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Abstract
Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recom
bination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9’s 
zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between 
species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations 
remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles 
identified to date, and pose a particularly powerful system for addressing this open question. We employed a coales
cent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary pat
terns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple 
populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals 
several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and 
populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most 
hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between sur
veyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence 
for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our 
findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and 
underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
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Introduction
Recombination is an important evolutionary mechanism 
for generating genetic diversity and a crucial meiotic pro
cess. At least one crossover per chromosome is required 
for proper synapsis and segregation of homologous chro
mosomes during the first meiotic division, with too few, 
too many, or improperly positioned crossovers resulting 
in the production of aneuploid gametes (Hassold and 
Hunt 2001; Ferguson et al. 2007). Despite its critical im
portance for faithful genome transmission, recombination 
rates show extreme variation between species, between 
populations, and among individuals. Recent studies have 
demonstrated that a significant proportion of this vari
ation is under genetic control and have also identified en
vironmental variables that contribute to recombination 
rate plasticity (Hunt et al. 2003; Hunter et al. 2016; 
Henderson and Bomblies 2021; Belmonte-Tebar et al. 
2022). However, the evolutionary forces that shape recom
bination rate variation in nature remain largely enigmatic.

In many mammals, including mice and humans, recom
bination is sexually dimorphic. For example, in humans, fe
males have higher average crossover counts than males, 
whereas males exhibit stronger enrichment of crossovers 

near the telomeric ends of chromosomes (Kong et al. 
2002; Paigen et al. 2008). These sex differences in recom
bination rate and distribution are also observed in most in
bred lab strains of house mice (Dumont and Payseur 
2011a). Intriguingly, however, a select number of inbred 
mouse strains have recently been identified that exhibit 
a reversal in the usual direction of the sex dimorphism. 
In strains PWD/PhJ and MSM/MsJ, females have lower re
combination rates than males (Peterson and Payseur 
2021). These discordant findings suggest that the direc
tionality of the sex dimorphism for recombination rate 
can also evolve rapidly, potentially driven by sex-specific 
selection for distinct recombination rates in male and fe
male meiosis (Dumont and Payseur 2011b). However, as 
no studies have yet surveyed male and female recombin
ation rates in outbred wild mouse populations, it remains 
unclear whether the higher male recombination rates ob
served in strains like PWD/PhJ and MSM/MsJ are mere ar
tifacts of inbreeding.

In addition to varying between genomes, recombin
ation rates are also heterogeneous within genomes. On 
the scale of megabases, mammalian recombination rates 
tend to be elevated near telomeres and suppressed in het
erochromatic centromeric regions (Nachman and 
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Churchill 1996; Kong et al. 2002; Jensen-Seaman et al. 
2004). On broad scales, recombination rates also co-vary 
with respect to numerous genomic features, including 
gene density, GC content, proximity to transcription start 
sites (TSSs), and repetitive DNA (Kong et al. 2002; 
Jensen-Seaman et al. 2004; Buard and de Massy 2007; 
Brick et al. 2012). In many species, including mammals, 
the fine-scale recombination landscape is dominated by 
the positioning of small 1–5 kb recombination “hotspots”. 
Virtually all recombination events concentrate into hot
spots, meaning that most of the genome is recombination
ally inert and never participates in recombination 
(McVean et al. 2004).

In many mammals, the location of recombination hot
spots is defined by the zinc finger protein Prdm9 (Baudat 
et al. 2010; Myers et al. 2010; Parvanov et al. 2010). PRDM9 
localizes to specific DNA-binding sequences recognized by 
its zinc finger domain. Once bound, PRDM9 trimethylates 
local histones at both H3K4 and H3K36 (Powers et al. 
2016). This epigenetic signature is sufficient to recruit 
the double-strand break (DSB) machinery to the site to ini
tiate a cascade of DNA repair events that culminate in the 
formation of crossovers or non-crossover gene conversion 
events (Diagouraga et al. 2018). Comparative genomic in
vestigations have revealed that the zinc finger array of 
Prdm9 evolves rapidly, leading to abrupt changes in the 
suite of PRDM9 binding sequences across the genome 
and concomitant shifts in the fine-scale genomic distribu
tion of recombination hotspots (Oliver et al. 2009; Baker 
et al. 2017). As a result, recombination hotspots exhibit 
minimal conservation between species (Stevison et al. 
2016), although there are appreciable levels of hotspot 
sharing between human populations (Spence and Song 
2019; Alleva et al. 2021).

While recent investigations in lab mice have shed light 
on the molecular mechanisms of PRDM9 action and de
fined strain differences in PRDM9-dependent recombin
ation hotspot distribution (Brick et al. 2012; Powers et al. 
2016; Grey et al. 2018), the question of how Prdm9 allelic 
variation shapes the landscape of recombination in wild 
populations remains less well understood. More than 
150 Prdm9 alleles have been characterized in wild mice 
to date, with most alleles restricted to single populations, 
few shared between subspecies, and no single-dominant 
allele (Buard et al. 2014; Kono et al. 2014; Vara et al. 
2019). These aspects of the population genomic distribu
tion of Prdm9 allelic variation largely contrast with 
PRDM9 diversity in human populations, which is domi
nated by a few alleles that are broadly shared across popu
lations (Alleva et al. 2021). The unique landscape of mouse 
Prdm9 variation predicts substantial population and sub
species level diversity in the fine-scale distribution of re
combination hotspots, beyond that observed in humans.

Local variation in recombination—and in particular the 
location of hotspots—within a population can exert pro
found effects on population evolution and diversity. For 
one, recombination influences haplotype diversity within 
populations by shuffling alleles between homologous 

chromosomes. In addition, by breaking down associations 
between high fitness alleles and linked deleterious variants, 
recombination can reduce selective interference and ex
pedite the fixation of adaptive alleles (Crow and Kimura 
1965; Maynard Smith 1971). All else being equal, an adap
tive variant that arises in a high recombination rate region 
is expected to reside on a shorter haplotype and encounter 
less selective interference than a high fitness allele that 
emerges in a recombination coldspot (Hey 2004). 
Conversely, the extent of the reduction in flanking diver
sity accompanying selection against a deleterious allele de
pends on the local recombination rate and the precise 
positioning of hotspots (Charlesworth et al. 1993). Thus, 
knowledge of the fine-scale recombination landscape is es
sential for a holistic interpretation of standing patterns of 
population diversity.

Multiple approaches for measuring fine-scale recombin
ation rates have been developed, each offering distinct 
strengths and weaknesses. Bulk genotyping of sperm 
from single individuals can reveal the frequency of recom
binant haplotypes at targeted loci (Jeffreys et al. 2001, 
2004). While this approach is highly sensitive and can be 
readily scaled to multiple samples, it cannot be used to 
comprehensively interrogate fine-scale recombination 
rates genome-wide, nor can it be adapted to probe female 
recombination rates. Modern single-cell technologies can 
be used to ascertain the recombination landscape in 
sperm and oocytes from single individuals (Wang et al. 
2012; Hou et al. 2013; Ottolini et al. 2015; Dréau et al. 
2019; Hinch et al. 2019; Bell et al. 2020). However, these 
methods remain prohibitively expensive to apply to large 
numbers of samples, barring their application at the popu
lation scale. Bulk sequencing of DNA fragments bound to 
recombination-associated proteins provides a third strat
egy for surveying the fine-scale landscape of meiotic re
combination (Smagulova et al. 2011; Khil et al. 2012; 
Lange et al. 2016). However, this approach is similarly 
cost- and time-prohibitive at scale. A fourth strategy uti
lizes dense genotype data from parent and offspring trios 
to identify crossovers between generations (Halldorsson 
et al. 2019; Li et al. 2019). This approach requires a very 
large number of samples related through known pedigrees, 
again presenting cost and feasibility limitations.

