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Abstract Both animal models and human observational and genetic studies have shown that immune and inflammatory mech-
anisms play a key role in hypertension and its complications. We review the effects of immunomodulatory interven-
tions on blood pressure, target organ damage, and cardiovascular risk in humans. In experimental and small clinical
studies, both non-specific immunomodulatory approaches, such as mycophenolate mofetil and methotrexate, and
medications targeting T and B lymphocytes, such as tacrolimus, cyclosporine, everolimus, and rituximab, lower
blood pressure and reduce organ damage. Mechanistically targeted immune interventions include isolevuglandin
scavengers to prevent neo-antigen formation, co-stimulation blockade (abatacept, belatacept), and anti-cytokine
therapies (e.g. secukinumab, tocilizumab, canakinumab, TNF-a inhibitors). In many studies, trial designs have been
complicated by a lack of blood pressure-related endpoints, inclusion of largely normotensive study populations, pol-
ypharmacy, and established comorbidities. Among a wide range of interventions reviewed, TNF-a inhibitors have
provided the most robust evidence of blood pressure lowering. Treatment of periodontitis also appears to
deliver non-pharmacological anti-hypertensive effects. Evidence of immunomodulatory drugs influencing
hypertension-mediated organ damage are also discussed. The reviewed animal models, observational studies, and
trial data in humans, support the therapeutic potential of immune-targeted therapies in blood pressure lowering
and in hypertension-mediated organ damage. Targeted studies are now needed to address their effects on blood
pressure in hypertensive individuals.
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This article is part of the Spotlight Issue on Cardiovascular Immunology.

1. Introduction

In atherosclerosis, the role of inflammation is well defined,1–5 and a co-
existing chronic inflammatory condition such as rheumatoid arthritis
(RA), inflammatory bowel disease, ankylosing spondylitis, or psoriasis is
considered an additional risk factor, including in ESC Cardiovascular
Disease Prevention guidelines.6–8 Anti-inflammatory therapies are rec-
ommended in such patients,6 and targeting inflammation to improve car-
diovascular outcomes has been supported by recent clinical trials such as
CANTOS, COLCOT, and LoDoCo2.9–12 Hypertension is the most
common cardiovascular risk factor worldwide.13 For more than half a
century, immune cells have been observed to infiltrate the kidney and
vasculature of hypertensive humans and animals with experimental hy-
pertension, and increasing evidence indicates that immune and in-
flammatory mechanisms promote this disease. It is therefore
essential to identify the clinically permissible therapeutic interven-
tions that address inflammatory targets in hypertension, and patient
populations that would benefit from such treatment. While basic
and translational evidence suggests that interfering in immune-
inflammatory processes may aid in control of blood pressure (BP)
and prevention of target organ damage,14–17 the clinical evidence
for these interventions has not been systematically analysed.
Accordingly, we review potential immune therapeutic targets to
identify approaches for which well-designed clinical studies may
prove fruitful.

2. Immune and inflammatory
targets for treatment of
hypertension

Inflammation and immune activation were first implicated as being in-
volved in hypertension through the work of Grollman, Okuda,
Svendsen,18–21 and Olsen.22,23 In the last decade, new research has be-
gun to reveal the mechanisms that explain this.17 Using animal models of
genetic and pharmacological targeting, the regulatory role of T cells,24–34

cd cells,35 monocytes/macrophages,36–39 dendritic cells (DC),40 B
cells,41,42 NK cells,43 as well as other components of a complex
immuno-inflammatory network have been assessed.17,44–48 The initiation
of inflammation in hypertension appears to be associated with oxidative
stress and redox-dependent mechanisms within the vascular and renal
tissues.49,50 These lead to generation of neo-antigens,51 damage-associ-
ated molecular patterns,52 and neuroimmune mechanisms53,54 that trig-
ger maladaptive immune responses, which compound hypertension and
its’ associated organ damage. Although antigen(s) responsible for activa-
tion of adaptive immunity have not been definitively identified, potential
candidates are isolevuglandin (isoLG) adducted proteins. IsoLGs are oxi-
dation products of arachidonic acid that rapidly ligate lysines on self-
proteins and accumulate in antigen-presenting cells and are presented
within major histocompatibility complexes. These activate a subset of
CD4þ and CD8þ T cells. Importantly, the selective isoLG scavenger 2-
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hydroxybenzylamine can prevent immune activation and lower BP in
several animal models of hypertension.51 Data from both animal and hu-
man studies also identify HSP70 as a potential auto-antigen.55 Numerous
animal studies in a wide range of models, reviewed previously,56–58 high-
light that immunomodulating inflammatory activation and effector cyto-
kine release may curb BP increases and lessen development of vascular,
cardiac, and renal damage.59–66 Many of these studies have employed
germline knockout animals. In addition, small molecule or neutralizing
antibodies that target immune mediators have been used to determine
the effect of selective blockade on experimental hypertension (Table 1).
These have targeted both the innate (e.g. IL-1, TLR4) and adaptive (e.g.
IL-17, CD80/86) immune system. Careful analysis of these studies helps
identify potential therapeutic targets, but also highlights the impact of
treatment protocol and animal model selection for BP and target organ
damage outcomes (Table 1 and Figure 1).

3. Clinical evidence

Epidemiological and observational human data supports a relationship
between the immune system and hypertension, including the observa-
tion that humans with hypertension are at increased risk of COVID-19
infection-related death.103,104 Inflammatory biomarkers105–107 correlate
with systolic BP (SBP) in acute stroke, each 10 mmHg BP elevation in-
creasing the odds of an elevated C-reactive protein level by 72%.108

Similarly, observational and clinical trial data demonstrate BP increases
with each C-reactive protein quartile.109,110 A nested case–control study
of 400 normotensive women indicated that the risk of developing hyper-
tension during follow-up increases with higher quartiles of IL-6 and C-re-
active protein.111 In addition to C-reactive protein and IL-6, TNF-a, IL-
1b, IL-18, and CCL2 cytokine levels also appear to be increased in hyper-
tension and may confer risk of developing the disease.112–118 These cyto-
kines likely promote cell infiltration, affect renal sodium transport,75 and
alter vascular function and structure, ultimately leading to sodium and
volume retention, increased systemic vascular resistance, and the pheno-
type of hypertension.

Circulating leucocytes, which are important cellular components of
the immune system, show significant perturbations in hypertension. Data
from NHANES III demonstrate higher numbers of circulating leucocytes
are associated with hypertension.107 UK Biobank data similarly indicate
that quintile distribution of lymphocyte, monocyte, neutrophil, and eo-
sinophil count is positively associated with BP.119 Other studies show
that an increased neutrophil to lymphocyte ratio (NLR) predicts devel-
opment of hypertension.120–122 Intermediate and non-classical mono-
cytes are associated with inflammatory states and endothelial
dysfunction and are also increased in hypertensive patients.123–125 A re-
cent study has shown that signals from the activated endothelium in hy-
pertension induces conversion of classical CD14þþ/CD16low

monocytes to CD14þþCD16þ intermediate monocytes. This seems to
be mediated by STAT3 activation and associated with increases in IL-6,
IL-1b, IL-23, CCL4, and TNF-a.123 Monocytes from hypertensive
patients also express higher TLR4, and BP control reverses this.126

A causal role of lymphocytes in human hypertension is supported by
large-scale Mendelian randomization genetic evidence.119 T lymphocytes
of hypertensive individuals are activated, with increased IL-17A and in-
terferon c (IFN-c) production and proportionally higher memory T cells
(CD45ROþ) in adults.127 Youn et al.128 have shown that patients with
hypertension have an increased fraction of immunosenescent, proinflam-
matory, cytotoxic CD8þ T cells. Even among hypertensive adolescents,

a subset of pro-inflammatory CD4þ T cells is associated with SBP and ar-
terial stiffness.129 Increased circulating effector memory CD4þ/CD8þ T
cells and CD8þCD28 null T cells are also present at this early time point
in hypertension.129,130

In summary, clinical studies identify greater proportions of activated
pro-inflammatory monocytes and lymphocytes in hypertension. This
may promote their infiltration into target organs, leading to perturba-
tions in vascular and renal function, and ultimately modulating BP.

