as K-means and Louvain (4), take gene expres-
sion data as input, resulting in clusters that hardly corre-
spond with tissue sections. On the other hand, spatial clus-
tering methods that combine gene expression, spatial loca-
tion, and morphology have been developed to account for
the spatial dependency of gene expression to match spatial
location better. BayesSpace (5) adopts a fully Bayesian sta-
tistical method using a spatial prior to encourage nearby
locations to belong to the same cluster. stLearn (6) offers a
within-tissue normalization technique that normalizes gene
expression using morphological distance based on charac-
teristics collected from morphology images (e.g. by hema-
toxylin and eosin (H&E) staining) and spatial locations.
SpaGCN (7) combines gene expression, spatial location,
and morphology data to identify spatial domains by gen-
erating an undirected weighted graph that captures the spa-
tial dependency of the data. SEDR (8) employs a deep auto-
encoder network and a graph auto-encoder to embed spa-
tial information. Although these algorithms can identify
spots or cells into distinct domains, they mainly depend on
linear principal component analysis to extract the highly
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variable characteristics of gene expression, which involves
a linear transformation, so they are unable to model com-
plicated nonlinear interactions. Even existing methods can
provide some useful information, these tools often do not
take full advantage of spatial information and are limited
in predicting tissue architectures. In addition, most spatial
methods for analyzing numerous ST data cannot properly
correct batch effects, and their inability to process other spa-
tial omics data (9,10) makes them less versatile. Overall, it is
still challenging to accurately identify spatial domains from
ST data.

Herein, we proposed a customizable deep learning frame-
work for ST (DeepST) to accurately identify spatial do-
mains. DeepST extracts feature vectors from morpholog-
ical image tiles using a pre-trained deep neural network
model, then integrates the extracted features with gene ex-
pression and spatial location data to characterize the corre-
lation of spatially adjacent spots, and creates a spatial aug-
ment gene expression matrix. DeepST uses a graph neu-
ral network (GNN) autoencoder and a denoising autoen-
coder to jointly generate a latent representation of aug-
mented ST data, while domain adversarial neural networks
(DAN) are used to integrate ST data from multiple batches
or different technologies. We performed extensive tests and
comparisons with existing algorithms on ST data generated
by different platforms (e.g. 10 × Visium, SlideseqV2 (2),
and Stereoseq (3)) as benchmarks. DeepST can also pro-
cess imaging-based molecular data (e.g. MERFISH (11), 4i
(9) and MIBI-TOF (10)), in particular, three-dimensional
(3D) expression domains are extracted on MERFISH data.
Further testing on a breast cancer ST dataset, DeepST dis-
cerned heterogeneous sub-regions within the visually ho-
mogenous tumour region that have not been detected in
traditional intratumoral results. Taken together, our results
demonstrated that DeepST is of great power in the accurate
identification of spatial domains, also scalable in processing
additional spatial omics data.

MATERIALS AND METHODS

Spatial data augmentation

Transcriptome-wide gene expression profiles with extra spa-
tial location information and tissue morphology are pro-
vided by spatial gene expression technologies. DeepST uses
these two extra tissue data to augment gene expression
across adjacent spots. Specifically, DeepST assesses gene
expression similarity, morphological similarity, and spatial
neighbours between spots:

1. Correlation GCi j was applied to calculate the weights of
spatial gene expression between spot Si and spot S j as:

GCi j = 1 −
(

Si − Si

)
·
(

S j − S j

)
∥∥∥(

Si − Si

)∥∥∥
2

∥∥∥(
S j − S j

)∥∥∥
2

. (1)

2. For ST data with morphological information, we first seg-
mented an image (H&E staining tiles) according to the
coordinates of each spot to obtain its partial image. Then
use torchvision.transforms (12) function to transform and
augment partial images, including normalizing, rotating,

adjusting sharpness, etc. The high-level features of each
spot tile are extracted from a pretrained convolutional
neural network (optional; default is Inception v3 (13))
model that can transform each spot image into 2048-
dimensional latent variables. To better represent the spot
morphology, we performed principal component analysis
(PCA) to extract the first 50 principal components (PCs)
(optional) as latent characteristics. Finally, the weights of
morphological similarity MSi j between spot Si and adja-
cent spot S j were calculated using the cosine distance as:

MSi j = 1 − Si · S j

‖Si‖2

∥∥S j
∥∥

2

. (2)

3. We used spatial coordinates to determine the distance
between each spot and all other spots, then ordered the
distances between the top 4 (optional) adjacent spots to
count the radius γ (mean add variance). For a given
spot Si , a spot S j is considered to be a neighbour, then
SWi j = 0 if and only if the distance between two spots is
less than γ , otherwise SWi j = 1.

DeepST then enhances gene expression
∼

GEi of each spot
Si incorporating gene expression correlation, spatial neigh-
bour, and morphological similarity as:

∼
GEi = GEi +

n∑
j=1

GE j · MSi j · GCi j · SWi j

n
, (3)

if in 10 × Visium, otherwise as:

∼
GEi = GEi +

n∑
j=1

GE j · GCi j · SWi j

n
, (4)

where GEi and GE j are the raw gene expressions for spot
Si and n adjacent spots S j .

