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Abstract

Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical 

role in clinical diagnosis, biomedical research, and machine learning algorithms development. 

However, generating exhaustive and accurate annotations is labor-intensive, challenging, and 

costly. Drawing only coarse and approximate annotations is a much easier task, less costly, 

and it alleviates pathologists’ workload. In this paper, we study the problem of refining these 

approximate annotations in digital pathology to obtain more accurate ones. Some previous works 

have explored obtaining machine learning models from these inaccurate annotations, but few of 

them tackle the refinement problem where the mislabeled regions should be explicitly identified 

and corrected, and all of them require a – often very large – number of training samples. We 

present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse 

annotations on a single WSI without the need for external training data. Patches cropped from a 

WSI with inaccurate labels are processed jointly within a multiple instance learning framework, 

mitigating their impact on the predictive model and refining the segmentation. Our experiments on 

a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal 

cancer samples show that LC-MIL significantly refines the coarse annotations, out-performing 

state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate 
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how real annotations drawn by pathologists can be efficiently refined and improved by the 

proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool 

to provide fine-grained annotations from coarsely annotated pathology sets.
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I. Introduction

Pathology plays a critical role in modern medicine, and particularly in cancer care. 

Pathology examination and diagnosis on glass slides are the gold standard for cancer 

diagnosis and staging. In recent years, with advances in digital scanning technology, 

glass slides can be digitized and stored in digital form into whole-slide images (WSIs). 

These WSIs contain complete tissue sections and high-level morphological details, and are 

changing the workflow for pathologists [1], [2].

Diagnosis by pathologists on a WSI typically include the description of cancer (i.e., 
presence, type, and grade of cancer), the estimation of tumor size, and observation of 

tumor margin (whether tumor cells appear at the edge of the tissue), which is important 

for planning therapy and estimating prognosis. Further information, such as the detailed 

localization of cancer, is usually not included in the routine pathology report. However, this 

local information on cancer is of great interest in biomedical and pharmaceutical research. 

The tumor microenvironment – the stromal tissue and blood vessels surrounding the tumor 

cell clusters – governs the tumor growth, response to treatment, and patient prognosis [3], 

[4]. The quantitative analysis of the tissue microenvironment, via downstream analysis of 

spatial statistics and other metrics, requires a clear and accurate definition of the boundaries 

of the tumor, as in recent works [5], [6], [7].

On the other hand, the local detection and segmentation of histopathology images is a 

significant and rapidly growing field in computational pathology. Early approaches mainly 

focused on extracting the morphological and texture features using image processing 

algorithms [8], including thresholding [9], fuzzy c-means clustering [10], watershed 

algorithm [11], active contours [12], among others. With the advent of artificial intelligence 

and deep learning, a number of deep neural network models have achieved encouraging 

results in biomedical image segmentation [13], [14].

Whole-slide image segmentation, on the other hand, faces a unique challenge, since neural 

network models cannot be directly applied to the whole Gigapixel resolution WSI. A 

patch-based analysis (i.e., training and deploying a model on numerous small patches 

that are cropped from the WSI) is commonly used as an alternative, and supervised deep 

learning has been remarkably successful when deployed this way [15]. However, high 

quantity (and quality) of fine-grained annotations are needed, including patch-level or pixel-

level information. The latter is very costly to obtain, since detailed manual annotation 

on Gigapixel WSIs is extremely labor-intensive and time-consuming, and suffers from 

inter- and intra-observer variability [16], [17], [18]. For these reasons, state-of-art WSI 
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sets with detailed annotations provided by expert pathologists are very limited. The lack 

of large datasets with detailed and trustworthy labels is one of the biggest challenges in 

the development and deployment of classical supervised deep learning models in digital 

pathology applications.

Given the cost and difficulty of obtaining exhaustive and accurate annotations, a number 

of approaches attempt to address the segmentation problem in imperfect label settings [19]. 