4. Genetic and multi-omics
evidence

Data from Genome-Wide Association Studies (GWAS) and the tran-
scriptome link hypertension with immune cellular defence and inflamma-
tory responses.130,131 This link is supported by integrative network
analysis132 and Mendelian randomization approaches,119 and is impor-
tant, considering that heritability of BP is between 33% and 57%.133–135

Several GWAS have implicated SH2B3/LNK gene in hypertension and
myocardial infarction.130,132,136,137 SH2B3 encodes a docking protein
that seems to be a modulator of T cell activation. Variants of this gene
are linked to autoimmune diseases such as multiple sclerosis, coeliac dis-
ease, and type 1 diabetes.137 Single nucleotide polymorphism (SNP)
rs3184504 in SH2B3 is evidential or its’ trans-regulatory role in gene ex-
pression; regulating 6 out of the 34 BP-related signature genes identified
by meta-analysis of GWAS reporting gene expression profiles from
7017 individuals not on anti-hypertensive treatment. All regulated genes
are expressed in leucocytes.138 Integrative network analysis of BP
GWAS with mRNA expression profiles from 3679 participants not on
anti-hypertensive agents confirms molecular interactions between key
drivers such as SH2B3 and hypertension-related genes.132

Mechanistically, T cells from LNK knockout mice produce high levels of
type I cytokines and these mice exhibit increased sensitivity to angioten-
sin II (Ang II), leading to hypertension, endothelial and renal dysfunction,
increased inflammatory cell infiltrate, and oxidative stress.139,140

Mendelian randomization evidence based on 120 SNPs predictive of leu-
cocyte subpopulations demonstrates a clear, potentially causal, relation-
ship between lymphocyte count and systolic and diastolic BP, while BP
itself appears to affect monocyte and neutrophil counts.119 Finally, the
recent multi-omic kidney analysis uncovered many immunity-related
genes (such as IRF5, IRAK1, BP1, TRAF1) whose expression, splicing,
and/or methylation ostensibly demonstrate causal relationships with
BP.141

5. Effects of immunomodulatory
drugs on BP

Clinically available immunomodulatory drugs employ heterogeneous
mechanisms of action, and hence their impact on BP regulatory systems
is likely to be diverse. Agents reviewed below are selected to illustrate
this breadth.

5.1 Selected anti-cytokine therapies
5.1.1 TNF-a inhibitors
Using a systematized search, we identified 20 studies reporting BP
in patients prescribed adalimumab, infliximab, etanercept, golimumab,
and six papers with a mix of TNF-a inhibitors used (see Table 2).

Therapeutic targeting of inflammation in hypertension 2591
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Table 1 Key findings relevant to the relationship between the immune system and hypertension arising from animal models

Immune target and therapeutic agent Model Result relative to non-treated mice References

TNF-a

Infliximab (anti-TNF-a neutralizing Ab)

SHR rat # BP

# Cardiac hypertrophy

# Vascular inflammation

Filho et al.67

Etanercept (TNF-inhibitor) Rat (8% NaCl diet þ 14 days ang-II) # Renal inflammation/damage

Slowed but did not prevent rise in BP

Elmarakby et al.68

Etanercept Mice infused with ang-II for 14 days # BP Guzik et al.25

Etanercept Spontaneously hypertensive dTGR

rats

# Renal inflammation/damage

# Mortality

$ BP

Muller et al.69

Etanercept Dahl salt-sensitive rat with renal inter-

stitial administration of etanercept

# BP

# renal damage

Huang et al.49

Etanercept High fructose-fed rats # BP

# Endothelial dysfunction

Tran et al.70

Etanercept Mouse model of SLE # BP

# Renal inflammation/damage

Venegas-Pont et al.71

PEG-sTNFR1 (TNF inhibitor) Renal mass reduction induced renal

failure in rats

# BP

# Renal inflammation/damage

Therrien et al.72

NLRP3

MCC950 (NLRP3 inhibitor)

Uni-nephrectomized wild-type mice

treated with DOCA-salt up to

28 days

# BP

# Cardiac hypertrophy

# Renal inflammation/damage

Krishnan et al.73

NF-jb

PDTC

SHR rats # BP

# Renal inflammation

Rodrı́guez-Iturbe et al.44

PDTC 2K1C rats # BP

# Cardiac hypertrophy/fibrosis

Cau et al.74

IL-1R

Anakinra (IL-1R antagonist)

Mice treated with ang-II for 21 days # BP

# Cardiac hypertrophy

Zhang et al.75

Anakinra Uni-nephrectomized mice treated

with DOCA-salt in drinking water

for 21 days

# BP

# Renal fibrosis

Ling et al.76

IL-6

Neutralizing anti-IL-6 Ab

Dahl salt-sensitive rats fed 4% NaCl

for up to 11 days

# BP

# Renal inflammation/damage

Hashmat et al.77

T cells

Anti-CD3 Ab

Mouse model of SLE # BP

# Autoantibodies

# BP

Mathis et al.78

CD8 T cells

Anti-CD8 Ab

Mice treated with ang-II for 14 days $ BP

# Cardiac inflammation and fibrosis

Ma et al.79

cd T cells

Anti-cd T cell Ab

Mice treated with ang-II for 7 or

14 days

# BP

# Endothelial dysfunction

Caillon et al.35

Tregs

IL-2/Anti-IL-2 Ab complex

Mice treated with ang-II for 14 days $ BP

# Aortic remodelling

# Aortic stiffness

Majeed et al.80

IL-2/Anti-IL-2 Ab complex Transverse aortic constriction (TAC)

in mice

$ BP

# Cardiac hypertrophy and dysfunction

Wang et al.81

IFN- c

Neutralizing anti-IFN-c Ab

Wild-type mice treated with ang-II for

14 days

$ BP Guzik et al.25

Neutralizing anti-IFN-c Ab Mice with T-cell restricted overex-

pression of mineralocorticoid re-

ceptor (TMROV mice) treated with

ang-II for 21 days

# BP Sun et al.82

IL-17

Neutralizing anti-IL-17A Ab

Wild-type mice treated with ang-II for

14 days

$ BP and cardiac hypertrophy Markó et al.83

Neutralizing anti-IL-17A Ab Rats treated with anti-IL-17A Ab for

28 days using the DOCA-salt model

# BP

# Target organ damage

Amador et al.84

Continued
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Table 1 Continued

Immune target and therapeutic agent Model Result relative to non-treated mice References

Neutralizing anti-IL-17A Ab Calcineurin-inhibitor treated mice # BP

# Endothelial dysfunction

# Renal damage

Chiasson et al.85

Neutralizing anti-IL-17A, IL-17F or Il-17RA Wild-type mice treated for 28 days

with ang-II (14 days with Ab

treatment)

IL-17A/IL-17R: # BP

# Renal inflammation/damage

Il-17F: No significant change

Saleh et al.86

IL-17 soluble receptor C Preeclampsia rat model # BP

# Oxidative stress

Cornelius et al.87

IL-23

Neutralizing anti-IL-21R Ab

Wild-type mice treated with ang-II for

14 days

$ BP and cardiac hypertrophy Marko et al.83

TGF-b

Neutralizing anti-TGF-b Ab (1D11)

Dahl salt-sensitive rat fed 4% NaCl for

21-28 days

# BP

# Renal injury

# Cardiac damage

Murphy et al.88

B cells

Anti-CD20 Ab

Wild-type mice treated with ang-II for

28 days

# BP Chan et al.41

CCR2

INCB3344 (CCR2 antagonist)

Wild-type mice were uni-nephrectom-

ized and treated with DOCA-salt

for 21 days

# BP

# Vascular inflammation

Chan et al.89

INCB3344 Wild-type mice treated with ang-II for

28 days (21 days with CCR2

antagonist)

# BP

# Vascular inflammation/fibrosis

# Cardiac hypertrophy

Moore et al.37

CCR5

Met-RANTES (CCR5 antagonist)

Wild-type mice infused with ang-II for

14 days.

