Table 2.
Sensitivity (Precision) | PPV (Recall) | F-score | PRC Area | |
---|---|---|---|---|
| ||||
Logistic regression | ||||
Risk Model 1 | 0.794 | 0.64 | 0.709 | 0.736 |
Risk Model 2 | 0.812 | 0.652 | 0.723 | 0.756 |
Risk Model 3 | 0.833 | 0.683 | 0.751 | 0.774 |
Risk Model 4 | 0.837 | 0.694 | 0.759 | 0.812 |
Random Forest | ||||
Risk Model 1 | 0.896 | 0.692 | 0.781 | 0.818 |
Risk Model 2 | 0.909 | 0.693 | 0.786 | 0.84 |
Risk Model 3 | 0.918 | 0.707 | 0.799 | 0.845 |
Risk Model 4 | 0.927 | 0.721 | 0.811 | 0.864 |
Bayes Network | ||||
Risk Model 1 | 0.721 | 0.643 | 0.680 | 0.71 |
Risk Model 2 | 0.749 | 0.708 | 0.728 | 0.757 |
Risk Model 3 | 0.815 | 0.72 | 0.765 | 0.795 |
Risk Model 4 | 0.827 | 0.762 | 0.793 | 0.836 |
SVM | ||||
Risk Model 1 | 0.801 | 0.675 | 0.733 | 0.765 |
Risk Model 2 | 0.82 | 0.687 | 0.748 | 0.784 |
Risk Model 3 | 0.902 | 0.697 | 0.786 | 0.807 |
Risk Model 4 | 0.922 | 0.731 | 0.815 | 0.821 |
Naïve Bayes | ||||
Risk Model 1 | 0.702 | 0.65 | 0.675 | 0.688 |
Risk Model 2 | 0.721 | 0.677 | 0.698 | 0.701 |
Risk Model 3 | 0.692 | 0.661 | 0.676 | 0.682 |
Risk Model 4 | 0.702 | 0.682 | 0.692 | 0.684 |
Note: PPV: positive predictive value; PRC: precision-recall curve; SVM: support vector machine