Weakly-supervised learning aims to automatically infer patch-level (local) information using 

only slide-level (global) labels, but it typically requires thousands of WSIs as training 

samples [20], [21], [22]. Semi-supervised learning, on the other hand, trains models on 

partially annotated WSI and makes predictions for the remaining unlabeled regions, yet 

the partial annotations must also be conducted by experts [23]. In this paper, we re-think 

the WSI annotation process from a more clinically applicable scenario: Drawing coarse 

annotations on WSIs (e.g., rough boundaries for the cancerous regions), is much easier 

than detailed annotations. Such coarse annotations need only similar effort and time as the 

slide-level labeling, and can even be conducted by non-experts. Learning from those coarse 

annotations, and then refining them with computational methods, might be an efficient way 

to enrich the labeled pathology data with minimal effort. The resulting refined annotation 

can provide a more accurate “draft” for further detailed annotations by pathologists, thus 

alleviating their workload.

Our solution to the coarse annotation refinement problem is based on a multiple instance 

learning (MIL) framework that intrinsically incorporates the fact that the input annotations 

are imperfect, models this imperfection as patch-level label noise, and finally outputs a 

refined version of annotations by identifying the mislabeled patches and correcting them, 

as Fig. 1 illustrates. Our methodology, named Label Cleaning Multiple Instance Learning 

(LC-MIL), is validated in a heterogeneous set of 120 WSIs from three cancer types, 

including breast cancer metastasis in lymph nodes, liver cancer, and colorectal cancer, in 

both simulated and real experiments that demonstrate how the workload of pathologists can 

be alleviated. Importantly, and in order to make our method applicable to scenarios where 

just a few cases (slides) are available, our method can be trained and deployed on a single 

WSI, without the need for large training sets. Our approach significantly refines the original 

coarse annotations even while learning from a single WSI, and substantially outperforms 

state-of-the-art alternatives. To the best of our knowledge, this is the first time that multiple 

instance learning is employed to clean label noise, and ours is the first approach that allows 

for refining coarse annotations on single WSIs.

The rest of the paper is organized as follows. In Section II we provide an overview of 

related work. In Section III, we present the proposed methodology, LC-MIL, as well as 

other state-of-art baseline methods, in detail. We then proceed to our single-slide annotation 

refinement experiments in Section IV. After that, we provide the implementation details in 

Section V, and discuss the sensitivity to parameters in Section V-A. Lastly, we discuss and 

summarize both the implication and limitations of our approach in Section VI and Section 

VII.
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II. Related Work

In this section, we discuss related work from the areas that are mostly related to our 

contribution: label noise handling and multiple instance learning in medical imaging.

Before we describe the specific techniques and studies, we first give a brief formulation 

of the problem to direct the reader to the appropriate context. The coarse annotations are 

considered as a “noisy” label problem. More specifically, a WSI consists of a number of 

small patches, each of which can be assigned a label based on the annotations: patches 

within the annotated cancerous regions are assigned positive labels, and otherwise negative 

labels are assigned. However, not all of the labels are correct, given that the annotations 

are inaccurate. Comparing the coarse annotations with the ground truth, we will find 

some false positives (yellow) and false negatives (blue), as Fig. 2 illustrates. Naturally, 

the model has no access to the ground truth, and aims at learning from, and modifying, 

the coarse annotations to retrieve the correct segmentation. This is the so-called “annotation 

refinement” problem, interpreted as identifying mislabeled samples and correcting their 

labels via machine learning approaches. This is a very challenging problem: the machine 

learning algorithm must be able to learn from inaccurate information and over considerable 

heterogeneity of tissue morphology and appearance, and do so without an external collection 

of training data.

A. Label Noise Handling

We place ourselves in a machine learning scenario, where we are given a collection of 

training data – pairs of samples and their corresponding labels, but part of the training 

samples have their labels corrupted. The learning process, predicting a rule that assigns a 

label to a given sample, then becomes significantly more challenging. Label noise handling 

is an extensively researched problem in machine learning. A large family of approaches 

focus on enhancing the robustness of a machine system against label noise by designing 

sophisticated model architectures [24], [25], [26], choosing loss functions that are tolerant to 

label noise [27], [28], [29], and conducting “label smoothing” [30], [31], [32]. This category 

of approaches typically does not evaluate the label accuracy or confidence of the training set, 

but tries to alleviate the impact of the corrupted labels on the performance of the model in a 

held-out test set.