# Vascular inflammation and dysfunction

$ BP

Mikolajczyk et al.90

TLR-4

TAK-242 (TLR-4 antagonist)

Rats infused with Aldo-salt for 28 days # BP

# Cardiac hypertrophy

# Renal damage

De Batista et al.91

Neutralizing anti-TLR4 Ab Wild-type mice treated with ang-II for

14 days

# BP

# Vascular inflammation and remodelling

Hernanz et al.92

Neutralizing anti-TLR4 Ab SHR rat # BP

# Vascular reactivity

Bomfin et al.93

Neutralizing anti-TLR4 Ab Mice treated for 28 days with ang-II

(14 days with Ab treatment)

# Vascular dysfunction

$ BP

Nunes et al.94

Neutralizing anti-TLR4 Ab SHR rat $ BP

# Cardiac hypertrophy

# Cardiac inflammation

Echem et al.95

TLR-9

Chloroquine (TLR-9 inhibitor þ pleiotropic effects)

SHR rat # BP

# Vascular and systemic inflammation

McCarthy et al.96

CD80/CD86

CTLA4-Ig (Abatacept) (CD80/86 inhibitor)

Wild-type mice infused with ang-II for

14 days, or uni-nephrectomized and

treated with DOCA-salt for 21 days

# BP

# Vascular and systemic inflammation

Vinh et al.24

CD40L

Anti-CD40L Ab

Preeclampsia rat model # BP

# Oxidative stress

# Endothelin-1 release

Cornelius et al.97

Isoketals

2-Hydroxybenzylamine (2-HOBA) (isoketal scavenger)

Wild-type mice were infused with ang-

II for 14

# BP

# renal inflammation/damage

Kirabo et al.51

mTOR

Rapamycin (mTOR inhibitor)

Dahl salt-sensitive rats fed a 4% NaCl

diet for up to 21 days

# BP

# renal inflammation/damage

Kumar et al.98

IMPDH

MMF

SHR Rat # BP

# Renal inflammation/damage

Rodrı́guez-Iturbe et al.99

MMF Uni-nephrectomized rats implanted

with DOCA-salt pellets þ 0.9%

NaCl drinking water for up to

21 days.

# BP

# Renal inflammation/damage

Boesen et al.100

Continued
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Study populations included those with RA, ankylosing spondylitis,
psoriasis, and combined rheumatological diseases. Follow-up was
from 2 weeks to 12 months and cohort sizes varied from 9 to 5408.
Only 5 of the 20 studies were randomized and/or placebo con-
trolled.148,149,156,159 Seventeen of these studies contained data ade-
quate for meta-analysis (see Supplementary material online, methods
and Figure 2): the combined estimate from 13 studies comparing aver-
age BP before and after TNF-a blockade was a 3.5 mmHg reduction in
SBP (95% CI: –5.7 to –1.3), P = 0.001. Five randomized trials with pla-
cebo or other pharmacotherapy comparators produce a combined
estimate of 4.1 mmHg SBP lowering (95% CI: –7.0 to –1.1), P < 0.001.
Only two studies used the gold standard of ambulatory BP monitoring
(ABPM), Yoshida et al.146 demonstrating a SBP reduction of
7.3 mmHg. In contrast Grossman et al.160 showed that TNF-a block-
ade caused an increase of 1.7 mmHg. Elevated BP was not an inclusion
criterion in any of the studies and hypertension was reported incon-
sistently. Two of the studies reported only mean arterial pres-
sure,153,162 six studies did not report prevalence or use of anti-
hypertensives,144,145,153,156,158,161 and one specified no anti-
hypertensive use.143 Hypertension prevalence in the remaining stud-
ies ranged between 7% and 53%.142,146–152,157,159,160 In some studies,
good BP control was an inclusion criteria.142,147,150,160 Finally, individ-
ual level data was not available, thus any effect in hypertensive partici-
pants may be masked through reporting of average BP across whole
study cohorts, though despite this, combined estimates from observa-
tional and randomized trials do suggest a BP-lowering effect of anti-
TNF-a agents (Figure 2). Observational data on incident rates of hy-
pertension offer additional insight. In comparison with non-biologic
anti-inflammatory medications, 4822 anti-TNF-a initiators demon-
strated no difference in crude or adjusted rates of incident hyperten-
sion (HR: 0.95, 95% CI: 0.74–1.2),163 results supported by a smaller
Korean cohort of 996 patients with RA.164 Paradoxically, previous
meta-analysis suggested higher rates of incident hypertension as ad-
verse events in TNF-a inhibitor recipients (OR: 1.89, 95% CI: 1.35–
2.65).165 This disparity indicates need for targeted studies in hyper-
tensive populations.

5.1.2 IL-1b inhibition (CANTOS trial)
In a large RCT of patients with prior myocardial infarction and ele-
vated high-sensitivity C-reactive protein, the IL-1b antagonist canaki-
numab 150 mg demonstrated benefit vs. placebo for a composite end
point of myocardial infarction, stroke, or cardiovascular death.
Largest effect size was in the quartile demonstrating greatest high-

sensitivity C-reactive protein and IL-6 reductions.10,166 Rates of inci-
dent hypertension, however, did not differ by high-sensitivity C-reac-
tive protein tertiles; nor did canakinumab demonstrate a reduction in
incident hypertension [HR: 0.96 (0.85–1.08), P > 0.2]. Ostensibly, this
suggests that BP may not be the mechanism by which benefit was
exerted; however, baseline prevalence of hypertension was 80%,
thus only 20% of participants were ‘at risk’ from incident hyperten-
sion.167 In the canakinumab arm, only subgroups with baseline BP
(SBP >_130 mm Hg) demonstrated BP lowering, as well as protection
from major adverse cardiac events (MACE).167 Fatal infections were
increased with canakinumab, highlighting the importance of selecting
permissible targets.10

5.1.3 Anti-IL-17
Considering other cytokine inhibitor approaches, we focused on phar-
macotherapies with both animal study evidence and use in clinical prac-
tice: secukinumab and tocilizumab. We identified the FIXTURE trial of
IL-17 antagonist secukinumab (150 and 300 mg groups) in patients with
psoriasis. Despite BP being the primary outcome, this trial reported no
change at 1 year, though patients were not hypertensive at baseline.156

In contrast, a study of 50 patients with psoriasis commenced on secuki-
numab demonstrated a 6 mmHg reduction of SBP (130–124 mmHg,
P = 0.3).168 This is particularly important as psoriasis, like RA, appears to
be associated with increased prevalence of hypertension and cardiovas-
cular disease.165,169,170

5.1.4 Anti-IL-6
Three papers were identified reporting BP data with IL-6 antagonist toci-
lizumab, two used in combination with methotrexate (MTX).171,172 SBP
increase was demonstrated by Elmedany et al.171 (116 ± 16 vs.
129 ± 17 mmHg, P = 0.001), the other two papers reporting no change
in BP with IL-6 blockade,172,173 though the average baseline BP values
were normal range. Overall, the minimally available evidence (detailed in
Supplementary material online, Table) does not support an association
with BP lowering.