Graph construction

To combine the similarity of the adjacent spots of a given
spot, DeepST uses spatial coordinates to calculate the dis-
tances between spots (optional; default is BallTree (14)),
and constructs a cell–cell spatial relationship graph using
the top 12 (optional) nearest neighbours. If A is the adja-
cency matrix, then the value Ai j = A j i = 1 at spot i and
spot j means that i and j are neighbors, otherwise Ai j = 0.
Self-loops are added into each spot.

Denoising autoencoder

DeepST implements a denoising autoencoder for the latent
representation of gene expression using linear layers with
PyTorch (12). The encoder E, which consists of multiple
fully connected stacked linear layers as set by a user, con-
verts the integrated gene expressions X (the PCA embed-

dings of
∼

GEi ) into a low-dimensional representation Zg as:

E(X) = Zg, X ∈ RN×M, Zg ∈ RN×R, (5)
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where N is the number of spots, M is the number of input
genes, and R is the dimension of the last encoder layer. Con-
versely, the decoder D reverses the latent representation and
tries to reconstruct the original input as:

Zg′ = Zg + Z,

D(Zg′) = X′, Zg′ ∈ RN×(R+R′), X′ ∈ RN×M,
(6)

where X′ is the reconstructed gene expression matrix, and
N, M and Rare the same as above, Gg is the spatial em-
bedding learned by GNN encoder and R′ is the final layer
dimension. The mean squared error is applied to determine
how comparable the input gene and reconstructed expres-
sions are as:

Ll = 1
N

N∑
i=1

‖Xi − D (E (Xi ))‖2. (7)

Variational graph autoencoder

The encoder (inference model) of the variational graph au-
toencoder is composed of GNNs (optional) based on PyG
(15), where a user can choose GCNConv (default), graph
attention network, among others. DeepST takes an adja-
cency matrix A and a feature matrix X (the PCA embed-

dings of
∼

GEi ) as inputs, and generates the graph embedding
Z as output. The first two GNN (optional) layers generate
a lower-dimensional feature matrix, which is defined as:

X̄ = G NN(X, A) = ÃReLU(ÃXW0)W1,

Ã = D− 1
2 AD− 1

2 ,
(8)

where Ã is the symmetrically normalized adjacency matrix.
The last GNN layer generates μ and log σ 2, where

μ = G NNu(X, A) = ÃX̄W2,

log σ 2 = G NNσ (X, A) = ÃX̄W2,
(9)

Specifically, G NNu and G NNσ share W1, but W2 is dif-
ferent. Then, Z can be calculated using a parameterization
trick as:

Z = μ + log σ 2 ∗ ε, (10)

where ε ∼ N(0, 1). The decoder (generative model) is de-
fined by a simple inner product between latent variable Z.
The reconstructed adjacency matrix is generated by calcu-
lating the probability of an edge between two spots in pairs
as:

p(A|Z) =
N∏

i=1

N∏
j=1

p(Ai j |zi , z j ),

p(Ai j = 1|zi , z j ) = σ (ZZT),
(11)

where σ (·) is a logistic sigmoid function.
The loss function includes the reconstruction loss be-

tween the generated graph and the original graph, and
the Kullback–Leibler divergence of the node representation
vector distribution and the normal distribution as:

Lg = Eq(Z|X,A)[log p(A|Z)] − K L[q(Z|X, A) ‖p(Z) ], (12)

where Eq(Z|X,A)[log p(A|Z)] is the binary cross-entropy func-
tion, p(Z) = ∏

i
N(0, I).

Domain adversarial neural networks

The purpose of DAN (16) is to map the source and tar-
get domains of different distributions into the same feature
space, so that the distance in the space is as close as pos-
sible. DAN includes feature extractor, and domain classi-
fier. Among them, the feature extractor is composed of a
joint linear layer and a graph neural network. We add a do-
main discriminator, which is connected by a gradient rever-
sal layer (GRL) in the middle. A domain classification layer
Gd learns a function G f : Z′

g → RD that maps an example
into a new Ddimensional representation, and is parameter-
ized by a matrix-vector pair (W, b) ∈ RD×m × RD:

Gd (x; W, b) = sigm(Wx + b), (13)

with sigma(a) = [ 1
1+exp(−ai )

]|a|
i=1. We define its loss by

Ld = − 1
N

∑
i

M∑
d=1

Did log(pid ), (14)

where M is the number of domains, Did is the sign function,
if the true label of sample i is equal to d, take 1, otherwise
take 0, andpid is the probability that the observed sample i
belongs to category d.

Spatial data integration

Different from the framework of spatial domain recogni-
tion, DeepST integrates spatial data through a domain ad-
versarial framework. We have given multi-batches or spatial
platform datasets domain labels, and then train the model
through GRL. We compare the spatial methods SEDR and
stLearn on the DLPFCs dataset. Integrating different spa-
tial platform datasets, we compared DeepST with a variety
of methods that have been widely used in single-cell data
integration, including Harmony (17) and Scanorama (18).
The specific parameter settings and codes of these methods
can be found in the Supplementary Notes. All other param-
eters were kept at default values. We did not utilize the cor-
rect function, as this included both preprocessing and in-
tegration of the data. For more equitable comparisons, we
tried to use the same preprocessing pipelines for all methods
and only compared only the integration steps.