Some other approaches attempt to evaluate the label accuracy based on predicted 

probabilities [33], [34], [35] or loss values [36], [37], under the intuition that samples with 

less confident predictions or unusually high loss values are more likely to be mislabeled. 

However, probability and loss cannot reveal the prediction confidence correctly in many 

poorly-calibrated models [38]. An auxiliary set with clean labels –if available– is popular in 

label noise detection, which is either used as a reference to identify potentially mislabeled 

samples [39], [40], or re-weigh the training samples to mitigate the impact of mislabeled 

samples on the system [41], [42], [43].

K-nearest neighbors (k-NN) based analysis [44], on the other hand, can be used for “editing” 

corrupted labels without an auxiliary clean set. The basic idea is to discard samples 

that are not consistent with their k nearest neighbors. In a recent work, k-NN has been 
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deployed within deep learning frameworks, as the deep k-NN (DkNN) approach of [45], 

which searches for neighbors in the feature space of a deep learning model. This method 

outperformed the state of the art for label noise correction, and we will revisit it in further 

detail as we describe our baseline in Section III-C.

B. Multiple Instance Learning

Unlike supervised learning settings, where each training sample comes with an associated 

label, in multiple instance learning (MIL), one only has labels associated with groups 

of samples, Xi = xk k = 1
ni , termed bags, but not with the individual samples xi, called 

instances. Although individual labels yi exist for the instances xi, they are unknown during 

training. However, the bag-level label Yi is a function of the instance-level labels yi. This 

function was simply a max pooling operator when MIL was first proposed by Dietterich et 
al. [46], denoted as Y = max

i
yi .

Over the years, various alternative MIL formulations were developed. Ilse et al. [47] provide 

a generalization of MIL predictors as a composition of individual functions:

PY = 1 = g(σ(f(X))) . (1)

Here, f:ℝd ℍ is a transformation function mapping individual instances to a feature space 

or label space; σ:(ℍ)k ℍ is a permutation invariant pooling function that aggregates the k 
transformed instances within a bag; and g:ℍ Y finally maps the aggregated instances to 

the corresponding bag label space.

When MIL is applied to medical imaging analysis, one typically considers an entire WSI 

as a bag, and regards patches cropped from the corresponding slide as instances. The bag 

label depends on the presence (positive) or absence (negative) of disease in the entire 

slide. While often successful in bag label prediction, these approaches require very large 

datasets with thousands of slides [20], [21], [22]. Moreover, the disease localization, or 

instance-level predictions, usually suffers from the lack of supervision and underperforms 

the fully supervised counterparts [48], [49]. Moreover, local detection is usually considered 

as an additional – sometimes optional – task instead of the primary goal in MIL studies. 

Even if a heatmap or a saliency map is generated to highlight the diagnostically significant 

regions, the localization performance is not always quantitatively validated [20], [21], [50].

Some works integrate other forms of weak annotations into the MIL framework to boost 

the local detection performance. CDWS-MIL, proposed by [51], introduced the percentage 

of the cancerous region within each image as an additional constraint to improve disease 

localization compared with using image-level labels only. CAMEL, proposed by [52], first 

splits the WSI into latticed patches, and considers each patch as a bag. A MIL model 

is then used to generate a pixel-wise heatmap for each patch. Those weak annotations, 

although easier to obtain than pixel-wise annotations, still need substantial effort and 

domain expertise. Our proposed method, on the other hand, is able to manage very coarse 

annotations, which are much easier to obtain, even without domain expertise.
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III. Methods

In this section, we first formulate the problem at hand and then proceed to describe our 

proposed approach, label cleaning multiple instance learning (LC-MIL). Finally, we describe 

other state-of-art methods that we use for comparison, including DkNN and Rank Pruning.