5.2 Immunosuppressant agents
5.2.1 Mycophenolate mofetil

Mycophenolate mofetil (MMF) inhibits nucleotide synthesis and thus
prevents lymphocyte proliferation. In an early study, Herrera et al. dem-
onstrated a reduction in average BP from 152/92 to 137/83 mmHg at
12 weeks in eight patients with psoriasis. Notably, BP increased following

..............................................................................................................................................................................................................................

Table 1 Continued

Immune target and therapeutic agent Model Result relative to non-treated mice References

MMF Mouse model of SLE # BP

# Renal inflammation/damage

Taylor and Ryan101

Purine metabolism

Azathioprine

DOCA-salt in pregnant rats # BP

# Proteinuria

# Endothelial dysfunction

# Systemic inflammation

Tinsley et al.102

Ab, antibody; ang-II, angiotensin II; BP, blood pressure; CCR, CC motif chemokine receptor; CD, cluster of differentiation; CNI, calcineurin inhibitor; CTLA4-Ig, cytotoxic T-lympho-
cyte-associated protein 4 immunoglobulin; DOCA, deoxycorticosterone acetate; dTGR, double transgenic rats; IL, interleukin; IFN-c, interferon c; IMPDH, Inosine-50-monophos-
phate dehydrogenase; mTOR: mammalian target of rapamycin; MTX: methotrexate; NF-jb, nuclear factor kappa b; NLRP3, NOD-like receptor family pyrin domain containing 3;
PDTC; pyrrolidine dithiocarbamate; SHR, spontaneously hypertensive rat; SLE, systemic lupus erythematosus; TGF-b, transforming growth factor beta; TLR, Toll-like receptor;
TNF, tumour necrosis factor.
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..MMF cessation in this study. The authors also demonstrated a reduction
in urinary TNF-a was during MMF therapy.174 Other studies reporting
BP data are confounded by the presence of nephropathy, with concomi-
tant anti-hypertensive treatment to achieve target BP under 130/
80 mmHg, or organ transplantation in which improvement in volume sta-
tus could obscure any independent impact of MMF on BP. With these

caveats in mind, two trials of MMF in IgA nephropathy report BP reduc-
tion of –7 to –14 mmHg.175,176 In two other studies of patients with
lower enrolment BP, MMF did not reduce SBP beyond treatment with
angiotensin-converting enzyme inhibitors (ACEi) alone, or ACEi plus pla-
cebo.177,178 Head-to-head trials in transplantation showed that treat-
ment with tacrolimus/MMF lowered SBP by 4 mmHg (P = 0.08) and

Figure 1 Role of the immune system in the pathogenesis of experimental hypertension and potential immunomodulators for the treatment of hyperten-
sion and cardiovascular organ damage. Animal studies implicate virtually all immune cell subsets (dash lines) and cytokines (solid lines) in the pathogenesis of
hypertension and target organ damage. Initially, classical immunosuppressants such as mycophenolate59,60 or rapamycin58 showed improvement in renal
damage and blood pressure regulation, by non-specific mechanisms. The introduction of cell/cytokine-specific immunomodulators (small-molecule inhibi-
tors, antibodies, antagonists or scavengers) with beneficial effect in hypertension and hypertension-mediated organ damage, emphasize the potential use of
immunomodulators as a pharmacological tool. More details about the inhibitors are presented in Table1. Numbers indicate references represent a positive
(green) or negative (red) effect.
Legend: CD, cluster of differentiation; CCR, chemokine receptor; Treg, T-regulatory cell; TH, T-helper cell; IL, interleukin; TNF-a, tumour necrosis factor
alfa; NF-jB, Nuclear factor kappa B; IFN-c, interferon c; NLPR3, NOD-like receptor family, pyrin domain-containing protein 3; TGF-b, transforming growth
factor beta; TLR, Toll-like receptor; PEG-sTNFR1, PEGylated soluble tumour necrosis factor receptor 1; TAK-242, inhibitor of TLR4 signalling; 2-HOBA, 2-
hydroxybenzylamine; MCC950, small-molecule inhibitor of the NLRP3 pathway; INCB3344, CCR2 antagonist; Met-RANTES, CCR5 antagonist.
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Table 2 Human studies pertaining to TNF-a inhibitor use and reporting data on BP outcomes

References Population

F5female

Design/comparator/

follow-up

SBP Baseline

mmHg

D SBP mmHg

P value

Notable and confound-

ing features

Gonzalez-Juanatey et al.142 n = 34 (30 F)

RA

Age 55

Observational:

Pre-/post-ADL

52 weeks

136 ± 17.8 –9.1 (–20, 2)

P = 0.1

9/34 had controlled HTN.

Other DMARDs/anti-

hypertensives permit-

ted, but no alterations

to concomitant medica-

tion during study.

Bozkirli et al.143 n = 30 (7 F)

Ank Spond

Age 34

Pre-/post-IFX

12 weeks

119 ± 9.9 –9 (–14, –4)

P = 0.001

No anti-hypertensive use.

Lower NSAID use at follow

up.

Komai et al.144 n = 15 (13F)

RA

Age 50

Pre-/post-IFX þMTX

6 weeks

127.9 ± 5.6 –8.6

P value not reported

Rates of baseline HTN/BP

medications unknown.

Concomitant MTX/prednis-

olone doses unknown.

Sandoo et al.145 n = 23 (15 F)

RA

Age 55

Anti-TNF’s. Control

group, n = 17

12 weeks

127 ± 15 –7.7 (–20, 5)

P = 0.007

Rates of baseline HTN/BP

medications unknown.

Control group (stable on

DMARD): no change in

BP.

Yoshida et al.146 n = 16 (10 F)

RA

Age 57

Pre-/post-IFX ± MTX

2 weeks

127.4 ± 21.8 –7.3 (–10, –4)

P < 0.001

24 h BP. 7/16 HTN; no hy-

potensive drug adminis-

tered during study.

All on MTX concomitantly,

10/16 on prednisolone.

Galarraga et al.147 n = 26 (22 F)

RA

Age 57

Pre-/post-ETN:

Vs MTX (n = 21):

16 weeks

135 ± 16

139 ± 19

–5 (–13, 3) P = 0.22

–9 (–18, 0)

P = 0.06

7/26 controlled HTN.

Comparator group on

MTX showed no change

in BP.

Klarenbeek et al.148 n = 128 (85 F)

RA

IFX þ MTX

Vs sequential monother-

apy (n = 126)

52 weeks

136 ± 20 –4.8 (–8, –2)*

P = 0.001

7% of IFX group on anti-

hypertensive.

*Adjusted for D DAS, base-

line SBP, age, gender,

anti-hypertensive use and

D BMI.

DAS >2.4 associated with

higher BP.

BP reduction in IFX res-

ponders –6.8, non-res-

ponders –4.9 mmHg.

Tam et al.149 n = 20 (19 F)

RA

Age 53

Pre-/post-IFX þ MTX:

Pre-/post-MTX (n = 20):

26 weeks

129 ± 16

130 ± 24

–4.2 ± 13.4

P value not reported

–3 ± 15

P = 0.78*

6/20 HTN. Steroids and

other DMARD use

permitted.

