
Genome analysis

igv.js: an embeddable JavaScript implementation of the

Integrative Genomics Viewer (IGV)

James T. Robinson1,*, Helga Thorvaldsdottir2, Douglass Turner1 and Jill P. Mesirov1,3

1Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA, 2Broad Institute of MIT and Harvard, Cambridge,

MA 02142, USA and 3Moores Cancer Center, University of California San Diego La Jolla, CA 92037, USA

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on July 19, 2022; revised on November 29, 2022; editorial decision on December 5, 2022; accepted on December 22, 2022

Abstract

Summary: igv.js is an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). It can be
easily dropped into any web page with a single line of code and has no external dependencies. The viewer runs
completely in the web browser, with no backend server and no data pre-processing required.

Availability and implementation: The igv.js JavaScript component can be installed from NPM at https://www.
npmjs.com/package/igv. The source code is available at https://github.com/igvteam/igv.js under the MIT open-
source license. IGV-Web, the end-user application built around igv.js, is available at https://igv.org/app. The source
code is available at https://github.com/igvteam/igv-webapp under the MIT open-source license.

Contact: jrobinso@ucsd.edu

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

The rapid pace of genomic dataset generation has led to a prolifer-
ation of public and private web portals and cloud resources for shar-
ing, analyzing and visualizing the data. An important component of
many such resources is the ability to visually inspect the data in
track-based views aligned to a reference genome. Traditionally, such
views have been provided in genome browsers, including large cli-
ent–server systems such as the UCSC Genome Browser (Kent et al.,
2002) and the Ensembl Genome Browser (Hubbard et al., 2002),
rich client web applications such as JBrowse (Buels et al., 2016) and
desktop applications such as the Integrative Genomics Viewer (IGV)
(Robinson et al., 2011; Thorvaldsdottir et al., 2013). Although it is
possible to create links from web portals to visualize data in these
and similar browsers, in many cases it is desirable to embed genomic
visualizations directly in portal pages, enabling data visualization in
place without the context switch to another web page or applica-
tion. Here, we describe igv.js, an embeddable JavaScript implemen-
tation of the IGV genome viewer.

2 Features

Unlike stand-alone genome browsers such as JBrowse, the igv.js
viewer is a component designed explicitly to be embedded in and
controlled by enclosing web applications. It builds on previous
work, importantly Dalliance (Down et al., 2011), the first pure
JavaScript component to natively support next-generation sequenc-
ing (NGS) data in binary BAM files in a web browser. Embedding

an igv.js visualization is as simple as creating a container ‘div’ elem-
ent in the HTML document and calling a JavaScript function to in-
sert the genome browser (see Quick Start in Supplementary
Material). The enclosing application interacts with igv.js by means
of an API, which includes functions to configure the initial view,
load and remove reference genomes and tracks, navigate to specific
loci and listen for events initiated by user interaction with igv.js.
Tracks are initialized with configuration objects that define the track
type, data source and format and initial visual properties such as
color, height and feature layout within the track. Multiple instances
of igv.js can exist on a page, and instances can be added and
removed dynamically.

The look and feel of igv.js are modeled closely after the IGV
desktop application. Like the desktop IGV application, igv.js sup-
ports a wide range of genomic track types and file formats, including
aligned reads, variants, coverage, signal peaks, annotations, eQTLs,
GWAS and copy number variation (see Supplementary Material and
examples in Fig. 1). A particular strength of IGV is manual review
of genome variants, both single-nucleotide and structural variants
(Robinson et al., 2017). To support this use case in igv.js, we have
implemented the suite of IGV read alignment display options. These
include coloring and sorting reads by strand and other attributes,
displaying and coloring bases that mismatch the reference, coloring
alignments to flag ambiguous mappings and anomalous pair dis-
tance and orientations, and multi-locus views for side-by-side views
of the multiple components of a structural variant.

It is important to emphasize that igv.js by design supports
industry-standard file formats such as BAM, CRAM, bigWig,
bigBed, VCF and others, without modification. No pre-processing is

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btac830

https://doi.org/10.1093/bioinformatics/btac830

Advance Access Publication Date: 23 December 2022

Applications Note

https://www.npmjs.com/package/igv
https://www.npmjs.com/package/igv
https://github.com/igvteam/igv.js
https://igv.org/app
https://github.com/igvteam/igv-webapp
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac830#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac830#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac830#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac830#supplementary-data
https://academic.oup.com/


required. In fact, files in standard repositories, such as those hosted
by the UCSC Genome Browser, ENCODE (https://www.encodepro
ject.org) and GEO (https://www.ncbi.nlm.nih.gov/geo), can be refer-
enced directly by URL. Furthermore, there is no backend IGV ser-
ver; data are loaded directly from the source into the user’s web
browser. Supported data sources include (i) files hosted on web serv-
ers and accessed via URL; the servers may be on the user’s local
intranet or on the internet, including on servers hosted by cloud pro-
viders such as Google Drive, Google Cloud Storage, Dropbox and
Amazon S3; (ii) htsget (https://samtools.github.io/hts-specs/htsget.
html) servers; (iii) custom web services; (iv) inline data URIs; and (v)
files on the local file system. To support viewing large files, such as
reference sequence FASTA, BAM alignment and VCF variant files,
indices are used to fetch only the data required to render the current
view utilizing standard HTTP Range requests.