A fifth approach for defining the fine-scale recombin
ation landscape relies on population genomic analyses of 
whole-genome sequences or dense SNP data from popula
tion samples. This approach is premised on the insight that 
the level of linkage disequilibrium (LD) between two loci in 
a given population offers a read-out of the historical rate of 
recombination between those sites (McVean et al. 2004). 
Thus, by surveying patterns of genetic variation in contem
porary populations, one can obtain estimates of the 
population-scaled recombination rate, rho (ρ), between 
every pair of segregating sites in the genome, yielding the 
finest possible recombination map resolution. These esti
mates reflect the cumulative recombination activity of all 
individuals in the population and over the history of the 
population, and therefore provide a time- and sex-averaged 
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portrait of fine-scale recombination activity. However, as 
non-pseudoautosomal regions (PAR) of the X chromosome 
only engage in recombination in the female germline, con
trasts between recombination rates on the non-PAR X 
and autosomes, which recombine in both sexes, may be 
especially informative about sex differences in meiotic 
recombination.

Here, we use the program LDhelmet (Chan et al. 2012) to 
generate broad- and fine-scale genome-wide recombination 
maps from patterns of LD in whole-genome sequences 
of wild-caught mice from nine geographically isolated 
locations (Davies 2015; Harr et al. 2016). Our surveyed 
populations include multiple populations from each of the 
three principal house mouse subspecies: M. m. domesticus 
(Germany, Iran, two populations from France), Mus musculus 
musculus (Kazakhstan, Afghanistan, Czech Republic), and 
M. m. castaneus (India, Taiwan). We then use these maps 
to address several outstanding questions. First, do levels of 
broad-scale recombination rate divergence scale with popu
lation and subspecies divergence? Second, what is the extent 
of fine-scale recombination rate variation and hotspot 
sharing among wild house mouse populations and subspe
cies? Third, is there evidence for population differences in 
the polarity of sex dimorphism for recombination rate? 
Taken together, our findings provide a window into the evo
lutionary history of fine- and broad-scale recombination rates 
in wild house mice, extending insights gleaned from inbred 
mouse strains and exposing the functional consequences of 
the exceptional Prdm9 diversity in M. musculus.

Results
Sequencing Data Summary, Switch-error Rates, and 
Method Validation
We utilized publicly available whole-genome sequences 
from wild-caught mice from nine geographic locations 
to derive population-specific recombination maps and in
fer hotspot locations (Davies 2015; Harr et al. 2016). We re
fer to the nine populations as: mAfghanistan, mCzechia, 
mKazakhstan, dIran, dGermany, dFrance_1, dFrance_2, 
cTaiwan, and cIndia, with the leading letter denoting the 
primary subspecies designation of each population (m: 
musculus; d: domesticus; c: castaneus). After quality control 
filtering, 7,908,349 (mAfghanistan) to 40,890,538 (cIndia) 
SNPs were identified per population (mean: 17,427,800 
SNPs), corresponding to approximately one SNP per 
∼60–300 bp, on average (Table 1).

SNPs were computationally phased into haplotypes (see 
Materials and methods). Errors in haplotype inference will 
masquerade as recombinants and may artificially inflate 
estimates of the population-scaled recombination rate, ρ. 
To assess the incidence of such haplotype “switch-errors” 
in our data, we randomly paired the phase-known X 
chromosome haplotypes from sequenced males to gener
ate pseudo-females which we then used to directly bench
mark the switch-error rate in most populations (see 
Materials and methods). On average across populations, 

the switch-error rate is 0.25%, and ranges from 0.04% to 
0.79% between populations (Table 1). These error rates 
are comparable to or lower than those reported in prior 
investigations (Booker et al. 2017; Shanfelter et al. 2019).

The nine surveyed mouse populations have experienced 
unique evolutionary histories and differ in sample size 
(6–20 samples). Prior studies have demonstrated that re
combination rate estimation may be biased when simplify
ing assumptions about population demographic history 
are not met and when sample sizes are small (Reed and 
Tishkoff 2006; Zaitlen et al. 2017; Dapper and Payseur 
2018; Raynaud et al. 2022; Samuk and Noor 2022). We 
performed a series of simulation analyses and confirm 
that ρ estimation and recombination hotspot inference 
are not significantly biased by distinct features of each 
population’s demographic past (Supplementary Text, 
Supplementary Material online). Further, results from si
mulations indicate that differences in sample size have lim
ited impact on the variance and accuracy of ρ estimates 
(Supplementary Text, Supplementary Material online). 
Taken together, these analyses provide solid justification 
for the use of LD-based methods of recombination rate es
timation in these mouse populations.

Population-scaled Recombination Rates Reflect the 
Demographic History of House Mouse
Across the nine surveyed populations, the mean ρ/bp esti
mate for all chromosomes ranged ∼12-fold (fig. 1), from a 
low of 0.0010037 ρ/bp (dGermany) to a high of 0.01233 ρ/ 
bp (cIndia). The average ρ value across autosomes ranged 
from 0.001032 (dGermany) to 0.012766 (cIndia) ρ/bp, 
while the ρ estimate for the X chromosome ranged from 
0.00114 (dGermany) to 0.0043 (mKazakhstan) ρ/bp. 
The mean ρ/bp for individual chromosomes from each 
population is provided in supplementary Table S1, 
Supplementary Material online.

House mice evolved from a common ancestral source 
population in the Indo-Iranian valley approximately 0.5 
MYA (Boursot et al. 1993). Mean ρ/bp estimates were 
2–12 times higher in mice collected from regions closest 
to this ancestral region (India, Iran, and Afghanistan) com
pared to more derived populations. These trends reflect, in 
large part, the higher historical effective population sizes of 
these ancestral populations (Lawal et al. 2021). Given the 
slight tendency to over-estimate population-scaled recom
bination rates when the true ρ/bp is low (<0.002) and when 
switch-error rates are moderately high (>0.46%) (Booker 
et al. 2017), estimates for several populations may be weak
ly inflated (mCzechia, dGermany, dFrance_1, dFrance_2, 
cTaiwan). Thus, the magnitude of reported population 
differences in ρ/bp is potentially conservative.

Weak Conservation of Broad-scale Recombination 
Maps Across Mus musculus Populations and 
Subspecies
To compare recombination rates across these nine popu
lations of mice, we first translated recombination rate 
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estimates from ρ/bp to cM/Mb units and averaged the re
sulting rate estimates over windows ranging in size from 1 
to 10 Mb (1 Mb increments; LDhelmet block penalty = 100; 
see Materials and methods). We observe the highest correl
ation between maps computed using 6 Mb intervals 
(supplementary fig. S1, Supplementary Material online), im
plying maximum population-level conservation of recom
bination rates at this physical scale. Subsequent analyses 
focus on these 6 Mb broad-scale maps.

We next assessed the similarity of recombination rates in 
6 Mb windows between each pair of wild mouse populations. 
Map correlations are expected to decline with genetic diver
gence (Stevison et al. 2016), and we anticipated that recom
bination maps would exhibit greater similarity between 
populations of the same M. musculus subspecies, relative to 
populations from different subspecies. Average map correla
tions were 0.4 (Range: 0.36–0.48), 0.31 (Range: 0.29–0.32), and 
0.40 for comparisons within domesticus, musculus, and casta
neus, respectively (Spearman’s ρ; all comparisons, P = 1 × 
10−5; fig. 2). However, in contrast to our expectations, the 
average correlation between recombination maps for inter- 
subspecies comparisons was of identical magnitude (mean 
Spearman’s ρ = 0.35, all with P = 1 × 10−5; fig. 2). The map 
comparisons between dIran and cIndia yielded the highest 
correlation (Spearman’s ρ= 0.61, P = 1 × 10−10), potentially 
reflecting the ancestral identity of these populations. 
Examples of the magnitude of spatial and population vari
ation in broad-scale recombination rates are presented in 
figures 3A-E. Correlations for individual chromosome com
parison at 6 Mb intervals are presented in supplementary 
Table S2, Supplementary Material online.