Data preprocessing and dimension reduction

We began by removing areas outside the primary tissue
region from all datasets. Using the Scanpy package (19),
raw gene expression data were filtered, log-transformed,
and standardized according to library size. DeepST uses
PCA for dimension reduction on augmented gene expres-
sion data, and the dimensionality reduction data are used
as input for the next model training.

Benchmarking

After data preprocessing, Seurat runs PCA to extract the
top 30 PCs and locate adjacent spots. The clusters are then
identified using the Louvain clustering technique. Other ap-
proaches use the same number of domains as the truth lay-
ers and use the suggested settings (only for DLPFCs). In
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the original paper, the authors suggested the parameters
used to build spatial clustering algorithms (BayesSpace (5),
SpaGCN (7), stLearn (6) and SEDR (8); Supplementary
Notes). The adjusted rank index (ARI) (20) is used to com-
pare the performances of different clustering techniques on
datasets containing spot-type labels. The characteristics of
ARI are:

ARI (P∗, P) =

∑
i j

(
Ni j

2

)
−

[∑
i

(
Ni

2

)
+ ∑

j

(
Nj

2

)]/(
N
2

)

1
2

[∑
i

(
Ni

2

)
+ ∑

j

(
N j

2

)]
−

[∑
i

(
Ni

2

)
+ ∑

j

(
Nj

2

)]/(
N
2

) ,

(15)

where N is the number of spots, Ni j is the number of spots of
class label C∗

j ∈ P∗ assigned to cluster Ci in partition P, and
Ni/Nj is the number of spots in cluster Ci/Cj of partitionP.
A high ARI (ARI ∈ [0, 1]) score indicates a good perfor-
mance.

Clustering metrics

If spatial domain annotations are not available, we compare
two commonly used clustering metrics, the Silhouette Co-
efficient (SC) score and Davies-Bouldin (DB) score. SC is
calculated using the mean intra-cluster distance a and the
mean nearest-cluster distance b for each sample. The Sil-
houette Coefficient score for a sample is (b − a)/max(a, b),
and the best value is 1 and the worst value is –1. DB is
defined as the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio
of within-cluster distances to between cluster distances. The
minimum score is zero, with lower values indicating better
clustering. We use the tool sklearn (14) to calculate these
two metrics. In this paper, BayesSpace and SpaGCN have
no latent variable output and cannot calculate DB and SC
values.

Clustering and visualization

On the basis of DeepST embeddings, we used the lei-
den method (in Scanpy (19)) to identify spatial domains.
DeepST finds the best resolution in two ways. (i) When the
number of spatial domains is known a priori, resolutions
are achieved by grid searching between 0.1 and 2.5, with
a step size of 0.01, until the necessary number of clusters
is reached. (ii) When there is no prior knowledge, DeepST
uses grid search to traverse resolutions between 0.1 and 2.5,
with a step size of 0.01, and at the same time calculate Calin-
ski and Harabasz (CH) score (known as variance ratio crite-
rion) using sklearn (14), finally determine the resolution at
the highest CH value. For visualization, the uniform mani-
fold approximation and projection (UMAP) was used.

Identification and functional analysis of differentially ex-
pressed genes (DEGs)

For brain datasets and Stereo-seq, we used the Wilcoxon
test in Scanpy to find DEGs for each spatial domain with
1% false discovery rate threshold. We used limma (21) to
identify DEGs in breast cancer datasets, and genes with |log

fold change|≥2 were used as input for gene ontology en-
richment analysis using clusterProfiler (22). Enriched terms
with positive or negative z-scores were plotted.

RESULTS

Overview of the DeepST workflow

DeepST characterizes spatial domains by modeling a low-
dimensional representation of integrating gene expression,
spatial location, and tissue morphology information (Fig-
ure 1A). To establish a morphological feature matrix, tis-
sue topography data from H&E staining is first processed
by a pre-trained deep learning network. Combined with
morphological features and spatial neighbor information,
the gene expression of each spot is enhanced (Figure 1B).
Then, a denoising autoencoder is employed to learn a non-
linear mapping from integrated feature space to a low-
dimensional representation space to reduce model overfit-
ting. Simultaneously, DeepST computes a graph adjacency
matrix based on spatial coordinates by k-nearest neigh-
bours. A variational graph autoencoder is inserted into
the same framework to map spatial associations of spots,
thereby generating spatial embedding via integrated rep-
resentation with the corresponding spatial adjacent spots
(Figure 1C; see Materials and Methods for details). The fi-
nal latent embeddings are formed by concatenating the inte-
grated representation and spatial embedding. If the submis-
sion task is to integrate several spatial platforms or multi-
batches, latent embeddings will be fed into a domain dis-
criminator connected by a gradient reversal layer (Figure
1C, red dotted box). These latent embeddings can be used
to identify spatial domains, correct batch effects and per-
form downstream analysis.

Benchmarking of DeepST against state-of-the-art methods

Maynard et al. (23) manually annotated the cortical layers
(L1–L6) and white matter (WM) of 12 slides of the dor-
solateral prefrontal cortex (DLPFC) by gene marker and
cytoarchitecture (Figure 2A), which is a publicly available
10 × Visium ST benchmarking dataset. To evaluate the
performance of DeepST to identify spatial domains, we
compared DeepST with existing state-of-the-art methods
on the above-benchmarking dataset. Specifically, DeepST
was compared with two non-spatial algorithms (K-means
and Seurat (24)) and four recently published spatial cluster-
ing algorithms (stLearn (6), SpaGCN (7), SEDR (8), and
BayesSpace (5)), and the results demonstrated that the spa-
tial domains identified by DeepST were consistent with the
manual annotation of DLPFC and the definition of cortical
stratification in neuroscience.