A. Problem Formulation

We consider a single WSI with some coarse annotations for regions of interest (e.g., 

cancerous regions) as a dataset with noisy labels. The WSI is latticed to generate N square 

patches, denoted as S = xi, yi i = 1
N . Each patch xi ∈ ℝd is assigned a label yi ϵ {0,1} based 

on the coarse annotations provided. To be more specific, a patch is assigned a positive 

label if it falls within the positively annotated area (e.g., cancerous region), and negative 

otherwise, as Fig. 3 illustrates. In a practical setting, there may be some patches at the 

intersections of two classes of regions. For those patches, the assigned labels are decided by 

the location of their centers.

Importantly, we do not assume that all patches in the positively annotated area are actually 

positive: since the coarse annotations cannot delineate the disease regions precisely, there 

must be patches having an incorrect label assigned to them. Similarly, not all patches 

in the negative annotated area are true negatives, implying that there might be “missed 

positive regions”. The problem of refining this coarse (and inaccurate) annotation can then 

be interpreted as detecting the mislabeled patches.

B. Label Cleaning MIL (LC-MIL)

Our proposed methodology, Label Cleaning Multiple Instance Learning (LC-MIL), tackles 

the noisy label problem from a MIL framework. Broadly speaking, our approach consists of 

a multiple instance learning model that is trained to classify bags of patches from a single 

WSI image with noisy labels. Once this model is trained, it is then employed to re-classify 

all patches in the image by constructing singleton bags. The corresponding predictions are 

used to correct the original noisy labels, and in doing so, refine the inaccurate segmentation. 

Our approach is general with respect to the specifics of the multiple instance model, and 

different specific methods are possible. In this work, we focus on an implementation of 

based on a deep attention mechanism [47], as well as an alternative based on neural network 

pooling [53]. Fig. 4 depicts an overview of our LC-MIL algorithm (in its attention-based 

implementation), and we now expand on the details of each component.

1) MIL Dataset Construction: As briefly mentioned above, in order to give our 

approach maximal flexibility in terms of the availability of training data, we situate 

ourselves in the case of having a single WSI, which represents all the data available to 

the algorithm – we will comment on extensions to cases with access to larger datasets later.

From a single WSI, we construct our noisy dataset of image patches S = xi, yi i = 1
N , 

comprising positive and negative cases: (1) SP : = xi, yi ∈ S:yi = 1 , which consists of all 

of the patches with a positive label; (2) SN : = xi, yi ∈ S:yi = 0 , which consists of all of 

the patches with a negative label. In our context, where labels are determined by only coarse 
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and inaccurate annotations, there are likely false positives in Sℙ and false negatives in Sℕ. 

However, we assume that the majority of the labels in both subsets are correct. With this 

assumption, we construct a positive bag X j by selecting (uniformly at random) n j instances 

from SP , and construct a negative bag analogously with instances from SN. We are able 

to create virtually as many bags as desired from one single WSI, since the sampling is 

conducted with replacement The constructed MIL dataset with M bags can be defined as:

SMIL = Xj = xij i = 1
nj , Y j j = 1

M
, (2)

where xij is the ith instance in X j, and Yj refers to the bag-level label, given by

Y j =
1, if Xj ⊂ SP
0, if Xj ⊂ SN . (3)

The number of bags M, and the number of instances within a bag n j are adjustable 

parameters, which we gave the detailed setting and discussed the sensitivity of different 

choices in Section V-A.

2) MIL Predictor: We built a deep MIL model to predict the bag-level score Pj, under 

the composite function framework as described in Section II-B and Eq. (1). Our approach is 

general in that it admits different forms for the functions g, σ, and f, leading to different MIL 

methods. We focus first on a predictor similar to the one proposed in [47], composed of the 

three functions below:

1. A feature extractor, parameterized by a deep neural network fψ, is used to map 

the instance xij to a low-dimensional embedding, denoted as:

ℎij = fψ xij . (4)

2. An attention-based MIL pooling operator σ, which gives each instance a 

weight wij and aggregates the low-dimensional embeddings of all instances 

using a weighted average to generate a representation for the whole bag [47]. 