*Between groups compari-

son of D SBP

Daı̈en et al.150 N = 28 (28 F)

RA

Age 57

Pre-/post-ETN

26 weeks

124 ± 15 –3.1 (–22, 16)

P = 0.55

5/28 controlled HTN.

89% on other sDMARDs.

sDMARD group (n=20)

D SBP -1.9 ± 10.9 (NS)

van den Oever et al.151 n = 23 (20 F)

RA

Age 53

Pre-/post-ADL

26 weeks

126 ± 17 –3.0 (–5, –1)

P = 0.19

4/28 HTN

Osteoarthritis group (n =

25), D SBP –4 ± 11 (NS)

Peters et al.152 n = 171 (135 F), RA

Age 54

Pre-/post-ADL ±

DMARD

16 weeks

130 ± 30 –2 (–7, 3)

P = 0.44

46/171 HTN

133/171 also on MTX and/

or other DMARDs

Continued
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diastolic BP by 3 mmHg (P = 0.02) at 6 months compared to transplanted
patients receiving tacrolimus/sirolimus. Ninety percent of these subjects
had hypertension at baseline.179 In a smaller study, no change in BP oc-
curred in 58 liver transplant patients treated with a tacrolimus/MMF
(P = 0.88, baseline average 129/70 mmHg) whilst a group treated with
tacrolimus/steroid showed an 8 mmHg rise in SBP.180 Overall, the clinical
evidence favours association of MMF with BP reduction in hypertension

(see Figure 3); however, no data specifically pertaining to hypertensive
patients are available.

5.2.2 Methotrexate
MTX is a chemotherapy agent and disease-modifying anti-rheumatic
drug (DMARD). Five studies involving between 20 and 8065 participants
were identified, reporting average baseline SBP between 121 and

..............................................................................................................................................................................................................................

Table 2 Continued

References Population

F5female

Design/comparator/

follow-up

SBP Baseline

mmHg

D SBP mmHg

P value

Notable and confound-

ing features

Mäki-Petäjä et al.153 n = 9

RA

Age 54

Pre-/post-anti-TNF

12 weeks

MAP

100 ± 9

–2 (–5, 1)

P = 0.2

Rates of baseline HTN/BP

medications unknown.

Concomitant drugs: 6/9

steroid, 4/9 DMARD

Rho et al.154 n = 35

RA

Age 54

Anti-TNF’s vs. other

DMARDs (n = 134)

Cross-sectional

133.6 ± 21.2 –1.4 (–26, 23)

P = 0.91

53% of whole cohort (90/

169) had HTN, not bro-

ken down by drug class.

Angel et al.155 n = 17 (9 F)

RA, PsA, Ank Spond

Age 54

Pre-/post-anti-IFX

8 weeks

MAP

90 ± 9.1

–1.2 (–4, 2)

P = 0.37

2/17 HTN (BP had to be

well controlled for 6

months).

10/17 on MTX

concurrently.

Thaci et al.156 n = 303

Plaque psoriasis

Pre-/post-ETN

52 weeks

126.3 –0.7

P value not reported

Rates of baseline HTN/BP

medications unknown.

Secukinumab and pla-

cebo arms, but data

only reported for

former.

Baker et al.157 n = 5408

RA

Observational pre-/post-

anti-TNFs

52 weeks

131 ± 16 –0.6 (–19, 18)

P value not reported

Data derived from adminis-

trative database.

73% HTN and 68% on BP

medication at baseline.

Mäki-Petäjä et al.158 n = 17 (11 F)

RA

Age 58

Pre-/post-ADL or ETN

8 weeks

MAP

104 ± 11

0

P = 0.9

9/17 treated HTN

Tam et al.159 n = 20 (92 F)

Ank Spond

Age 36

GOL:

Placebo (n = 21):

52 weeks

116 ± 10.4

116 ± 10.1

0.20 ±9.8

0.98 ±8.8

0.8 (–6.6, 5.1)* P = 0.79*

2/20 HTN.

7/20 concomitant MTX or

sulfasalazine

*Between groups compari-

son of D SBP

Grossman et al.160 N = 15 (9 F)

RA, PsA, Ank Spond

Age 46

Pre-/post-ADL, ETN, or

IFX

12 weeks

120.9 ± 11.8 1.7 (–22, 25)

P = 0.88

ABPM.

2/15 HTN: included if sta-

ble for 3 months and BP

controlled.

7/15 on other DMARDs.

van Doornum et al.161 n = 14 (8 F)

RA

Age 55

Pre-/post-anti-TNFs

6 weeks

140 ± 6 4 (–4, 12)

P = 0.3

Rates of baseline HTN and

BP medications not

reported.

Concurrent DMARD use

(MTX 11/14, leflunomide

9/14, HCQ 5/14)

ADL, Adalimumab, ank spod, ankylosing spondylitis; IFX, infliximab; ETN, etanercept; GOL, golimumab; MAP, mean arterial pressure; PsA, psoriatic arthritis; RA, rheumatoid
arthritis.
Asterix (*) is used to indicate a comment in the final column relating specifically to the asterixed result.
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..137.5 mmHg. Only one of these employed ABPM. Average SBP
lowering ranged from 1.4 to 5.9 mmHg, and diastolic blood pressure
(DBP) reduction of up to 4.4 mmHg (see Supplementary material
online, Table and Figure 3).149,154,157,181,182 Conversely, Makavos et al.168

and CIRT183 RCTs in psoriasis and patients with established cardiovascu-
lar risk, respectively, did not demonstrate average BP reduction with
MTX. Considering the discrepancy, although 90% of the CIRT cohort
had hypertension diagnoses, baseline BP values were not reported, pre-
cluding assessment of BP effects in individuals with uncontrolled
hypertension.

5.2.3 Hydroxychloroquine
Hydroxychloroquine is an antimalarial agent that is used as a DMARD,
and experimentally in IgA nephropathy.154,157,184 This agent has been
shown to reduce circulating dendritic cells (DCs) and reduces IFN-a, IL-
6, and TNF-a levels.185 Three studies of hydroxychloroquine have dem-
onstrated BP lowering. The largest of these involved 7147 patients with
RA and showed that hydroxychloroquine lowered BP by 1.2 mmHg sys-
tolic/0.6 mmHg diastolic from a baseline of 130/75 mmHg at
6 months.157 Two smaller studies report SBP lowering of 3–8.8 mmHg
(see Supplementary material online, Table).

5.2.4 Leflunomide
Leflunomide is a pyrimidine synthesis inhibitor used in active RA and pso-
riatic arthritis. In three studies, in which the subjects had an average base-
line SBP ranging from 128 to 133 mmHg, a small increase of 1.44–
4.3 mmHg systolic and 0.57–4.8 mmHg diastolic in office and ambulatory
BP was observed.154,157,186

5.2.5 Calcineurin inhibitors
Calcineurin inhibitors (CNIs) block the earliest steps of T cell activation,
but also have substantial off-target effects, including stimulation of endo-
thelin production, increases in sympathetic outflow, renal vasoconstric-
tion, salt retention, and hypertension (Figure 4).187,188 Eight studies with
BP data following 12–36 months of CNI treatment are reviewed (see
Supplementary material online). In four of these, the baseline BP was in
the hypertensive range.189–192 Six reported lowering of BP (range –1
to –13 mmHg),189–194 while two demonstrated a rise in BP of
5–11 mmHg.168,195 Further detail is available in the Supplementary mate-
rial online and reviewed elsewhere,188 but in summary, limitations of trial
design, and CNI off target effects make interpretation of BP effects of
CNIs difficult (Figure 4).