To determine if these inter-population correlations in 
broad-scale recombination rates are higher than expected 
by chance, we randomly permuted ρ/bp estimates in 6 Mb 
windows across the whole-genome and re-assessed corre
lations between populations. The mean permutation- 
based correlation across population pairs ranged from 
−0.01 to 0.007. In 100 permutation replicates per compari
son, correlations never exceeded the values recovered 
from the actual maps (P < 0.01). In summary, the strength 
of observed correlations between M. musculus broad-scale 
maps do not scale with population and subspecies diver
gence, but nonetheless remain significantly higher than ex
pected by chance.

To ensure the robustness of our approach for broad- 
scale map construction, we compared our 6 Mb 
chromosome-level map for cIndia to a previously generated 
recombination map for this population (Booker et al. 2017). 
Despite differences in methodology (see Materials and 
methods) and use of different genome builds (mm9 vs. 
mm10), concordance between these autosome broad-scale 
maps is excellent (mean Spearman ρ across chromosomes 
= 0.9; per chromosome range 0.78–0.99; P < 0.05; fig. 3F). 
The X chromosome was only weakly correlated between 
these maps (ρ=0.28; P = 0.2), potentially reflecting signifi
cant changes to the X between reference genome builds.

Finally, we assessed the impact of the specified block pen
alty parameter on the magnitude of map correlations. The 
block penalty determines the granularity of spatial recombin
ation rate variation in LDhelmet, with a high block penalty 
yielding a more smoothed map. We constructed “fine-scale” 
maps for each population by invoking a low block penalty 
(block penalty = 10) to allow for the detection of increased 
local recombination rate heterogeneity. Due to the rapid evo
lutionary turnover of recombination hotspots, we expected 
to recover reduced correlations in these fine-scale map com
parisons relative to comparisons between our broad-scale 
maps (block penalty = 100). In line with these predictions, 
most inter-population fine-scale map comparisons exhibited 
weaker correlation than the corresponding broad-scale map 
comparisons (28/36 comparisons), although the difference in 
correlation magnitude is modest (fig. 2). Correlation magni
tudes are similar for all within subspecies fine-scale map com
parisons (Spearman’s ρ = 0.37, 0.36, and 0.39 for domesticus, 
musculus, and castaneus, respectively; all P = 1 × 10−10), and 
comparable to the strength of observed correlations for inter- 
subspecies fine-scale map comparisons (average Spearman’s 
ρ = 0.37; all P = 1 × 10−10).

Recombination Events Consolidate into a Highly 
Restricted Subset of the Genome
In humans and great apes, the majority of recombination 
events (∼80%) occur in roughly 20% of the genome in hu
mans (McVean et al. 2004). This inequality can be summar
ized by the Gini coefficient, with values of 0 corresponding 
to uniform distribution of recombination, and a Gini coeffi
cient of 1 indicating the extreme situation where all 

Table 1. Whole-Genome Sequence Data Summary.

SubSpecies Population Source # Samples # Males # SNPs SNP density (bp/SNP) Switch-error Rate (%)

Castaneus India a 10 3 40,890,538 60 0.24
Castaneus Taiwan b 20 1 25,549,656 96 na
Domesticus Iran a 8 8 17,877,283 138 0.039
Domesticus Germany a 11 9 11,930,888 206 0.056
Domesticus France_1 a 8 8 11,108,085 222 0.081
Domesticus France_2 b 20 10 14,120,193 174 0.18
Musculus Afghanistan a 6 5 7,908,349 311 0.79
Musculus Czechia a 8 2 10,208,203 241 na
Musculus Kazakhstan a 8 4 10,937,288 225 0.34

aHarr et al. 2016. 
bDavies 2015.
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recombination occurs at a single locus. Gini coefficients for 
human recombination maps range from 0.688 to 0.771 
(Stevison et al. 2016), depending on population, indicating 
that recombination events are indeed highly skewed towards 

a small fraction of the genome. We find that M. musculus re
combination events are distributed even more nonrandomly 
across the genome, with Gini coefficients ranging from 0.79 
to 0.95 across populations (fig. 4). The two M. m. castaneus 

FIG. 2. Heat map of mean Spearman’s rank correlation values for all inter-population whole-genome recombination map comparisons. 
Correlations between maps constructed with a block penalty of 10 presented above the diagonal (less stringent map; “fine-scale”), and correla
tions between maps constructed under a block penalty of 100 shown below the diagonal (more conservative map; “broad-scale”). Correlations 
within the black boxes are within subspecies comparisons.

FIG. 1. Estimated ρ/bp for each chromosome and population. The mean ρ of all 20 chromosomes is summarized as a box-and-whisker plot. Box 
width corresponds to the interquartile range and the solid black line denotes the median.
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FIG. 3. Comparisons of broad-scale recombination maps across M. musculus populations in cM/Mb units. (A) Chromosome 10 for all 
M. m. musculus populations, (B) chromosome 10 for all M. m. castaneus populations, (C ) chromosome 10 for all M. m. domesticus populations, 
(D) chromosome 10 for only the two M. m. domesticus populations from France, (E) chromosome 10 for the two most highly correlated popula
tions, cIndia and dIran, and (F ) a comparison of the chromosome 5 cIndia map with the map generated from the same data by Booker et al. 
Chromosome 5 was selected for (F ) because the Spearman’s correlation for this chromosome is similar to the mean correlation for all chromo
somes. Spearman’s Rho and associated P values only shown for panels with one comparison.

FIG. 4. Recombination events occur in a very small faction of the M. musculus genome. (A) The cumulative distribution of recombination events 
per mouse population are plotted as a Lorenz curve, with the diagonal line representing a uniform distribution. (B) Gini coefficients for each 
mouse population.
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populations exhibit the lowest Gini coefficients, with cIndia 
presenting a notable outlier. However, it should be noted 
that larger effective population sizes are typically associated 
with smaller Gini coefficients (Auton et al. 2013). It is thus un
clear whether this trend reflects a true difference in recom
bination distribution between populations or is an artifact 
of the large effective population size of the cIndia population 
(Lawal et al. 2021).

Hotspot Identification
We used two approaches to comprehensively identify his
torical recombination hotspots in each surveyed wild 
mouse population (see Materials and methods). Briefly, 
the “sliding window” hotspot method, which has been 
used in prior analyses (Booker et al. 2017; Shanfelter 
et al. 2019), tests whether the ρ estimate of every genomic 
window of a pre-defined, fixed length is significantly great
er than the population-scaled recombination rate of the 
flanking regions. If so, such regions are identified as hot
spots. This approach fails to fully leverage the high density 
of SNPs in whole-genome sequencing datasets and may 
over-estimate hotspot size. To circumvent these potential 
shortcomings, we developed a second approach (the “fil
tering” method) which identifies hotspots as inter-SNP in
tervals with ρ/bp estimates at least 10-fold higher than the 
chromosome-wide mean ρ/bp. Adjacent intervals meeting 
these criteria are merged into a single candidate hotspot, 
with hotspots defined by >2 SNPs and <5 kb in length re
tained. We note that this approach bears conceptual simi
larity to at least one previously developed method of 
hotspot identification (Wall and Stevison 2016).