By exhaustive comparison of these methods, we found
that the four spatial algorithms leveraging spatial infor-
mation performed better than the two non-spatial clus-
tering algorithms, which showed that spatial information
was needed to correctly identify spatial domains. Strik-
ingly, our proposed DeepST performed better than exist-
ing state-of-the-art methods (Figure 2C and Supplemen-
tary Figures 2–12). For the boundary division of layers,
the ARI of DeepST was 0.515+/0.011, which was substan-
tially higher than that of the current best method (BayesS-
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Figure 1. Workflow of the DeepST algorithm. (A) DeepST workflow begins with ST data, taking hematoxylin and eosin (H&E) staining (optional), spatial
coordinates, and spatial gene expression as input. (B) DeepST initially uses the H&E staining to collect tissue morphological information, then normalizes
the gene expression of each spot based on similarity against adjacent spots using a pre-trained deep learning model. Morphological similarity between
adjacent spots is calculated by this matrix, and the weights of gene expression and spatial location are merged to re-assign an augmented expression value
for each gene inside a spot. (C) DeepST generates three network frameworks, where a denoising autoencoder network and a variational graph autoencoder
are used to extract the final latent embeddings, and a domain discriminator is used to fuse spatial data from various distributions (red dotted box, the part
only for integration tasks).

pace, ARI = 0.463+/0.012; Wilcoxon test, P value = 0.007).
DeepST obtained the best clustering accuracy in slide
151671 (ARI = 0.798; Supplementary Figure 8). In slide
151673 (3639 locations and 33 538 genes), DeepST and
BayesSpace successfully delineated the L1 and L2 cortical
layers, which have never been detected by any other method
(Figure 2B). The UMAP and the PAGA (25) (the partition-
based graph abstraction) results of DeepST indicated that
the various cortical layers were well organized from L1 to
L6 and WM, better than the result of Seurat (Figure 2D).

Next, we further evaluated the effectiveness of DeepST
in identifying spatial domains in a 10 × Visium dataset of
mouse brain tissue, and compared the spatial domains iden-
tified by DeepST with the Allen Mouse Brain Atlas (26)
brain anatomical reference annotations. DeepST clearly de-
tected the cornu ammonis and dentate gyrus sections of
the hippocampal region in the mouse brain (Figure 2F and
Supplementary Figure 13B), as well as the cerebellar cortex

and the dorsal gyrus (Figure 2F and Supplementary Figure
13A, C) regions in the sagittal posterior, which is consistent
with the reference annotations (26). When the number of
spatial domains is not a priori, DeepST adaptively calcu-
lates the optimal clustering resolution (see MATERIALS
AND METHODS for details), and obtains higher SC (Fig-
ure 2E, SC = 0.143) and lower DB (DB = 1.658) values in
mouse brain posterior data. In determining the same num-
ber of spatial domains, DeepST also demonstrates its excep-
tional capacity to identify spatial domains (Figure 2E and
Supplementary Figure 13). DeepST and BayesSpace show
stronger regional continuity and fewer noise points (Supple-
mentary Figure 13). In terms of performance comparison of
algorithms, DeepST processes about 4000 spots and 30 000
genes of spatial data, which takes about 7 min (running on
GPU) and about 6G memory, whereas BayesSpace requires
about four times longer than DeepST and higher memory
usage (Supplementary Figure 1).
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Figure 2. DeepST improves spatial domain recognition in brain tissue. (A) DLPFC layers were annotated by Maynard et al.(23). The ground truth of
spots was mapped on their spatial position in slide 151673, which was separated into six cortical layers (L1–L6) and white matter (WM). Layers with
annotations are provided on the remaining slides (Supplementary Figures 2–12). (B) Identification of spatial domains by DeepST, and existing state-of-
the-art algorithms (BayesSpace, SpaGCN, SEDR, stLearn, Seurat and K-means) algorithms for slide 151673. (C) Boxplot of the performance of DeepST
and other algorithms for all 12 DLPFCs. The x-axis shows the adjusted rand index (ARI), which was used to compare the similarity of the predicted
spatial layers and the manually annotated layers for each algorithm. (D) UMAP visualizations and PAGA graphs were generated for slide 151673 with
Seurat-derived principal components (left) and DeepST-derived embeddings (right). (E) Histograms of Silhouette Coefficient (SC) and Davies-Bouldin
(DB) scores for mouse brain posterior and coronal data, respectively, including algorithms DeepST, DeepST (Adaptive, means no prior knowledge),
SEDR and stLearn. (F) Spatial domains of mouse brain tissue sagittal posterior and coronal regions. The H&E staining generated from raw data (left);
The corresponding anatomical Allen Mouse Brain Atlas (middle, https://atlas.brain-map.org/); Spatial domains identified by DeepST (right). The yellow
box denotes the cornu ammonis and dentate gyrus areas in the coronal portion; The black box denotes the cerebellar cortex; The orange box denotes
dentate gyrus areas in the sagittal posterior.