5.2.6 Mammalian target of rapamycin inhibitors
Mammalian target of rapamycin (mTOR) inhibitors such as sirolimus and
everolimus regulate cellular metabolism, growth, and proliferation, offer-
ing alternative immunosuppression following transplantation. Of six
studies we found reporting BP values, the three reporting an average
baseline SBP >140 mmHg all suggested a reduction in BP of between 3
and 8 mmHg,189,190,192 though only one achieved statistical signifi-
cance.189 ABPM was only measured in the SCHEDULE trial of heart
transplant patients treated with everolimus. An 8 mmHg fall in SBP
(P = 0.05), and no change in DBP occurred from 2 weeks post-transplant
to 12 months follow-up. This was dominated by reduction in nocturnal
SBP in both the everolimus and cyclosporine arms.189 BP lowering was
not observed when the average baseline BP for the study was in the nor-
motensive range.195 mTOR inhibitors in comparison with other agents
reported SBP outcomes that were neutral or elevated (0 or þ4 mmHg

Figure 2 Meta-analysis and Forest Plot using random effect model, of TNF-a inhibitor studies reporting SBP outcomes, with reference to average baseline
SBP, population size, and study weighting. Effect size reports average change in SBP in mmHg; * indicates ambulatory BP monitoring and MAP indicates only
mean arterial pressure data available. Panel A includes cohort studies reporting average SBP prior and subsequent to drug initiation; panel B includes ran-
domized trials with comparison to placebo or other pharmacotherapy. Overall change in average SBP accompanied by 95% confidence interval. ADL, adali-
mumab; ETN, etanercept; GOL, golimumab; IFX, infliximab; Mixed, different TNF-a inhibitors within the study; SBP, systolic blood pressure; sDMARD,
conventional synthetic disease modifying anti-rheumatic; TNF-a, tumour necrosis factor alpha.
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change).179,195,196 These studies are complicated by the concomitant use
of multiple other drugs (see Supplementary material online).

5.2.7 Cytotoxic T-lymphocyte-associated protein 4-Ig
Abatacept is composed of the Fc region of the immunoglobulin IgG1
fused to the extracellular domain of cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4). This agent targets T cell co-stimulation and is com-
monly used in transplant and rheumatologic diseases. In five studies of
RA patients reporting BP outcomes with abatacept, specific values were
not available for two and none of the others reported a statistically signif-
icant effect on BP.171,173,197–199 Seven studies reporting BP outcomes us-
ing Belatacept, an alternative CTLA-Ig, were identified. All of these were
in transplant recipients and were compared to patients receiving CNIs.
Two of these studies involved cross over from CNI to Belatacept and
showed a SBP reduction of 5.4 and 8.8 mmHg (P = 0.38 and 0.03, respec-
tively).200,201 A case–control study reported a 9 mmHg lower SBP in
subjects treated with this agent (P = 0.68).202 Three RCTs showed a re-
duction in SBP between –2.4 and –9 mmHg,203–205 but only one of these
reached statistical significance204 (see Supplementary material online,
Table). One RCT reported no difference in mean SBP.206 In only two
studies did the subjects have an average baseline SBP in the hypertensive
range,199,201 and no studies employed ABPM. The apparent BP benefit
with belatacept but not abatacept likely reflects population differences
(transplant vs. RA, respectively), potential physiological changes post-
transplantation, and the cross-over effect from CNI, which as noted
above, has off-target effects that can raise BP.

5.2.8 Rituximab
Rituximab is a monoclonal antibody against CD20, resulting in B cell apo-
ptosis and depletion. It is used in lymphoid and blood malignancies and

diverse autoimmune diseases. Trials reporting BP that are not con-
founded by polypharmacy were sparse. We identified four such studies,
and none involved patient groups with uncontrolled hypertension—the
average participant baseline SBP being 131/83 mmHg or lower.173,207–209

An early reduction in BP is common, but data reporting longer-term
trends were discordant. No BP effect was seen in RA173,207,208; but a BP
reduction was observed in membranous nephropathy at 4 weeks,
though not sustained to 20 weeks.209

5.3 Determinants of the BP effects of
immunosuppressants
In summary, trials in rheumatic, autoimmune, and transplant patients
indicate a possible BP-lowering effect of selected anti-inflammatory
therapies targeting diverse pathways previously identified by pre-
clinical studies. The evidence appears to be most consistent in relation
to anti-TNF-a agents, while other therapies such as hydroxychloro-
quine, MMF, and mTORs all suggest BP-lowering effect (Figures 3
and 5). Data are however conflicting, and hypertension was rarely a
pre-specified outcome measure. Trials often involved normotensive
populations in which BP lowering is difficult to observe. A combined
analysis of studies discussed in this paper shows that cohorts
with higher average baseline SBP appear to achieve greater BP-lower-
ing effect (Figure 3), an association also reported for anti-hypertensive
drugs.210–212

5.4 Non-pharmacological interventions
Several non-pharmacological treatment approaches have shown beneficial
effects in reducing inflammation and therefore improving patient out-
comes in the context of hypertension.

Figure 3 Bubble plot illustrating immunomodulatory agents plotted by baseline SBP (x-axis) and average change in SBP (y-axis), both in mmHg, with
bubble area representing cohort size. R2 = 31% fpr average change in SBP by average baseline SBP. CNI, calcineurin inhibitor; CTLA4-Ig, cytotoxic T-lym-
phocyte-associated protein 4 immunoglobulin; HCQ, hydroxychloroquine; IL, interleukin; MMF, mycophenolate mofetil; mTOR: mammalian target of
rapamycin; MTX: methotrexate; SBP, systolic blood pressure; TNF, tumour necrosis factor.
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5.4.1 Periodontitis targeting and BP
Animal studies suggest that periodontal Porphyromonas gingivalis infection
increases IFN-c and TNF-a production through modulation of Th1
responses, leading to BP elevation, endothelial dysfunction, and vascular
inflammation.213 This link is supported by Mendelian randomization,214

observational data, and meta-analysis.215–218 Data from well-controlled
trials demonstrate that intense treatment of periodontitis can improve
endothelial function,219 lower inflammatory markers, and BP as mea-
sured by ABPM, with a reduction in SBP of 5 mmHg (P < 0.01).220 A
meta-analysis of eight studies involving intensive periodontal treatment
showed an average decrease of SBP of -4.3 mm Hg (95% CI: –9.1 to –
0.5) and DBP –3.16 mm Hg (95% CI: –6.5 to –0.2), though none of these
achieved statistical significance. As in the case of pharmacological inter-
ventions, BP reductions were not observed in normotensive
individuals.221

5.4.2 Energy metabolism, microbiome, and salt
Physical activity has an established role in BP regulation, with 3 months
of exercise lowering SBP by approximately 5 mmHg and DBP by
3 mmHg.222 Physical activity also has demonstrable immune effects.223

Exercise can both increase circulating numbers of T cells224 and improve
response to influenza vaccination.225

For dietary interventions, most research has focused on CVD risk re-
duction, though BP lowering has also been demonstrated in both nor-
motensive and hypertensive cohorts,226,227 at least in part immune-
mediated via effects of diet on the microbiome.228 Metagenome-wide as-
sociation evidence of gut dysbiosis in hypertension includes restricted
sample diversity, higher lipopolysaccharide synthesis, membrane trans-
port, and steroid degradation; suggesting low-grade inflammatory stimuli
may be the mechanism.229 Evidence is accumulating that plant-based
dietary protein may promote bacterial species associated with anti-
inflammatory effects, while meat consumption is linked to CVD and in-
flammatory bowel disease.230