Using the sliding window method, we identified a total of 
225,605 hotspots across all wild mouse populations, with a 
mean of 25,067 hotspots per population (Table 2). Using 
the filtering method, we identified 214,717 total hotspots, 
with an average of 23,857 hotspots per population (see 
supplementary Table S3, Supplementary Material online). 
These numbers align with prior experimental and LD-based 
estimates of hotspot number in Mus musculus (Brunschwig 
et al. 2012; Smagulova et al. 2016; Booker et al. 2017).

We next evaluated the extent of hotspot overlap be
tween our two hotspot calling methods and defined key 
features of hotspots identified by these two approaches 
(Table 2). Of the 225,605 hotspots identified by the sliding 
window approach, 115,978 (51.4%) were not called using 
our filtering method (minimum 1 bp overlap; 109,627 hot
spots (48.6%) are shared between the two methods). Of 
the 214,717 filtered hotspots, 100,061 (46.6%) are uniquely 
ascertained by this approach (114,656 filtered hotspots 
(53.4%) were also identified by the sliding window meth
od). Of the 114,656 filtered hotspots that overlap with a 
sliding window hotspot, 9,808 (8.6%) showed only partial 
overlap. Conversely, all sliding window hotspots overlap
ping a filtered hotspot showed complete overlap with 
the filtered hotspot.

Mean hotspot length was 1,851 bp for all sliding win
dow hotspots versus 637 bp for filtered hotspots. 

Discounting hotspots detected by both methods, the 
mean length of sliding window hotspots was reduced to 
1,795 bp and to 384 bp for filtered hotspots. The average 
recombination rate for the sliding window hotspots was 
0.16 ρ/bp, but only 0.08 ρ/bp for hotspots uniquely called 
by this method. Hotspots identified by the filtering meth
od were considerably “hotter” and averaged 0.38 ρ/bp (0.2 
ρ/bp for hotspots unique to this method). This distinction 
is likely due to the smaller size of filtered hotspots, which 
excludes the dampening impact of recombinationally inert 
flanking sequences, as well as the strict threshold for detec
tion (ρ/bp >10 × the entire chromosome).

Assessing Hotspot Conservation Between 
Populations
The rapid evolution of Prdm9 can lead to wholesale shifts 
in the fine-scale distribution of recombination hotspots 
between populations and species. Thus, in species with 
PRDM9-directed hotspots, geographically isolated popula
tions with distinct Prdm9 alleles are expected to have rela
tively few shared hotspots.

We first combined our sliding window and filtered hot
spots into a single dataset per population by merging adja
cent hotspots and those overlapping by ≥1 bp. We then 
analyzed how many hotspots were conserved between 
the nine surveyed wild M. musculus populations. 
Remarkably, only 3.26–15% of hotspots overlap in pairwise 
population-level comparisons (≥1 bp overlap; mean 5.95%; 
fig. 5). Similarly, only 1.49–6.23% of hotspots had at least 
50% overlap in the pairwise population-level comparisons 
(mean 2.9%), indicating that very few hotspots share any 
substantial overlap. Comparisons of any combination of 
the dGermany, dFrance_1, or dFrance_2 mice yielded the 
highest hotspot conservation, potentially reflecting the 
presence of currently or previously shared Prdm9 alleles 
in these recently diverged populations (Buard et al. 2014; 
Lawal et al. 2021). However, while overlap between popula
tions was always numerically low, the number of observa
tions is greater than chance expectation (Chi-square test 
compared with randomly simulated “hotspots”, P ≪ 1 × 
10−10). Thus, a minor proportion of hotspots is conserved 
between populations from the same subspecies.

Very few hotspots are conserved at the subspecies or 
species levels (using >50% overlap as the criterion). A total 
of 633 hotspots were shared among all four M. musculus 
domesticus populations, and 617 were shared across the 
three M. m. musculus populations. The two surveyed M. 
musculus castaneus populations share 4,653 hotspots. 
Only four hotspots were common to all populations and 
subspecies.

Hotspot Overlap With Lab Strain DSB Hotspots
Our analyses reveal minimal hotspot sharing between wild 
house mouse populations and subspecies. Classical lab in
bred strains were initially derived from a limited number of 
wild-caught founder animals and therefore capture a nar
row range of the Prdm9 allelic diversity present in nature 
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(Yang et al. 2011). We sought to determine whether con
temporary meiotic DSB positions in diverse inbred strains 
overlap significantly with the ancestral hotspots discov
ered in wild mice. To this end, we compared our datasets 
of combined filtered and sliding window hotspots to the 
positions of DSB hotspots in male 13R, B6, C3H (all 
M. m. domesticus), CAST (M. m. castaneus), MOL 
(M. m. molossinus, a hybrid between castaneus and muscu
lus), and PWD (M. m. musculus) inbred mice (Smagulova 
et al. 2016). Because some overlap is expected by chance, 
significance was determined by assessing overlap between 
observed DSB hotspots and simulated “randomspots” (See 
Materials and methods; supplementary Table S4, 
Supplementary Material online). Overall, we observe an 
appreciable rate of overlap between DSB hotspots in a gi
ven strain and LD-based hotspots ascertained in wild po
pulations from that subspecies (fig. 6; supplementary 
Table S4, Supplementary Material online). For example, 
∼30% of C3H DSB hotspots overlap with LD-hotspots in 
the two dFrance and dGermany mouse populations of 
M. m. domesticus (4.66–6.69% overlap expected by 
chance). Similarly, we observe ∼20% overlap between 
CAST DSB hotspots and LD-hotspots in the cTaiwan 
population (5.32–6.17% overlap expected by chance) 
and ∼30% overlap between PWD DSB-hotspots and 
LD-hotspots in the mCzechia population (4.2–4.9% over
lap expected by chance). Thus, the Prdm9 alleles present 
in modern lab mice have left appreciable footprints in pat
terns of LD and the distribution of recombination hotspots 
in wild mouse populations.

The Genomic Distribution of Hotspots With Respect 
to key Sequence Features
Mouse recombination rates are nonrandomly distributed 
with respect to multiple genomic features, including re
duced recombination rates in repetitive elements 
(Jensen-Seaman et al. 2004) and sequestration of recom
bination hotspots away from TSSs (Brick et al. 2012; 
Arbeithuber et al. 2015). To confirm these genomic asso
ciations, we compared the relative density of different 
classes of repetitive elements in hotspots versus coldspots 
and tested the extent of hotspot overlap with TSSs. 
Regardless of the hotspot calling method, almost all repeti
tive elements were proportionately more abundant in 
coldspots than hotspots (Fisher’s Exact test; P < 0.05; 
Supplementary File 5, Supplementary Material online), 
consistent with some studies (Jensen-Seaman et al. 2004; 
Spence and Song 2019), but in notable contrast to others 
(e.g., Yamada et al. 2017).

On average, 6% (2.7%) of the sliding window (filtered) 
hotspots overlapped a TSS. To determine whether this per
centage differs from what can be expected by chance, we 
simulated “randomspots” across the genome, matching 
the number and length of observed hotspots in each 
population. These simulations were repeated 100 times, 
and the percentage of randomspots overlapping a TSS 
in each simulation run was recorded. Adopting a Ta

bl
e 

2.
 H

ot
sp

ot
 C

ou
nt

s 
an

d 
G

en
er

al
 C

ha
ra

ct
er

ist
ic

s.