https://atlas.brain-map.org/
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Systematic parameter optimization and integration of
DeepST

We systematically evaluate DeepST hyperparameters on
DLPFC slides. First, we ran nine GNN types (including
GCNConv (27), RGCNConv (28), etc.) on 12 DLPFCs
and calculated their ARI values (Figure 3A), respectively.
GCNConv and ResGatedGraphConv (29) obtain higher
ARI values and better model robustness, relatively. The
same slide (151673 and 151507) exhibits distinct hierarchi-
cal distributions under different network architectures (Fig-
ure 3A). The integration of morphological features is what
differentiates DeepST from other spatial algorithms. We ran
DeepST with or without spatial data augmentation (Fig-
ure 3B, P value = 0.012), with or without morphological
information (Figure 3B, P value = 0.056), and with var-
ied augment weights (Supplementary Figure 14A). Spatial
data augmentation and rational utilization of morpholog-
ical image features can significantly improve DeepST per-
formance. Additionally, we evaluated the effect of multiple
constructing adjacency matrix methods and dimensional-
ity reduction changes on DeepST performance. There are
differences in constructing graph matrix, but their ARI val-
ues are not all significant (Figure 3D). The dimension of the
data affects the running time and memory usage of the algo-
rithm, and DeepST exhibits relatively stable model perfor-
mance in 40–300 dimensions (Figure 3C). Some of the re-
maining parameters are tested (Supplementary Figure 14A,
B), including prior knowledge, training epochs, neighbors,
etc. Overall, feature embeddings of DeepST exhibit consid-
erable robustness to parameter settings and data processing.

With the widespread application of spatial sequencing
technologies, numerous volumes of spatially omics data are
being produced. However, it is difficult to compare and in-
tegrate multiple datasets from various protocols and tech-
nologies. Up-to-date methods (BayesSpace and SpaGCN)
are unable to integrate ST datasets from different batches si-
multaneously. DeepST learns joint embeddings across mul-
tiple batches and maps them into a shared latent space,
and DAN realizes efficient fusion of multi-batches, thereby
reducing technological effect while maintaining biologi-
cal differences. On four DLPFC slides (151673, 151674,
151675 and 151676), we compared integration performance
of other spatial algorithms. DeepST achieves excellent lev-
els of integration between slides, and maximizes the reten-
tion of biological content (Figure 3E and F, ARI = 0.56,
SC = 0.36; Supplementary Figure 15A and B, ARI = 0.61,
SC = 0.38). Interestingly, spatial domain recognition for
only one slide (Supplementary Figure 10; such as 151674
ARI = 0.470) is inferior to the result of integrating multi-
ple slides by DeepST (Supplementary Figure 14D; 151674
ARI = 0.588). Furthermore, L1 and L2 layers are clearly
delineated, which most spatial algorithms cannot do (Sup-
plementary Figures 10–12 and Supplementary Figure 14D).
SEDR can effectively integrate multi-slides and produce
higher silhouette coefficient scores (Figure 3E, SC = 0.39),
but it lacks inter-layer distinctions, and multi-batches are
clustered into the same layered structure (Figure 3F), re-
sulting in a lower ARI (Figure 3E, ARI = 0.29). However,
silhouette coefficient can still measure the tightness of mul-
tiple batches and the degree of separation between clusters,

which can be used as another additional indicator in addi-
tion to ARI. When there are no ground truths in ST data,
it is also a useful metric for evaluating the clustering perfor-
mance of spatial algorithms.

At the same time, there is a slight offset between the in-
tegrated slides without DAN (Figure 3F). However, when
integrating slides with significant batch effects (151507,
151672 and 151673 of DLPFCs), DeepST without DAN
has poor batch mixing (Supplementary Figure 15A and B,
ARI = 0.24). We performed differential expression anal-
ysis on the integrated slides (Supplementary Figure 14C).
The differential expression of MBP in domain 6 (WM),
PCP4 in domain 1 (L5), and ENC1 and ENC2 in domain
3 (L3) keep consistent with previously published results
(23,30) (Supplementary Figure 15C–E). These results in-
dicate that DeepST can effectively integrate ST data from
multiple batches and different platforms (Figure 5G) while
retaining maximal biological content.

DeepST can dissect spatial domains from cancer tissue at a
finer level

To illustrate the generalization power on cancer tissue, we
first tested DeepST on public ST data of breast cancer
(Invasive Ductal Carcinoma). We found that the obtained
domains were highly consistent with the manual annota-
tions (Figure 4A, B). Compared with domains identified by
other spatial algorithms, DeepST discovered regions with
more regional continuity and less noise (Figure 4B, Sup-
plementary Figure 16A, B). As expected, spatial domains
with high heterogeneity, namely tumour regions, are getting
finer as parameters domain get bigger (Figure 4B, right).
Meanwhile, regions with low heterogeneity, such as healthy
regions, still kept consistent regardless of clustering reso-
lution, indicating good robustness of DeepST (Figure 4C,
without a priori knowledge). At k = 20, the increased reso-
lution allowed for more detailed intra-tumour heterogene-
ity, such as domains 4 and 13 (Figure 4B). Strikingly, these
two similar domains were also identified by stLearn and
BayesSpace (Supplementary Figure 16B). Differentially ex-
pressed genes (DEGs) between domain 4 and domain 13
includes ABCC11, ABCC12 and TFF1, in which the first
two are multidrug resistance genes and the last one is asso-
ciated with tumour differentiation. (Figure 4E; Supplemen-
tary Figure 17C) (31–34).