Dietary salt is another dominant driver of hypertension, primarily
through activation of renin–angiotensin–aldosterone system231; at higher
concentration, salt also favours pro-inflammatory monocyte232 and T
cell phenotypes with increased tissue infiltration233 and microvascular
dysfunction.234 Highly controlled experimental reduction in salt intake
lowers pro-inflammatory IL-6 and IL-23, and increases IL-10 levels,235

though this effect was not detected in a larger observational study.236

5.4.3 Neuronal manipulations
The central nervous system regulates vascular and kidney function
through sympathetic innervation but is also a potent modulator of
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Figure 4 Renal and immune system effects of calcineurin inhibitors influencing blood pressure. COX2, cyclooxygenase-2; GFR, glomerulofiltration rate;
IL-2, interleukin-2; NFAT, nuclear factor of activated T cells; NO, nitric oxide; TMA, thrombotic microangiopathy; RAAS, renin–angiotensin–aldosterone
system; ROS, reactive oxygen species; SNS, sympathetic nervous system; TGF-b, transforming growth factor beta. Created in BioRender.
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immune responses. Animal and human studies demonstrate the role of
neuroimmune axis in the pathogenesis of hypertension,237,238 with mu-
rine renal denervation (RDN) inducing a reduction in BP,239–242 and re-
duction in renal inflammation, T cell activation, and pro-inflammatory
cytokine production.240,243 However, SIMPLICITY, SPYRAL, and
RADIANCE human clinical trials demonstrate inconsistent results,
mostly favouring sustained BP reduction.244,245 Some but not all246 of
these were sham-controlled RDN designs.247–249 The effect of RDN on
immune activation in humans is less clear. One trial demonstrated reduc-
tions in TNF-a and IL-1b, and up-regulation of IL-10 one day after RDN;
however, this did not persist to day 3,250 and was not corroborated
elsewhere.251,252

An alternative approach to sympathetic denervation is augmentation
of parasympathetic activity through vagus nerve stimulation (VNS). This
approach has proven effective in hypertensive rodent models.253–255

VNS limits hypertension-induced endothelial dysfunction256 and reduces
levels of systemic cytokines and mRNA expression in target organs,257

with both afferent and efferent VNS protecting mice from kidney in-
jury.258 Anti-inflammatory effects of VNS are abolished in immune-
deficient and b2 adrenergic receptor-deficient mice.259 When stimulated
by Ang II or bioelectronic signals, a splenic neuroimmune cascade is trig-
gered via a-adrenergic receptors. In response, CD8þ effector T cells
with a role in hypertension25 egress from the spleen.260 VNS has not yet
been tested in human hypertension, but has been used in epilepsy and in
RA, demonstrating lowering of circulating TNF-a, IL-1-b, and IL-6 levels
and improvement in disease activity.261

5.5 Hypertension-mediated organ damage
Hypertension-mediated organ damage (HMOD) correlates with BP val-
ues in hypertension262,263; however, genetics, lifestyle, and co-morbid
conditions may also contribute to end-organ damage independently of
BP levels. Similarly, the target organ benefit of immunomodulation might
be partially independent of BP effects. The strength of evidence regarding
the effects of immunomodulatory therapy on HMOD in experimental
and clinical settings is summarized in Figure 5. Registry data of active RA,
with 30% hypertension prevalence, suggested no difference in myocar-
dial infarction rates in response to TNF-a inhibitors vs. DMARDs.
However, 60% fewer events did occur in the TNF-a inhibitor responder
subgroup vs. non-responders.264 The observational QUEST-RA study
included subjects with hypertension prevalence of 32% and was adjusted
for traditional risk factors. This study reported a reduction in cardiovas-
cular risk in response to numerous immunomodulatory drugs, including
biologic agents (HR: 0.42; 95% CI: 0.21–0.81), MTX (HR: 0.85; 95% CI:
0.81–0.89), sulfasalazine (HR: 0.92; 95% CI: 0.87–0.98), and leflunomide
(HR: 0.59; 95% CI: 0.43–0.79); P < 0.05.265 Baseline BP values were not
reported in either paper. Nurmohamed et al. reviewed 90 studies
reporting cardiovascular risk outcomes in rheumatological conditions
treated with abatacept, TNF-a inhibitors, rituximab, secukinumab, tocili-
zumab, and tofacitinib. They report a neutral effect on BP, on surrogate
markers of cardiovascular risk, and on MACE, though authors emphasise
the variation in quantity and quality of evidence.266

Observational data based on 13 000 matched pairs from Medicare and
MarketScan patients with RA and newly treated with abatacept or a TNF-
a inhibitor found benefit of abatacept in MACE restricted to the subgroup
with diabetes [HR: 0.74 (95% CI: 0.57–0.96)].267 Potential confounding
arose from higher rates of hypertension in the diabetic subgroups, again
supporting potential benefit of TNF-a inhibitors in hypertension.167 Finally,
a meta-analysis of 14 studies in patients with RA, adjusted for hyperten-
sion, concluded that DMARDs were associated with an increased risk of
MACE relative to TNF-a inhibitor therapy [OR: 1.58 (95% CI: 1.16–2.15);
I2 = 16%], effect maintained in presence or absence of MTX.268

Colchicine is hypothesized to inhibit microtubular polymerization, as-
sembly of the NLRP3 inflammasome, and IL-1b and IL-18 production. In
acute coronary syndrome, colchicine abrogates local increases in IL-1b,
IL-18, and IL-6 levels,269 and its addition to aspirin and statin reduces
high-sensitivity C-reactive protein.270 Colchicine 0.5 mg daily has been
demonstrated to reduce MACE by 67% compared to placebo in
LoDoCo RCT of 532 patients with stable coronary artery disease,271

though the similarly sized COPS trial found no benefit in cardiovascular
outcomes.272 The larger COLCOT trial of 4745 participants recruited
within 30 days of acute coronary syndrome reported composite cardio-
vascular end-point occurrences in 5.5% of the colchicine group vs. 7.1%
of the placebo group (HR: 0.77; 95% CI: 0.61–0.96; P = 0.02).9 Half of
these patients had hypertension. Similarly, LoDoCo2 randomized 5522
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Figure 5 Immunomodulatory drugs and the level of animal and clini-
cal evidence available regarding blood pressure and organ system out-
comes. Summarized according to the aggregated weight of the available
evidence. BP, blood pressure; CD, cluster of differentiation; CNI, calci-
neurin inhibitor; CTLA4-Ig, cytotoxic T-lymphocyte-associated protein
4 immunoglobulin; HCQ, hydroxychloroquine; IL, interleukin; MMF,
mycophenolate mofetil; mTOR: mammalian target of rapamycin; MTX:
methotrexate; TNF, tumour necrosis factor. *Cardiovascular out-
comes. ^Includes arterial stiffness, endothelial function, and cerebrovas-
cular outcomes. #Includes chronic kidney disease, end-stage kidney
disease, fibrosis, and inflammation.
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.chronic coronary disease patients to low-dose colchicine, with compos-
ite end-point events in 6.8% of the colchicine group vs. 9.6% of placebo
group (HR: 0.69; 95% CI: 0.57–0.83; P < 0.001).11

Overall, we would conclude that there is evidence of improvement in
MACE for TNF-a inhibitors, MTX, tocilizumab, secukinumab, lefluno-
mide and colchicine, though heterogeneity of study designs and out-
comes limits the strength of this statement, and we have not explored
the relationship between reduction in inflammation and MACE sug-
gested by CANTOS and TNF-a inhibitor responders in the registry data
above. HMOD outcomes beyond MACE are surmised in Figure 5 for
common immunomodulatory drugs.