Po
pu

la
ti

on
Sl

id
in

g 
W

in
do

w
 H

ot
sp

ot
s

U
ni

qu
e 

Sl
id

in
g 

W
in

do
w

 H
ot

sp
ot

s
Fi

lt
er

ed
 H

ot
sp

ot
s

U
ni

qu
e 

Fi
lt

er
ed

 H
ot

sp
ot

s
Sh

ar
ed

 H
ot

sp
ot

s

N
um

be
r

M
ea

n 
Le

ng
th

 
(b

p)
M

ea
n 

ρ/
bp

N
um

be
r

M
ea

n 
Le

ng
th

 
(b

p)
M

ea
n 

ρ/
bp

N
um

be
r

M
ea

n 
Le

ng
th

 
(b

p)
M

ea
n 

ρ/
bp

N
um

be
r

M
ea

n 
Le

ng
th

 
(b

p)
M

ea
n 

ρ/
bp

N
um

be
r

M
ea

n 
Le

ng
th

 
(b

p)
M

ea
n 

ρ/
bp

m
A

fg
ha

ni
st

an
27

,8
49

2,
22

1
0.

34
13

,6
99

2,
23

3
0.

23
19

,4
94

1,
15

0
0.

76
5,

17
3

72
1

0.
46

14
,3

25
1,

24
9

0.
45

m
C

ze
ch

ia
20

,4
97

2,
05

6
0.

14
12

,8
38

2,
05

8
0.

08
12

,1
17

72
0

0.
37

4,
10

0
37

6
0.

12
8,

02
4

83
9

0.
24

m
K

az
ak

hs
ta

n
25

,1
82

1,
78

6
0.

1
15

,7
21

1,
73

1
0.

04
17

,4
63

46
6

0.
35

7,
26

0
28

0
0.

17
10

,2
13

57
1

0.
18

dI
ra

n
34

,4
07

1,
71

7
0.

21
15

,3
61

1,
62

3
0.

1
32

,4
19

57
2

0.
52

12
,7

43
35

3
0.

23
19

,6
79

68
9

0.
31

dG
er

m
an

y
20

,6
84

1,
89

1
0.

07
12

,1
44

1,
84

9
0.

03
14

,7
11

66
1

0.
14

5,
74

5
38

2
0.

06
8,

97
7

79
5

0.
12

dF
ra

nc
e_

1
22

,7
72

1,
93

8
0.

12
14

,4
26

1,
90

7
0.

07
13

,8
97

65
3

0.
32

5,
19

7
34

1
0.

13
8,

70
3

79
9

0.
22

dF
ra

nc
e_

2
23

,7
49

1,
87

5
0.

07
13

,1
79

1,
78

6
0.

03
19

,8
19

68
4

0.
15

8,
75

5
41

1
0.

08
11

,0
65

85
6

0.
12

cI
nd

ia
28

,1
90

1,
50

2
0.

31
7,

62
8

1,
40

5
0.

12
56

,1
34

36
7

0.
66

34
,6

91
25

6
0.

46
21

,4
44

53
2

0.
38

cT
ai

w
an

22
,2

75
1,

67
3

0.
08

10
,7

58
1,

56
5

0.
03

29
,0

22
46

3
0.

14
16

,5
20

33
9

0.
08

12
,5

18
58

5
0.

12

8

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac267#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac267#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac267#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac267#supplementary-data
https://doi.org/10.1093/molbev/msac267


Rapid Evolution of the Fine-scale Recombination Landscape · https://doi.org/10.1093/molbev/msac267 MBE

conservative focus on only those hotspots detected by 
both calling methods, four of the nine populations 
(mAfghanistan, mCzechia, dFrance_1, and cIndia) had 
greater hotspot overlap with TSSs than could be expected 
by chance (P < 0.05). The remaining five populations 
showed no hotspot enrichment with TSSs (P > 0.05). 
These results appear to contradict previous investigations 
using direct, empirical approaches for detecting meiotic 
double-strand breaks (the precursors to recombination), 
which have concluded that hotspots are directed away 
from TSSs in house mice (Brick et al. 2012). Methodological 
differences and inevitable false-positive hotspots in our data
set may account for these discrepancies. Regardless, we note 
that the proportion of hotspots that overlap TSS in wild 
house mice is significantly lower than the 20–30% observed 
in species that lack PRDM9-mediated hotspots (Auton 
et al. 2013; Singhal et al. 2015; Kawakami et al. 2017).

Analysis of sex-specific Recombination Rate
LDhelmet yields sex- and time-averaged estimates of re
combination rate. However, because most of the X 
chromosome only recombines in females, recombination 
rate comparisons between non-pseudoautosomal por
tions of the X (chrX:1–169Mb) and autosomes may pro
vide a glimpse into sex differences in recombination.

Assuming wild mouse populations are at Hardy– 
Weinberg equilibrium (HWE), the mean ρ/bp of the non- 
pseudoautosomal X chromosome is expected to be 
two-thirds the recombination rate of the autosomes, (as 
the X chromosome spends two-thirds of its time in fe
males). Remarkably, eight of the nine populations deviated 

from this expectation by more than 10% (fig. 7). In mice 
from cTaiwan, mCzechia, dGermany, dFrance_1, 
dFrance_2, and mKazakhstan, chrX recombination rates 
are higher than expected, suggesting that (i) overall recom
bination rates are elevated in females or (ii) that sex- 
specific demographic or selective histories have led to 
departures from HWE assumptions in these populations. 
Intriguingly, an opposite pattern is observed in the 
cIndia and dIran populations, with chrX recombination 
rates (ρ/bp) falling below the expected value relative to 
the autosomes. Only the mAfghanistan population had a 
chrX recombination rate similar to the expectation 
(69%). These findings suggest that variation in the polarity 
of sex dimorphism for recombination rate may exist in 
wild mouse populations.

Discussion
For decades, lab inbred mice have been used as models to 
understand the molecular mechanisms and extent of vari
ability in meiotic recombination. Indeed, studies in house 
mice helped lead to the initial discovery of Prdm9 and its 
roles in hotspot specification (Parvanov et al. 2010). 
However, despite this progress, very little is known about 
how fine-scale recombination landscapes vary or evolve 
in non-inbred, wild M. musculus. Here, we used a popula
tion genomic approach to construct recombination maps 
for nine diverse populations of wild mice. Through simula
tions, we demonstrate that our maps are largely robust to 
known departures from neutrality in these populations. 
Comparisons of both broad- and fine-scale recombination 
rate divergence between populations and subspecies 

FIG. 5. Few hotspots are shared between any two populations. The percentage of hotspots conserved between each population pair is shown as a 
heat map, with filtered hotspots displayed above the diagonal and sliding window hotspots below the diagonal. Comparisons within the black 
boxes are intra subspecies comparisons.
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indicate that the recombination landscape evolves rapidly 
in M. musculus populations.

We show that relative genetic divergence does not predict 
broad-scale recombination rate divergence. Broad-scale map 
comparisons between populations of the same subspecies 
versus comparisons between populations from distinct M. 
musculus subspecies yielded correlation values of similar mag
nitude. Our findings stand in contrast to predictions based on 
prior work. For example, Stevison et al. (2016) found that cor
relations between broad-scale recombination maps decline 
with sequence divergence between great ape species. The 

map correlations between house mouse populations are 
weaker than those reported between great apes, even 
though M. musculus subspecies and humans and chimpan
zees diverged similar numbers of generations in the past 
(∼500,000–1,000,000 generations) (Geraldes et al. 2011; 
Langergraber et al. 2012; Amster and Sella 2016; 
Phifer-Rixey et al. 2020). Taken together, these findings sug
gest that the broad-scale recombination landscape evolves 
more quickly in house mice than in great apes. This out
come may be attributable to taxon-specific differences in 
the chromosomal and chromatin-based constraints that 

FIG. 6. Wild mouse hotspots are more likely to overlap DSB hotspots of lab strains of the same subspecies. Panel (A) shows overlaps with C3H, a 
M. m. domesticus strain. Panel (B) shows overlap with CAST, a M. m. castaneus strain, and panel (C ) shows overlaps with PWD, a M. m. musculus 
strain. All values are adjusted by subtracting the amount of overlap expected by chance (see Materials and methods).