Importantly, these weights are learnable functions of the features, too. A softmax 

function is used to re-scale the weights so that they all lie in the range [0,1], and 

sum up to 1. More specifically, we have that:

zj = σ ℎij i = 1
nj = ∑

j = 1

nj
wijℎij, (5)

with weights given by

wij = exp W tanh V ℎij

∑k = 1
nj exp W tanh V ℎik

. (6)

Here, both W and V are learnable parameters.
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3. A linear classifier g predicts the bag label based on the computed representation, 

zi. The predicted score, Pi, is finally obtained by the appropriate logistic function, 

defined as:

Pj = g zj = 1
1 + e−〈g, zj〉 , (7)

where g is a learnable vector.

Alternatively, and for the purpose of understanding the implications of the choice in the 

MIL predictor, we also consider a second implementation of LC-MIL by using another MIL 

model called mi-Net [53], whose formulation can be formally expressed as the follows. 

Given a bag of instances, Xj = xij i = 1
nj , the bag-level likelihood Pj is given by:

Pj = 1
nj

∑
i = 1

nj
f xij , (8)

where f (xij) is an instance-level classifier parameterized by a deep neural network. To 

differentiate these two instantiations of our approach, we name them as LC-MIL-atten and 

LC-MIL-miNet, respectively.

Unlike [47], who employ a cross-entropy loss, we use the focal loss [54] to train our MIL 

predictors in order to promote better calibration of the predicted probabilities. This loss is 

defined as:

L = − (Y j 1 − Pj)γlogPj + 1 − Y j Pj
γlog 1 − Pj ) . (9)

We set the parameter γ as suggested by [54]. That is γ = 5 for P(Yj = 1) ϵ [0, 0.2), and γ = 3 

for P(Yj = 1) ∈ [0.2, 1].

3) Inference: There is typically a “gap” between bag-level and instance-level prediction 

in MIL approaches, where the instance-level score is not directly predicted by the model. 

Although the attention pooling operator provides a way to locate key instances, those 

weights cannot be interpreted as instance-level scores directly. Here, we propose to use 

“singleton bags” as a simple solution, enabling us to exploit the (calibrated) scores provided 

by the classification model: for bags consisting of only one instance, the bag-level prediction 

is equal to the instance-level prediction. In this way, during the inference phase, we 

revisit the noisy dataset S = xi, yi i = 1
N  using the trained MIL model. Instead of randomly 

choosing a subset of instances to pack a bag, as done during training, every single instance 

xi is now considered as a “single-instance bag”. Since there is only one instance in a bag, 

the attention-based pooling in the MIL framework has no impact during inference—in other 

words, the attention weights are always set to 1 for any instance—and the predicted score for 

each instance can be denoted as:
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pi = 1
1 + e−〈g, fψ2 xi 〉 . (10)

A predicted heatmap is then generated based on these likelihoods, where the value of each 

pixel refers to the risk score pi ϵ [0, 1] of the corresponding patch in the WSI.

In addition to the central machine learning component of our method, detailed above, our 

experiments involve other implementation details, which we detail in Section V. All software 

implementations of our methods are publicly available.1

C. Comparison With Other Methods

It should be noted that, to the best of our knowledge, the problem of learning a segmentation 

algorithm for WSI data from a single slide with inaccurate annotations has never been 

studied before. As a result, there are no available methods that can be deployed in an off-

the-shelf manner. Thus, to provide some methods for comparison, we adapt state-of-the-art 

algorithms to our setting (where no auxiliary clean dataset is available).

1) Deep k-Nearest Neighbors (DkNN) [45]: Deep k-nearest neighbors detects label 

noise by using the assumption that instances within the same class should cluster together in 

feature space. A feature extractor parameterized by a pre-trained deep neural network is used 

to map instances from the input to the feature space. Then, instances having the same labels 

as their neighbors’ are “trusted”, while those having inconsistent labels with neighbors are 

more likely to be mislabeled. These potentially mislabeled instances are then relabeled via 

majority voting, which is conducted using a standard k-NN classifier.