To investigate the spatial heterogeneity within the tu-
mour, we calculated the Pearson correlation coefficient be-
tween domains (domains = 10), and discovered significant
heterogeneity between domains 0, 2 and the rest (Figure 4D
and Supplementary Figure 17A, B). Here, we mainly com-
pared intratumoral transcriptional differences between do-
main 1 (ductal/lobular carcinoma, DCIS/LCIS) and 4 (in-
vasive ductal carcinoma, IDC) by performing differential
expression analysis followed by pathway enrichment analy-
sis. We detected 298 significant DEGs (|log fold change| ≥2;
adjusted P-value < 0.05) between domain 1 and 4. (Fig-
ure 4F–H and Supplementary Figure 17; Supplementary
Table 1). In general, we observed APOC1, APOE, C1QB
and NURP1, which may reflect differential abundance of
tumor-associated infiltration of macrophages (TAM) (35).
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Figure 3. Systematic parameter optimization and integration of DeepST. (A) The ARI pirate graph of nine GNN types, each of which was evaluated
on 12 DLPFC slides, respectively. Spatial domain distributions of slides 151673 and 151507 with various networks (SGCConv, ResGatedGraphConv and
GCNConv) are displayed, respectively. (B) ARI boxplots of whether spatial data augmentation is used and whether integrating morphological information
in DeepST are shown. (C) The ARI pirate graph of reduced dimensions of ST data in DeepST. (D) ARI boxplots comparing five methods for constructing
adjacency matrices in DeepST. (E) Histograms of ARI and Silhouette Coefficients (SC) score for four slides (including 151573, 151574, 151575 and
151576) utilizing spatial algorithms, including DeepST, DeepST (without DAN), SEDR and stLearn. (F) UMAP plots of spatial integrated algorithms.
They represent batches, recognition spatial domains, and ground truth labels, respectively.

TAM infiltration is known to be associated with poor sur-
vival rate in solid tumors, owing to its promotion of tu-
mor angiogenesis and induction of tumor migration, inva-
sion and metastasis (36,37). In domain 1, CPB1 can signifi-
cantly distinguish DCIS from other subtypes of breast can-
cer (38). We observed natural killer cells (FCGR3B; Figure
4H) and lymphocytes (CXCL9, VTCN1; especially stromal
CD3 + and CD8 + T cell; Figure 4H) in domain 1, indicat-
ing that it may have more immune cell infiltration. In addi-

tion, we observed the upregulation of type I interferon sig-
naling pathway (ADAR, BST2, IFI27, IFITM3 and ISG15;
Figure 4G and Supplementary Table 2), CGA and BAMBI,
which exert antitumor and anti-metastatic effects (39–42),
pointing towards reduced metastatic potential. Domain 1
represented a region where cancer growth was limited by
pro-inflammatory immune response. On the other hand, in
domain 4, we observed upregulation of KRT8, AQP3, KL-
HDC7B and CDH1, which tend to exhibit stronger tumor
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Figure 4. DeepST can dissect spatial domains from cancer tissue at a finer level. (A) Visium spatial transcriptomics data of a breast cancer sample annotated
by pathologists. IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in situ; LCIS, lobular carcinoma in situ; tumor edge; healthy region. (B) Spatial
domains identified by DeepST on human breast cancer (Block A, Section 1) with domains = 10 and domains = 20. (C) Spatial domains were identified
without a priori knowledge by DeepST. (D) Heatmap of Pearson correlation coefficient between domains (domains = 10). (E) Expression of TFF1 and
ABCC11 with regional annotation on left (top); Violin plots of the two genes(bottom). (F) Differential expression analysis among domains 1, 2 and 4.
Spatial location of domains 1, 2 and 4 (left); Volcano graph of DEGs between domains 1 and 4 (domains = 10) (middle); CPB1 and CRISP3 express
differentially between domains 1 and 4 (purple) (right). (G) Gene ontology enrichment analysis of the DEGs between domains 1 and 4. Red denotes
pathway with upregulated genes in domain 1; blue is the opposite. (H) Visualizations of the DEGs (|log fold change|≥2) between domains 1 and 4 with
k = 10. T-test on the means of two independent domains. (I) Stacked violin plot show expression of all domains on the top three DEGs of domains 6, 2, 13,
1 and 8. (J) H&E of human breast cancer sample annotated by Agoko’s telepathology platform. (K) Visium spatial transcriptomics with spatial domains
generated by DeepST.
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Figure 5. DeepST works on various spatial omics data independent of platforms. (A) Visualization of subcellular molecular profiles using 4i (iterative
indirect immunofluorescence imaging), plotted in spatial coordinates (left, 25 415 observations/pixels and 43-plex proteins, annotated(9) 10-cell states),
and spatial domain identification using DeepST was plotted (right). ER, endoplasmic reticulum. (B) Visualization of SlideseqV2 dataset (41 786 sub-cells
and 4000 genes) of mouse hippocampus with cell-type annotations (left, annotated by (A). Goeva and Macosko (50)) and spatial domains of DeepST
(right). (C) Visualization of imaging-based molecular MIBI-TOF(10) dataset (3309 pixels and 36 proteins) with annotations (left, the point 8 section) and
spatial domains of DeepST (right, ARI = 0.524) (D) Visualization in 3D coordinates in the whole MERFISH(11) dataset (left, annotated) and spatial
domains of three consecutive imaging-based molecular slides (lower right, including –4, –9 and –14 layers; using DeepST integrated methods, see Materials
and Methods in details). Spatial domain identification using DeepST on –14 imaging slide (top right; ARI = 0.697). (E) Nissl-stained coronal section of
mouse olfactory bulb (left). Visualization of spatial domains of DeepST (middle) and SEDR (right). RMS, rostral migratory stream; ONL, olfactory nerve
layer; IPL, internal plexiform layer; GL, glomerular layer; MCL, mitral cell layer; GCL, granule cell layer; EPL, external plexiform layer. (F) Dotplot of the
top 3 DEGs of domains 0, 1, 6, 7, 3 and 5 on mouse olfactory bulb by Stereoseq (left). Scatter plot of spatial clustering generated by DeepST (right, including
genes Nrgn, Pcp4, Mbp, Slc17a7 and Ptn). (G) Visualization of integrated mouse olfactory bulb datasets from two ST technologies (10 × Genomics Visium
and Stereoseq) using DeepST, SEDR, Harmony(17) and Scanorama(18), respectively.
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progression and metastasis, and high expression of genes
NUPR1 and DBI associated with chemotherapy resistance
(Figure 4H and Supplementary Figure 17D) (43,44). Inter-
estingly, we found that domain 13, the core area of domain
4, had low lipid metabolism and high hypoxia response,
with low expression of AOPE in response to hypoxia (Fig-
ure 4H). We also compare transcriptional differences be-
tween domain 0 (tumor edge) and domain 4 (Supplemen-
tary Figure 18; detailed analyzed results in the legend). To-
gether we showed DeepST is capable of identification of
finer regions with different biological functions.