FIG. 7. Populations of wild house mice exhibit differences in scale and direction of sex dimorphism in recombination rate. The recombination rate 
of the non-PAR X chromosome was compared with the mean recombination rate of autosomes within each population and is expressed as a 
percentage of that mean. The expectation for the X chromosome (67%) is shown as a horizontal line.
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shape the broad-scale distribution of recombination 
events (Dumont 2017; Jabbari et al. 2019; Vara et al. 
2021), potential species differences in the intensity and dis
tribution of selection on recombination (Ritz et al. 2017), or 
differences in the environmental sensitivity of recombin
ation rates between great apes and mice. However, we 
also acknowledge that methodological differences be
tween studies, including sample sizes and SNP densities, 
could inflate the apparent differences between taxa ob
served here.

We also uncover potential evidence of population differ
ences in the magnitude and direction of sex dimorphism 
for recombination rate. Under a neutral Wright-Fisher 
model of evolution, mean X chromosome ρ is expected 
to equal two-thirds of the mean autosomal ρ. Only the 
mAfghanistan population matches this neutral expect
ation (fig. 7). For most surveyed populations (cTaiwan, 
mKazakhstan, mCzechia, dGermany, and dFrance_1 and 
2), the chrX ρ estimate exceeds neutral expectations based 
on the corresponding autosomal estimate. This result 
aligns with the common observation of higher global re
combination rates in mouse females compared with males 
(Paigen et al. 2008; Dumont et al. 2009). However, the ρ es
timates for chrX in the cIndia and dIran populations were 
less than expected based on the autosomal ρ estimates in 
these populations. Although higher female recombination 
rates present the dominant trend in inbred mouse gen
omes, cytogenetic investigations in inbred house mice 
have identified a select number of strains with higher 
male than female recombination rates (Peterson and 
Payseur 2021). Evidently, the polarity of sex dimorphism 
for global recombination rates can evolve rapidly. 
However, differences in demographic and selective history 
between males and females could bias X chromosome ρ es
timates, leading to incorrect inferences about relative re
combination rates between the sexes. Future work is 
needed to develop sex-specific models of evolutionary his
tory for the populations investigated here and rigorously 
evaluate this potential interpretation. However, our results 
raise the possibility that the direction of the sex dimorph
ism for recombination rate varies between wild M. muscu
lus populations, and that previous observations of variation 
in the directionality of this dimorphism in inbred strains 
are not simply oddities of inbreeding.

In addition to these conceptual advances, we also pre
sent a new method for the identification of hotspots in 
population data that fully utilizes the high density of 
SNPs in modern genome sequencing datasets. This “filter
ing” method is simple to implement and detects hotspots 
at a finer resolution than the sliding window approach 
that has been used in prior studies (Booker et al. 2017; 
Shanfelter et al. 2019). Implementing this new method al
lowed for identification of an additional ∼11,000 new hot
spots per population, and a total of more than 100,000 
new hotspots for all nine populations combined. 
However, the filtering method failed to identify 115,978 
hotspots called by the sliding window method, which sug
gests that both methods should be used in tandem to 

comprehensively identify hotspots in population data. 
The filtering method’s failure to detect these hotspots is 
potentially attributable to two reasons. First, the filtering 
method requires that a hotspot be comprised of at least 
three SNPs, while the sliding window method has no min
imum SNP number requirements. In areas of the genome 
with lower SNP density, the sliding window method may 
be more likely to detect hotspots than the filtering meth
od. Second, our implementation of the sliding window 
method required that hotspots be 10 times hotter than 
only the flanking 40 kb regions, while the filtering method 
identified hotspots 10 times hotter than the mean of the 
entire chromosome. Differences in the recombination 
rate between the immediate flanking region and the entire 
chromosome undoubtedly allowed for some differential 
detection. Intriguingly, the mean ρ/bp of the filtered hot
spots was on average nearly double the mean of the sliding 
window hotspots, and the same trend was also found 
when hotspots unique to the filtering method were com
pared to hotspots unique to the sliding window method. 
This indicates that the sliding window method misses a 
significant number of “very hot” hotspots, likely because 
these hotspots are markedly smaller than the sliding win
dow. These two approaches for hotspot identification are 
complementary. Whereas the sliding window method will 
detect hotspots in lower SNP density areas and is sensitive 
to the detection of weaker hotspots, the filtering method 
can pick up signals of hotspots in regions of high SNP dens
ity, which may be missed when using a fixed window size.

We show that the number of detected hotspots 
per population scales with effective population size. This 
trend is expected if larger populations harbor greater 
Prdm9 diversity, and thus a broader repertoire of recom
bination hotspot positions. Based on previous work, 
M. m. musculus is expected to have the smallest effective 
population size (Ne = 100,000), followed by 
M. m. domesticus (160,000) (Salcedo et al. 2007), and 
with M. m. castaneus having the largest Ne (580,000) 
(Geraldes et al. 2008). On average, about 30,000 hotspots 
were detected for M. m. musculus, 34,000 for 
M. m. domesticus, and 51,000 for M. m. castaneus. Within 
subspecies, hotspot numbers also varied between popula
tions in a manner consistent with effective population 
sizes. The most dramatic example is the 1.6-fold difference 
in total number of hotspots detected between the India 
and Taiwan populations of M. m. castaneus (62,879 vs. 
38,778 for cIndia and cTaiwan, respectively). This discrep
ancy again reflects known features of population history: 
the Taiwan population experienced a strong founding 
bottleneck that reduced its effective population size rela
tive to ancestral populations of M. m. castaneus (Lawal 
et al. 2021). This bottleneck led to a genome-wide loss of 
diversity, including, presumably, a loss of allelic variation 
at the Prdm9 locus, narrowing the suite of potentially ac
tive hotspot locations. Intriguingly though, this phenom
enon of hotspot number scaling with population size is 
largely limited to hotspots detected by the filtering meth
od, rather than the sliding window method. For the filtered 
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hotspots, we detected on average 16,000, 20,000, and 
43,000 hotspots for M. m. musculus, M. m. domesticus, 
and M. m. castaneus, respectively, while the sliding window 
method always detected an average of 24,000–25,500 hot
spots per subspecies.

Hotspot location also varied greatly between popula
tions, regardless of the hotspot calling method. These re
sults extend prior observations of limited hotspot 
sharing between species (Stevison et al. 2016; Shanfelter 
et al. 2019) to the mouse model system. Remarkably, how
ever, our work suggests that hotspot location varies greatly 
even between populations from the same M. musculus 
subspecies. This finding is at odds with significant hotspot 
sharing between human populations (Auton et al. 2012; 
Spence and Song 2019), but is consistent with the overall 
reduction in hotspot sharing observed between great ape 
species with higher Prdm9 diversity (Stevison et al. 2016). 
Population genetic surveys of Prdm9 allelic variation in 
wild-caught mice across the globe indicate an extensive 
number of Prdm9 alleles segregating in nature (>150), 
with <10 alleles shared between subspecies of M. musculus 
(Buard et al. 2014; Kono et al. 2014; Vara et al. 2019). In 
contrast, the human recombination landscape is domi
nated by a small number of Prdm9 alleles (Berg et al. 
2010, 2011; Pratto et al. 2014; Alleva et al. 2021). 
Additionally, PRDM9 is known to interact epistatically 
with a locus on the X chromosome to cause hybrid male 
sterility in some intersubspecific experimental mouse 
crosses (Forejt et al. 2021). The entanglement of PRDM9 
in a genetic incompatibility presumably restricts Prdm9 
gene flow in the wild and contributes to limited hotspot 
sharing between mouse populations. Although the 
Prdm9 genotype status of the individuals used to generate 
these LD recombination maps is not known and cannot be 
determined from short-read genome sequences, the lack 
of hotspot overlap between subspecies is consistent with 
the high levels of population-private Prdm9 allelic diversity 
in wild mouse populations.