2) Rank Pruning [55]: Rank Pruning identifies label noise using the predicted 

probabilities in a two-step process, where the instances with low probabilities are pruned 
away for the second round of training. To be more specific, a binary classifier is first fit 

on the noisy-labeled instances in a cross-validation manner. Each instance is then given 

a preliminary probability score, which is considered to reflect the prediction confidence. 

Certain instances are then considered as un-reliable, including those obtaining very high 

probability scores while their original (noisy) labels were negative, and conversely for the 

positive ones. After pruning such un-trusted instances, the classifier is finally re-trained 

on the remaining ones, and a new probability score for each instance is produced by this 

updated classifier trained only on trusted samples.

We also list the two implementations of LC-MIL that are used in the experiments for clarity. 

As we described in Section III-B, these two implementations share all the components of our 

LC-MIL framework, except the choice of the MIL predictor.

1. LC-MIL-atten uses the attention-based MIL [47] as the MIL predictor, which 

aggregates the embeddings of instances using an attention mechanism.

1 https://github.com/Sulam-Group/MIL-pathology 
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2. LC-MIL-miNet uses an alternative MIL formulation called mi-Net [53], which 

aggregates results of the instance-level classifiers using a mean-pooling operator.

IV. Experiments

In this section, we first describe our dataset and then show two coarse annotation refinement 

scenarios in simulated and real-world settings, separately.

A. Dataset

We evaluated the coarse annotation refinement performance on three publicly available 

histopathology datasets. These datasets were chosen because they include different tissues 

and degrees of morphological heterogeneity, but also because of the availability of expert 

annotations that will be regarded as ground truth for the quantitative evaluation of our 

method.

1. CAMELYON16 [56]: contains a total of 399 hematoxylin and eosin (H&E) 

stained WSIs of lymph node sections from breast cancer patients. Detailed hand-

drawn contours for metastases are provided by expert pathologists.

2. PAIP2019 [57]: contains a total of 100 H&E stained WSIs of liver cancer 

resection samples. The boundary of viable tumor nests was annotated precisely 

by expert pathologists. The viable tumor nests annotations are available for 60 

WSIs.

3. PAIP20202: contains a total of 118 H&E stained WSIs of colorectal cancer 

resection samples. The contours of the whole tumor area, which is defined as 

boundary enclosing dispersed viable tumor cell nests, necrosis, and peri- and 

intratumoral stromal tissues, are provided by expert pathologists. The whole 

tumor annotations are available for 47 WSIs.

The experimental design had the goal of validating the segmentation refinement capability 

of our method on every single slide independently, and thus slides with almost all regions 

of a single class (cancer or normal) were excluded to ensure that our model had sufficient 

positive and negative samples. We set an upper bound of 90% and a lower bound of 10% for 

the ratio of lesion area as the data inclusion criteria. Slides marked with “not exhaustively 

annotated” were also excluded. A total of 120 slides (CAMELYON16: 24; PAIP2019: 54; 

PAIP2020: 42) were included, as shown in Fig. 5.

B. Synthetic Coarse Annotations

To fully evaluate the methods above, and before presenting our results in a real scenario 

with expert pathologists, we first study a synthetic setting where the experimental conditions 

(amounts of label corruptions, types of inaccurate annotations) can be easily varied and 

controlled. We generated coarse annotations automatically via two custom procedures, 

2De-identified pathology images and annotations used in this research prepared and provided by the Seoul National University 
Hospital by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), 
funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C0316).
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detailed in the subsections that follow. For each WSI, we considered the annotations 

provided by expert pathologists as the ground truth.