Authenticated access to restricted datasets is supported with ex-
plicit support for oAuth (https://oauth.net) tokens, which can be
supplied by the enclosing application as a static string, a callback
function or a JavaScript promise. The support for functions and
promises enables the enclosing application to update or revoke
tokens as needed. Additionally, arbitrary HTTP request headers can
be specified during track initialization to support other token-based
authentication schemes. Finally, the URLs to track resources can be
specified as a callback function or promise, allowing the enclosing
application to intercept and modify the URL at runtime based on
user credentials or other criteria. For example, a signed URL might
be generated and supplied via a promise after user authentication.
Finally, explicit support is provided for Google resources by specify-
ing a Google client id on igv.js initialization. If specified, oAuth au-
thentication will be initiated by igv.js as required.

A unique feature of igv.js is an API function to return a com-
pressed URL-safe string that encodes the complete state of the

browser session, including pointers to the reference genome and the
loaded data, as well as details on the current view and track and
browser settings. This capability can be used by applications to sup-

port bookmarks and sharable links. We take advantage of this fea-
ture in IGV-Web (https://igv.org/app), an end-user application built

around the igv.js component. IGV-Web provides a user interface for
specifying the reference genome, loading data into the viewer from
remote and local files, and saving and loading sessions. A Share
menu allows the user to easily retrieve a URL that represents the cur-
rent session state and to share it with others. The links provided in

the legend for Figure 1 were created this way. Entering them into a
web browser will open the IGV-Web app and recreate the inter-
active sessions used to generate the images in the figure.

3 Availability and documentation

The igv.js component can be installed from NPM at https://www.
npmjs.com/package/igv. The distribution consists of a single

JavaScript file with no external dependencies. The source code is
available at https://github.com/igvteam/igv.js under a permissive

open-source license (MIT) and includes numerous examples for
embedding igv.js in web pages. The NPM site includes a quick-start
guide, and more extensive documentation is available at https://

github.com/igvteam/igv.js/wiki.
The IGV-Web application is available at https://igv.org/app, and

the Help menu links out to documentation at https://igvteam.github.
io/igv-webapp. The source code is available under the MIT open-
source license at https://github.com/igvteam/igv-webapp.

Funding

This work was supported by the National Institutes of Health

[U24CA210004 to J.P.M. and J.T.R., U24CA258406 to J.P.M. and J.T.R.].

Conflict of Interest: none declared.

References

Buels,R. et al. (2016) JBrowse: a dynamic web platform for genome visualiza-

tion and analysis. Genome Biol., 17, 66.

Down,T.A. et al. (2011) Dalliance: interactive genome viewing on the web.

Bioinformatics, 27, 889–890.

Hubbard,T. et al. (2002) The Ensembl genome database project. Nucleic

Acids Res., 30, 38–41.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

Robinson,J.T. et al. (2017) Variant review with the integrative genomics view-

er. Cancer Res., 77, e31–e34.

Robinson,J.T. et al. (2011) Integrative genomics viewer. Nat. Biotechnol., 29,

24–26.

Thorvaldsdottir,H. et al. (2013) Integrative genomics viewer (IGV):

high-performance genomics data visualization and exploration. Brief.

Bioinform., 14, 178–192.

Fig. 1. Example igv.js screenshots. (A) NGS sequence alignment pileup in the region

of a putative SNP indicates strand bias (https://tinyurl.com/y9n6dyw9). (B) RNA-

Seq pileups from two tissues illustrate alternative splicing (https://tinyurl.com/

ybo547uf). (C) Epigenetic marks and transcription factors correlate with loop calls

from HiC data (https://tinyurl.com/y75465od). (D) Manhattan plot from whole-

genome association studies (https://tinyurl.com/ydhakvy4)

2 J.T.Robinson et al.

https://www.encodeproject.org
https://www.encodeproject.org
https://www.ncbi.nlm.nih.gov/geo
https://samtools.github.io/hts-specs/htsget.html
https://samtools.github.io/hts-specs/htsget.html
https://oauth.net
https://igv.org/app
https://www.npmjs.com/package/igv
https://www.npmjs.com/package/igv
https://github.com/igvteam/igv.js
https://github.com/igvteam/igv.js/wiki
https://github.com/igvteam/igv.js/wiki
https://igv.org/app
https://igvteam.github.io/igv-webapp
https://igvteam.github.io/igv-webapp
https://github.com/igvteam/igv-webapp
https://tinyurl.com/y9n6dyw9
https://tinyurl.com/ybo547uf
https://tinyurl.com/ybo547uf
https://tinyurl.com/y75465od
https://tinyurl.com/ydhakvy4