Although there is limited conservation of hotspots be
tween wild populations, we observe appreciable levels of 
hotspot overlap between some wild mouse populations 
and hotspots in inbred mouse strains of the same subspe
cies, or originating from a similar location, possibly due to 
past or present Prdm9 allele sharing (Smagulova et al. 
2016). In fact, sliding window hotspots in dGermany and 
dFrance overlapped more than 25% of DSB hotspots iden
tified in C3H/He mice (a strain of M. m. domesticus back
ground). A similar proportion of hotspot sharing was 
observed between DSB hotspots in PWD, a wild-derived in
bred strain of M. m. musculus developed from wild-caught 
mice in the Czech Republic, and wild mice from the 
mCzechia population. Elevated hotspot sharing was also ob
served between CAST, a M. m. castaneus wild-derived in
bred strain originating from Taiwan, and the wild-caught 
cTaiwan mice. However, it should be noted that the DSB 
hotspot information we compared to was derived only 
from male mice, and some differences in DSB hotspots 
have been found between the sexes (Smagulova et al. 

2016; Brick et al. 2018). Our recombination maps effectively 
integrate over the historical Prdm9 allelic diversity in each of 
our populations, but these trends suggest that several 
Prdm9 alleles present in contemporary lab mice have left 
detectable footprints in the recombination landscape of 
wild mouse populations.

Overall, our findings expose remarkable divergence in 
the fine- and broad-scale recombination landscape be
tween wild M. musculus populations and subspecies. 
Evidently, the vast Prdm9 allelic variation present in wild 
mouse populations has defined unique sets of genomic 
hotspots that have remained largely private to single po
pulations for sufficiently long to render population- 
specific footprints in even broad-scale patterns of LD. 
These results carry important practical implications for 
mouse genetics. Only a small subset of the Prdm9 alleles 
found in wild mice are present in inbred mouse strains, a 
prospect that undoubtedly constrains mapping resolution 
in experimental crosses (and especially crosses between 
strains with identical Prdm9 genotypes). Our fine-scale 
hotspot maps, combined with knowledge of the common 
Prdm9 alleles in individual populations, stand to inform in
novative experimental strategies for engineering diverse 
wild Prdm9 alleles into lab strain genetic backgrounds. 
Such approaches could enable deliberate genetic manipu
lation of the crossover landscape and expedite efforts to 
fine map loci contributing to complex traits and disease.

Materials and Methods
Single-Nucleotide Polymorphism Data
We analyzed whole-genome sequences from 99 wild M. 
musculus (Davies 2015; Harr et al. 2016). These mice 
were trapped in nine different geographic locations on 
two continents. A basic summary of the data, including 
trapping location, sex, and subspecies identity, can be 
found in Table 1. This dataset features four populations 
of M. musculus domesticus, three populations of 
M. m. musculus, and two populations of M. m. castaneus. 
Two of the M. m. domesticus populations sample mice 
from distinct locations in France; these populations were 
analyzed separately and are designated as dFrance_1 
(Harr et al. 2016) and dFrance_2 (Davies 2015).

Variants were called from whole-genome sequences 
using the GATK best practices pipeline and GATK 
v.4.1.8.1 (Van der Auwera and O’Connor 2020), as previ
ously outlined (Lawal et al. 2021). Single-nucleotide poly
morphisms (SNPs) were then filtered using a multistep 
process. First, the original VCF file containing all samples 
was split into nine files containing only samples and segre
gating sites from each population. Variants were then fil
tered using Vcftools v.0.1.16 (Danecek et al. 2011). We 
retained diallelic sites with the Filter flag “PASS”, a min
imum Quality score of 30, a minimum Genotype Quality 
score of 15, a minimum allele count of 2, and those that 
passed the Hardy–Weinberg equilibrium test (P > 
0.0002). Additionally, SNPs were filtered based on the 
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population’s mean read depth, and any sites with a read 
depth less than half or greater than double the population 
mean were excluded. This filter was applied to eliminate 
potential false-positive calls due to read mismapping in 
structurally variable genomic regions.

Estimating Phase and Switch-error Rates
ShapeIt4 was used to infer haplotypes for each sample 
using standard parameters (Delaneau et al. 2019). To esti
mate the switch-error rate in our data, we paired phase- 
known X chromosomes from male samples to generate 
“pseudo-females”, as previously described (Booker et al. 
2017). Briefly, reads mapping to the X chromosome from 
three to four males per population were merged to create 
all possible phase-known diploid combinations. Attempts 
to utilize only two males (therefore one pseudo-female) 
failed because ShapeIt4 requires multiple samples to infer 
phase. Only seven of the nine populations had sufficient 
male samples to be used for this analysis (mCzechia and 
cTaiwan had <3 males and could not be used). Variants 
were then called using GATK and filtered as described 
above. From each pseudo-female, we removed sites that 
were heterozygous in the true males (corresponding to 
SNPs located in the PAR), homozygous in the pseudo- 
female, or had missing data. After filtering, the pseudo- 
females were phased using ShapeIt4, and the resulting 
haplotypes converted into fasta format using bcftools (v 
1.9.1) consensus and the mm10 reference sequence 
(Danecek et al. 2021). These whole chromosome fasta se
quences were then pared down to include only sites segre
gating in the pseudo-female. The inferred haplotypes from 
a pseudo-female were next compared to the phase-known 
sequences of the two donor male chrX sequences. The 
switch-error rate was defined as the number of switch- 
errors that occurred, divided by the total number of op
portunities for a switch to occur (i.e., the total number 
of SNPs minus 1).

LD-based Recombination map Construction
Multiple software programs have been developed for re
combination rate estimation from population genomic 
data (reviewed in Penalba and Wolf 2020). Here, we use 
LDhelmet as this program has been widely used (e.g., 
Chan et al. 2012; Singhal et al. 2015; Shanfelter et al. 
2019; Schield et al. 2020), including in prior studies with 
house mice (Booker et al. 2017), and has been bench
marked by simulation studies (Chan et al. 2012; Raynaud 
et al. 2022). LDhelmet v1.10 was used to estimate the 
population-scaled recombination rate for each chromo
some in each of the nine M. musculus populations (Chan 
et al. 2012). Parameters were set based on developer re
commendations and previously published work (Chan 
et al. 2012; Booker et al. 2017), with a few modifications. 
Briefly, before running the rjmcmc, haplotype configur
ation files were generated using a window size of 50. 
Likelihood lookup tables were constructed across a grid 
of population-scaled recombination rates (0.0 0.1 1.0 

10.0 100.0) and using subspecies-specific population muta
tion rates, assuming a common genomic mutation rate of 
0.5 × 10−8 bp/generation (Uchimura et al. 2015) and ef
fective population sizes of 160,000, 580,000, and 100,000 
for domesticus, castaneus, and musculus, respectively 
(Salcedo et al. 2007; Geraldes et al. 2008). To improve ac
curacy of sampling, we computed 11 Pade coefficients 
using the same population-scaled mutation rate estimates. 
Once these preparatory files were generated, the rjmcmc 
was run using a window size of 50, a subspecies-specific 
mutation matrix, ancestral priors (see below), a partition 
length of 50,000 SNPs, and either a block penalty of 100 
(broad-scale map) or 10 (fine-scale map). The rjmcmc pro
gram was run for 1,000,000 iterations for each block pen
alty, with the first 100,000 iterations discarded as burn-in.