6. Conclusions

While experimental, genetic, and clinical evidence supports the role of in-
flammation and immune system involvement in hypertension and associ-
ated vascular, renal, and cardiac pathology, immunomodulatory
approaches are not currently considered therapeutic options in BP lower-
ing and cardiovascular disease reduction. Indeed, clinical evidence
reviewed in this paper shown a highly heterogeneous effect of immune tar-
geting on BP and cardiovascular events across a wide range of patients
mainly with various underlying immune-mediated diseases. Going forward,
there are several important considerations. As is the case with
traditional anti-hypertensive medications, the BP-lowering effects of anti-
inflammatory agents appear to be limited to those with uncontrolled hy-
pertension. This is not surprising as numerous compensatory mechanisms
make lowering beyond normal BP difficult. It is also important to consider
that the effects may be limited to patients with active pro-hypertensive in-
flammatory mechanisms. The lesson from CIRT, TNF-a inhibitor respond-
ers vs. non-responders, CANTOS, and the body of the evidence
presented is that there must be active inflammation. Hence, cardiovascular
risk reduction with immune modulation is mediated not through BP alone,
but via broader mechanisms of oxidative stress, endothelial function, vas-
cular remodelling, and endocrine regulation, that are the ‘common
denominators’ of a dysfunctional relationship. Secondly, we must target
the optimal checkpoint in the inflammation–hypertension relationship to
optimize benefit without adverse effect, and so far, this has remained elu-
sive at a population level. Finally, it is important to consider that virtually all
of the preclinical studies investigating the anti-hypertensive effect of im-
mune interventions on hypertension have involved treatment of animals at
the onset on hypertension, often concomitantly with the onset of the dis-
ease. In contrast, these agents are usually given to humans with long-
standing hypertension. It is possible, and even likely that once hypertension
has been established, there are chronic changes in renal and vascular func-
tion and structure that render such treatment less effective. In this regard,
treatment of younger individuals with early onset hypertension might yield
different results than those observed in the studies summarized here.
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M, Hu H, Kröller-Schön S, Schönfelder T, Grabbe S, Oelze M, Daiber A, Münzel T,
Becker C, Wenzel P. Angiotensin ii-induced vascular dysfunction depends on inter-
feron-c- driven immune cell recruitment and mutual activation of monocytes and
NK-cells. Arterioscler Thromb Vasc Biol 2013;33:1313–1319.

44. Rodrı́guez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. Early
and sustained inhibition of nuclear factor-kappaB prevents hypertension in sponta-
neously hypertensive rats. J Pharmacol Exp Ther 2005;315:e51–e57.

45. Brands MW, Banes-Berceli AKL, Inscho EW, Al-Azawi H, Allen AJ, Labazi H.
Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasocon-
striction and janus kinase 2/signal transducer and activator of transcription 3 activa-
tion. Hypertension 2010;56:879–884.

46. Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, Liu B. NLRP3 inflammasome activation is
involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget
2016;7:54290–54302.

47. Huang B, Cheng Y, Usa K, Liu Y, Baker MA, Mattson DL, He Y, Wang N, Liang M.
Renal tumor necrosis factor a contributes to hypertension in Dahl salt-sensitive
rats. Sci Rep 2016;6:21960.

48. McShane L, Tabas I, Lemke G, Kurowska-Stolarska M, Maffia P. TAM receptors in
cardiovascular disease. Cardiovasc Res 2019;115:1286–1295.

49. Nosalski R, Mikolajczyk T, Siedlinski M, Saju B, Koziol J, Maffia P, Guzik TJ. Nox1/4
inhibition exacerbates age dependent perivascular inflammation and fibrosis in a
model of spontaneous hypertension. Pharmacol Res 2020;161:105235.

50. MacRitchie N, Grassia G, Noonan J, Cole JE, Hughes CE, Schroeder J, Benson RA,
Cochain C, Zernecke A, Guzik TJ, Garside P, Monaco C, Maffia P. The aorta can act
as a site of naı̈ve CD4þ T-cell priming. Cardiovasc Res 2020;116:306–316.

51. Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, Bikineyeva AT,
Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V,
Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen S-C, Mernaugh RL,
Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J, Harrison DG.
DC isoketal-modified proteins activate T cells and promote hypertension. J Clin
Invest 2014;124:4642–4656.

52. Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, Kett MM, Pinar A,
Samuel CS, Vinh A, Arumugam TV, Hewitson TD, Kemp-Harper BK, Robertson
AAB, Cooper MA, Latz E, Mansell A, Sobey CG, Drummond GR. Inflammasome ac-
tivity is essential for one kidney/deoxycorticosterone acetate/salt-induced hyperten-
sion in mice. Br J Pharmacol 2016;173:752–765.

53. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, Carnevale L,
Carnevale R, De LM, Cifelli G, Lembo G. A cholinergic-sympathetic pathway primes
immunity in hypertension and mediates brain-to-spleen communication. Nat
Commun 2016;7:13035.

54. Carnevale D, Pallante F, Fardella V, Fardella S, Iacobucci R, Federici M, Cifelli G, De
Lucia M, Lembo G. The angiogenic factor PIGF mediates a neuroimmune interaction
in the spleen to allow the onset of hypertension. Immunity 2014;41:737–752.

55. Rodriguez-Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity in-
duced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J
Pharmacol 2019;176:1829–1838.

56. Idris-Khodja N, Mian MOR, Paradis P, Schiffrin EL. Dual opposing roles of adaptive
immunity in hypertension. Eur Heart J 2014;35:1238–1244.

57. Madhur MS, Kirabo A, Guzik TJ, Harrison DG. From rags to riches: moving beyond
Rag1 in studies of hypertension. Hypertension 2020;75:930–934.

58. Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol 2020;36:635–647.
59. Nosalski R, Siedlinski M, Denby L, McGinnigle E, Nowak M, Cat AND, Medina-Ruiz

L, Cantini M, Skiba D, Wilk G, Osmenda G, Rodor J, Salmeron-Sanchez M, Graham
G, Maffia P, Graham D, Baker AH, Guzik TJ. T-cell-derived miRNA-214 mediates
perivascular fibrosis in hypertension. Circ Res 2020;126:988–1003.

60. Hoyer FF, Nahrendorf M. Interferon-c regulates cardiac myeloid cells in myocardial
infarction. Cardiovasc Res 2019;115:1815–1816.

61. Abdellatif M, Zirlik A. Immunometabolism: a key target to improve microcirculation
in ageing. Cardiovasc Res 2020;116:e48–e50.

62. Matrougui K, Abd Elmageed Z, Zakaria AE, Kassan M, Choi S, Nair D, Gonzalez-
Villalobos RA, Chentoufi AA, Kadowitz P, Belmadani S, Partyka M. Natural

Therapeutic targeting of inflammation in hypertension 2603



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
regulatory T cells control coronary arteriolar endothelial dysfunction in hyperten-
sive mice. Am J Pathol 2011;178:434–441.

63. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG.
Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunc-
tion. Hypertension 2010;55:500–507.

64. Kamat N. V, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E,
Harrison DG, McDonough AA. Renal transporter activation during angiotensin-II
hypertension is blunted in interferon-c-/- and interleukin-17A-/- mice. Hypertension
2015;65:569–576.

65. Zhang J, Patel MB, Griffiths R, Mao A, Song Y, Karlovich NS, Sparks MA, Jin H, Wu
M, Lin EE, Crowley SD. Tumor necrosis factor-a produced in the kidney contrib-
utes to angiotensin II-dependent hypertension. Hypertension 2014;64:1275–1281.

66. Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic func-
tion of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2019;115:
1393–1407.
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