We also examined another ST data of human breast can-
cer (Ductal Carcinoma In Situ), and the result matched the
manually annotated areas as well (Figure 4J, K). DeepST
domains are more fluent and continuous than other spa-
tial algorithms (Figure 4K and Supplementary Figure 16C;
SC = 0.070 and DB = 1.754), which reflects the ability of
DeepST processing to finer divide complex tissues. AZGP1
levels dictate the histologic grade of breast cancer tumours
in domain 1 (45), whereas ART3 and CD24 are key triple-
negative breast cancer indicators (Figure 4I) (46–49). These
results show that DeepST can perform a detailed analysis of
the tumor spatial transcriptome and discover more hetero-
geneity within tumours than was found using other meth-
ods, thereby providing a theoretical foundation for the de-
velopment of targeted treatment strategies.

DeepST works well on various spatial omics data independent
of platforms

Aside from the 10 × Genomics Visium platform, we inves-
tigated the generalization ability of DeepST on imaging-
based molecular data (MERFISH (11), 4i (9) and MIBI-
TOF (10)) and high-resolution ST data (Stereoseq (3) and
SlideseqV2 (2)). We first applied DeepST to 4i (itera-
tive indirect immunofluorescence imaging) data that mea-
sured 40 protein reads in high-throughput biological sam-
ples from the millimeter to nanometer scale (∼270 000
observations/pixels), here only use partial molecular data
for spatial domain identification (Supplementary Figure
19A, 25 415 observations). DeepST delineates a more de-
tailed subcellular distribution to the local area than SEDR
and stLearn, including various compartments, organelles
and cellular structures within each cell (Figure 5A and Sup-
plementary Figure 19A; DeepST ARI = 0.610, stLearn
ARI = 0.557 and SEDR ARI = 0.468). Similarly, we ap-
plied DeepST to another imaging-based molecular MIBI-
TOF data, which imaged 36 labeled antibodies with histo-
chemical staining and endogenous elements (3309 pixels).
DeepST reveals partial regional continuity and local ele-
ment fusion on the four imaging results (Figure 5C and
Supplementary Figure 19C–E), which is almost compatible
with original annotation (10) (DeepST piont8 ARI = 0.524,
SEDR point8 ARI = 0.453).

Following that, we evaluated the performance of DeepST
on ST data at approximately single-cell resolution. DeepST
shows regional continuity, such as the ‘DentatePyramids’
and ‘Endothelial Tip’ cell-type annotations, in SlideseqV2
data (41 786 sub-cells and 4000 genes) of mouse hip-
pocampus (Figure 5B). This result is also presented in
SEDR algorithm, but it is truncated in the annotation
‘CA1 CA2 CA3 subiculum’ (corresponding to domains 3

and 4; Figure 5B and Supplementary Figure 19B). The al-
gorithm design of DeepST promotes adjacent points to be-
long a same domain. DeepST presents stronger domain re-
gionality and continuity than ground truth (annotated by
A. Goeva and E. Macosko (50)), which may result in low
ARI values. Interestingly, DeepST (with DAN) is also capa-
ble of processing 3D information, such as MERFISH data
from mouse preoptic hypothalamus, but most spatial algo-
rithms may be unable to handle these 3D data owing to re-
peated spatial coordinates (X and Y). DeepST integrated
three consecutive batches of imaging data, clearly decipher-
ing the ‘Ependymal’ and ‘OD Mature’ 3D expression do-
mains (Figure 5D, –14.0 ARI = 0.697), and batch process-
ing provides a clearer 3D molecular structure distribution
than single spatial domain identification (Supplementary
Figure 20).