Ancestral priors were calculated using M. caroli, M. spre
tus, and M. pahari, where alleles matching all three species, 
or matching in two but missing in the third, were consid
ered the ancestral allele. To account for potential allele 
misspecification, the presumed ancestral allele was as
signed a weight of 0.91, and the other three possible states 
were assigned a weight of 0.03. If the ancestral allele state 
could not be inferred, the overall frequency of that particu
lar nucleotide in the mm10 reference genome was used.

Conversion Between Population-scaled and Genetic 
map Distance
LDhelmet outputs estimates of recombination between 
adjacent SNPs in ρ/bp units. To convert this quantity 
into more readily interpretable cM/Mb units, we first 
summed the ρ/bp estimates across each chromosome to 
determine the total population-scaled recombination 
rate. For each pair of adjacent SNPs on the map, we 
then calculated the proportional contribution to total ρ. 
This percentage was then multiplied by the length of 
each chromosome in cM units, as estimated from the cur
rent gold-standard mouse genetic linkage map (Cox et al. 
2009).

Map Comparisons
Spearman’s correlation was used to assess similarity of the 
recombination distribution (in terms of cM/Mb) between 
each wild mouse population. Correlations were assessed 
for whole-genome comparisons (1–10 Mb intervals), as 
well as for individual chromosomes. To gauge the strength 
of the correlation between two maps that could be ex
pected due to chance, we generated 100 random permu
tations of ρ estimates in 6 Mb segments across each 
population’s genome. An empirical P value was estimated 
as the fraction of simulated comparisons greater than the 
observed Spearman’s ρ-statistic.

A prior study used different methodology to create 
LD-based recombination maps for the cIndia population 
studied here (Booker et al. 2017). Specifically, our maps 
are distinguished from those of Booker et al. by differences 
in the stringency of SNP filtering, use of different versions 
of ShapeIt and LDhelmet, use of different outgroups to 
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infer ancestral alleles, and reliance on different genome 
builds (mm9 vs. mm10). To compare our cIndia maps to 
the prior map for this population, SNP positions on the 
Booker et al. map were converted from the mm9 to 
mm10 coordinate system using LiftOver from the UCSC 
tool suite (Hinrichs et al. 2006).

Genomic Distribution of Recombination Rates
We summarized the genomic distribution of recombin
ation rates across each population using the Gini coeffi
cient (Dorfman 1979; Kaur and Rockman 2014). First, we 
calculated the physical distance between each pair of 
SNPs, then sorted these distances by their associated 
population-scaled recombination rate, ρ/bp. Both physical 
distance and recombination rates were rescaled to sum to 
one. These data were then plotted as a Lorenz curve, and 
the area under the curve (AUC) was calculated using the 
trapz function in the R package “pracma”. The Gini coeffi
cient was calculated for each population with the formula 
2 * (0.5—AUC).

Identification of Hotspots
The fine-scale recombination map from each population 
was used to identify putative recombination hotspots 
using two approaches. We first identified hotspots using 
a conventional “sliding-window” approach (Shanfelter 
et al. 2019), with minor modifications. In brief, the mean 
ρ of each 1 kb window (0.5 kb slide) was compared to 
the mean ρ of the flanking 40 kb regions. If ρ in the 1 kb 
target segment was greater than 10 times the population- 
scaled recombination rate of the flanking regions, the re
gion was deemed to be a hotspot.

To fully leverage the high SNP density in our dataset 
(1 SNP every ∼60–300 bp), we developed and implemen
ted a new method for hotspot detection. Briefly, a segment 
of DNA between adjacent SNPs was labeled a putative hot
spot if ρ/bp was ≥10 × the chromosome-wide mean ρ. 
Putative hotspots with shared SNPs were then merged 
into a single candidate hotspot. Only candidate hotspots 
with >2 SNPs and <5 kb in length were retained. We set 
a minimum requirement of 3 SNPs contained in a hotspot 
to reduce the risk of false-positive hotspots due to geno
typing or haplotype switch-errors. A maximum hotspot 
length of 5 kb was invoked based on prior estimates of like
ly hotspot size (Paigen et al. 2008; Altshuler et al. 2010; Tsai 
et al. 2010). The majority (72.27%) of putative hotspots 
passed each filtering step (Supplementary Table 3, 
Supplementary Material online). Most putative hotspots 
that were filtered out were removed for having only 2 
SNPs (24.71% of total putative), while 4,800 hotspots 
>5 kb were removed (1.62%).

This new method, which we term the “filtering” ap
proach, yielded some pairs of adjacent hotspots separated 
by only 2 SNPs. These cases may reflect two independent 
closely positioned hotspots, but it is also plausible the two 
hotspots are actually a single hotspot that was erroneously 
split in two, potentially due to genotyping error. We took a 

conservative approach and merged any hotspots sepa
rated by 2 SNPs and that were ≤1 kb apart. Hotspots sepa
rated by 2 SNPs and positioned >1 kb apart were retained 
as independent hotspots. Hotspots separated by 3 or more 
“cold” SNPs were always treated as individual hotspots.

Bedtools intersect (v2.29.2) was used to create a set of 
hotspot regions jointly detected by both the “sliding- 
window” and “filtering” approaches (Quinlan and Hall 
2010). To create a comprehensive set of hotspots for 
each population, hotspots from the two calling ap
proaches were merged with bedtools merge (minimum 
overlap requirement of 1 bp).

Identification of Coldspots
We used a method similar to the filtering hotspot ap
proach outlined above to identify coldspots, or areas of 
comparatively low recombination. Specifically, a segment 
was inferred to be a coldspot if ρ/bp was less than 
1/10th the chromosome average and if it contained at 
least 3 SNPs. No minimum or maximum length require
ments were imposed on coldspots. The number of cold
spots detected, as well as their mean length and ρ/bp is 
provided in Supplementary Table 6, Supplementary 
Material online

Generation of “randomspots”
To assess various outcomes expected by chance, we gener
ated 100 sets of random, size-matched genomic segments 
to mimic both the filtered and sliding window hotspots 
detected on each chromosome in each population using 
a custom Python script (Supplementary File 1, 
Supplementary Material online). We refer to these simu
lated regions as “randomspots.”

Characterizing the Genomic Distribution of Hotspots
We analyzed our hotspots for proximity to TSS and repeat 
elements. Bedtools intersect was used to find hotspots 
overlapping at least 1 bp of an annotated TSS (refTSS) or 
repetitive element (repeatmasker) (Smith et al. 2013; 
Abugessaisa et al. 2019). Bedtools closest was used to 
find the closest hotspots to each TSS, along with the dis
tance between them. Fisher’s Exact tests were used to 
identify repetitive elements with differential enrichment 
between hot and coldspots.

We also analyzed our hotspots for overlap with previ
ously published DSB hotspots ascertained using ChIP-seq 
against DMC1, a protein that binds to the ends of DNA 
DSB breaks (Smagulova et al. 2016). Overlap was assessed 
using bedtools intersect, with a requirement for at least 
1 bp overlap.

Comparison of Hotspots Between Populations
We analyzed each population-specific set of hotspots (fil
tered or sliding window) for overlap between populations 
within each subspecies, as well as across subspecies. When 
comparing populations within a subspecies, bedtools 
intersect was used to find hotspots with at least 1 bp of 
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overlap, at least 50% overlap (-f 0.5 and -F 0.5 -e; partial 
overlap), or 100% overlap (-f 1.0 -F 1.0 -e; complete over
lap). When comparing across subspecies, only hotspots 
with at least 50% overlap were examined (-f 0.5 and -F 
0.5 -e).

Supplementary material
Supplementary data are available at Molecular Biology and 
Evolution online.
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