1) S-I: Uniformly Flipping Patches: A WSI with ground truth annotations provides a 

set of patches with correct labels. To generate simulated coarse annotations, we uniformly 

flip positive samples with noise rate ρ1 (fraction of flipped positive samples) and negative 

samples with noise rate ρ0 (fraction of flipped negative samples), allowing us to evaluate 

the performance of the different algorithms under a wide range of False Positives and False 

Negative rates. For each WSI, we generate simulated coarse annotations in this way, where 

ρ1 and ρ0 are sampled uniformly in the interval (0, 0.5). Fig. 6 depicts one example of these 

coarse annotations, and the distribution of ρ0 and ρ1 on the whole dataset.

2) S-II: Omitting Small Lesions: To better simulate a clinically-relevant context, we 

also generate noisy annotations that are similar to those provided by human annotators (note 

that real expert annotations will also be addressed shortly). To this end, we create coarse 

annotations by the following three steps: (1) Retaining only the largest cancerous region 

and omitting all the others; (2) Performing the morphological operation of dilation to the 

remaining (largest) cancerous region; (3) Taking the convex hull for the dilated lesion. As a 

particular case, and since almost all of the WSIs in PAIP2020 contain only one cancerous 

region, if there exists only one lesion this is divided in half. We also present one example of 

these coarse annotations and noise rate distribution on the whole dataset in Fig. 6.

These two procedures described above had the purpose of simulating both false positives as 

well as false negatives in the initial inaccurate annotation. The proposed method (LC-MIL) 

and all other competing methods were applied to each WSI independently to refine the 

coarse annotations. Fig. 7 presents a few examples of the refinement performance, and the 

reader can find more examples in Fig. 13.

In order to quantitatively evaluate how inaccurate the coarse annotations are from the true 

precise annotations, as well as the improvement obtained after applying our refinement 

method, we calculate precision (PPV), recall (TPR), and F1 scores for annotations before 

and after refinement. The results are summarized in Table I. Note that all the metrics were 

calculated per slide, and the average and standard deviation in each subset are reported. The 

reader can find other evaluation metrics, including specificity (TNR), negative predictive 

value (NPV), and intersection over Union (IoU) in Table IV and Table V. To explore how 

different methods perform under different noise conditions, we sort the coarse annotations 

according to their F1 scores, and then plot F1 scores of refined annotations in Fig. 15.

a) Performance comparison:  The proposed method, LC-MIL, significantly improves 

disease localization of coarse annotations and corrects incorrect labels, and in general 

outperforms the competing methods based on the F1 scores. DkNN typically achieves lower 

metrics than Rank Pruning and LC-MIL, and only brings slight improvements for the 

original inaccurate annotations, which illustrates the difficulty of the learning problem under 

consideration. Rank Pruning generally shows stronger improvement capacity compared with 

DkNN, while still slightly under-performing the proposed method. Moreover, LC-MIL is 

especially useful in detecting missed lesions. If we focus on the values of PPV and TPR 
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in Table I, we will find that all the methods can efficiently improve PPV (i.e., making 

tumor boundaries more precise), but LC-MIL shows obvious advantages in improving TPR 

(i.e., detecting missed lesions). On the other hand, Rank Pruning generally performs best in 

improving PPV, and generates fewer false positives.

b) Run-time comparison:  All methods are implemented in Pytorch and trained on a 

single NVIDIA GTX1080Ti GPU, and all methods make predictions on the same number 

of patches for each WSI. In general, LC-MIL is the fastest method. DkNN and Rank 

Pruning are slower: the former which needs to conduct a k-NN search on an extremely large 

data matrix, whereas the latter necessitates repeated training in a cross-validation manner. 

Note that the run-time merely depends on the number of patches of each WSI, and is not 

correlated with the amount of noise in the coarse annotations. We randomly select 5 slides 

from each subset, and run each method in exactly the same setting in order to report the 

per-slide run-time comparison summarized in Table II.

C. Real-World Experiment: Improving Pathologists’ Annotations

To evaluate the proposed method in a real-world scenario, we collaborate with two expert 

(senior) pathology residents from Johns Hopkins Medicine. Since the datasets we employ 

already have ground truth annotations provided by pathologists, we explore whether our 

proposed formulation can be used to improve the pathologists’ workflow by refining 

approximate segmentations. In particular, pathologists were asked to provide segmentations 

of the tumor regions in each of the 120 WSIs, but to do so in a time-constrained manner, 

with 30 seconds per slide. We regard these as the coarse annotations to refine.