We also validated the performance of DeepST on Stere-
oseq chips (∼11.72 mm2) of mouse olfactory bulb. DeepST
accurately identified the rostral migratory stream, olfac-
tory nerve layer, internal plexiform layer, glomerular layer,
mitral cell layer, granule cell layer and external plexiform
layer, matching the known anatomical characteristics (Fig-
ure 5E). DeepST exhibits a finer layered distribution and
a higher domain silhouette coefficient score than SEDR.
We further analyzed DEGs between domains of DeepST,
and discovered particular lamellar distribution genes (Pcp4,
Slc17a7 and Sox11; Figure 5F), which are consistent with
previously reported assessments of specific genes in mouse
olfactory bulb dataset (2,51). Finally, we integrated mouse
olfactory bulb datasets from two ST technologies (10 × Ge-
nomics Visium and Stereoseq). From the results, the vari-
ability of platform data is substantially higher than that of
batches. DeepST demonstrated greater domain fusion than
SEDR, Harmony (17) and Scanorama (18) (Figure 5G). At
the same time, DeepST preserves a significant amount of bi-
ological material (Supplementary Figure 21; Pcp4 and Nrgn
in cluster 4, Ptn in cluster 3).

DISCUSSION

In this paper, we propose DeepST, a deep learning frame-
work that integrates spatial location, histology, and gene
expression to model spatially embedded representations to
identify spatial domains with similar expression and histol-
ogy. DeepST can not only accurately identify the spatial do-
main and correct batch effects, but can also be adapted to
different ST platforms such as MERFISH, Slide-seq and
Stereo-seq. Likewise, DeepST has shown the potential to
process other spatial omics data (4i and MIBI-TOF; Figure
5A, C). Being applied to a breast cancer ST dataset, DeepST
can dissect spatial domains in cancer tissue at a finer scale.

The model construction of DeepST is flexible. First, it
offers a variety of graph neural network types for users
to choose, such as RGCNConv and GCNconv. Second,
DeepST offers the user multiple preset choices of different
ST platforms in the options of parameters. Last, the pa-
rameter adjustment of the adjacent graph of DeepST allows
users to decide different weights to spatial information, so
that spatial domains can be accurately discerned. Besides,
DeepST is computationally fast and memory-efficient (Sup-
plementary Figure 1). In terms of model stability, we had
conducted multiple independent tests on DeepST, SpaGCN
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and SEDR, all of which employ unsupervised deep learn-
ing methods, and their ARI values showed that all three
algorithms were valid (average SEDR = 0.409 ± 0.01,
SpaGCN = 0.394 ± 0.03 and DeepST = 0.519 ± 0.01; Sup-
plementary Table 3), but DeepST demonstrated more con-
sistent spatial domains with ground truths (Supplementary
Material 1). However, the reproduced SpaGCN and SEDR
results had significant performance disparity from the orig-
inal papers, which might be related to hardware differences
and the convergence challenges of unsupervised methods.
We can utilize random seeds as constraints for the direc-
tionless convergence of unsupervised deep learning meth-
ods, but this removes the ability to determine the optimal
convergence point. Therefore, the applicability of the model
and the necessity for convergence stability must be further
considered in our future work.

Rapid advances in ST technology can measure large num-
ber of cells through high spatial resolutions, which result in
the explosion of ST data. therefore, it is a great challenge to
propose new methods to mine the increasing ST data. Com-
putational methods employing GNN require large memory
to load the entire graph, which inhibits their application to
very large datasets. Therefore, it is an important research
topic to optimize memory efficiency through the way of
GNN mini-batch, parallel techniques, or even distributed
learning systems. The other topic could be an integration
of data from spatial omics and snRNA-seq data to further
optimize the resolution of ST results and achieve automatic
annotation for spatial domains.

In summary, DeepST is a novel promising approach to
build an augmented representation of each spot to identify
the spatial domain. As more ST data are generated, we ex-
pect that DeepST will facilitate the discovery of new princi-
ples on cellular organization in a spatial context.

DATA AVAILABILITY

The code for the DeepST algorithm, and a detailed tutorial
are available at https://github.com/JiangBioLab/DeepST.

All datasets used in this paper are published datasets
available for download. (1) Human DLPFCs within the
spatialLIBD (23) (http://spatial.libd.org/spatialLIBD);
(2) Human breast cancer and mouse brain tissue
sections datasets (https://support.10xgenomics.com/
spatial-gene-expression/datasets); (3) 4i dataset and
MIBI-TOF (https://github.com/scverse/squidpy); (4)
Stereo-seq dataset for mouse olfactory bulb tissue
(https://github.com/BGIResearch/stereopy); and (5) Addi-
tional publicly available raw datasets from the spatialDB
(52) (https://www.spatialomics.org/SpatialDB/).
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