The proposed LC-MIL approach, as well as other competing methods, were applied in order 

to refine these quick and coarse annotations. Note that the refinement was still conducted on 

each slide and each pathologist’s annotations independently. Fig. 8 presents some obtained 

examples, and the overall refinement results are summarized in Table III. The reader can 

also find more evaluation metrics in Table VI and more examples in Fig. 14. We also show 

the distributions of coarse annotations drawn by pathologists in a time-constrained manner, 

as well as the refinement performance in different noise conditions, as Fig. 16 shows.

As Table III indicates, all methods improve the coarse annotations to some extent on all 

three datasets. LC-MIL achieves the best overall performance, obtaining the second-best 

F1 only on PAIP2020. Interestingly, the best method for refining coarse annotations on 

colorectal samples (PAIP2020) is DkNN, which achieved the lowest F1 score in the 

synthetic datasets. We believe that this is mainly caused by the heterogeneity and complexity 

of colon histology: Colon tissue samples typically contain loose connective tissue, smooth 

muscle, and epithelial tissue, where cancer begins developing. The texture difference 

between benign and malignant epithelial tissue is much more subtle than the dissimilarity 

across different tissue types. The LC-MIL model seems to be more easily misled to 

discriminate epithelial tissues from any other regions, resulting in some non-cancerous 

epithelial tissue being detected as (false) positive. On the other hand, when pathologists 

annotate colorectal cancer, they make use of both local (e.g., texture) and global (e.g., 

location, shape) information, and thus rarely misclassify normal epithelial tissues. It is 
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worth noting that pathologists’ annotations are sufficiently good on those samples, rarely 

missing lesions (i.e. they have high TPR), and the only imperfection resides on rough 

boundaries. DkNN seems to be particularly suitable for this condition, as it might be the 

most conservative among all studied methods—keeping the overall segmentation while 

making only local improvements on boundaries—and explaining the difference in observed 

performance. More broadly, handling tissue samples with confounding morphology can be a 

challenging problem, and we expand this discussion in Section VI.

V. Implementation Details and Parameter Sensitivity

In addition to the central machine learning component of our method, detailed above 

in Section III, these experiments involve other implementation details common in image 

analysis pipelines, which we detail next.

Tissue Region Identification:

For each digitized slide, our pipeline begins with the automatic detection of tissue regions 

to exclude irrelevant (e.g. blank) sections. Gigapixel WSIs are first loaded into memory at a 

down-sampled resolution (e.g., 256× downscale), which we use for the detection of empty 

regions. The detection methods vary slightly for different data sources. For CAMELYON16, 

the downsampled thumbnail is converted from RGB to the HSV color space. Otsu’s 

algorithm [58] is applied to the H and S channels independently and then two masks are 

combined (by taking their intersection) to generate the final binary mask. For PAIP2019 and 

PAIP2020, the tissue masks are generated by applying the RGB thresholds (235, 210, 235) 

on each image, as suggested by the respective data provider. We present some examples of 

the tissue masks in Fig. 9.

WSI Patching:

The size of each patch is set to 256 × 256 (pixels). Technically, every pixel can be the 

center of a unique patch, resulting in millions of patches that highly overlap with each 

other. In this way, the predicted heatmaps, or lesion maps, have the same size and resolution 

as the original WSIs. However, such an approach is extremely computationally expensive 

and time-consuming, turning it prohibitive. In our experiments, we extracted patches with 

no overlap in WSIs scanned at ×40 magnification (CAMELYON16 and PAIP2020). For 

slides scanned at ×20 magnification (PAIP2019), cropped patches have 75% overlap with 

neighboring patches. The size and overlap of cropped patches naturally impact the resolution 

of the predicted heatmaps. For CAMELYON16 and PAIP2020, the predicted heatmaps 

are 256× downscaled from the original WSI; for PAIP2019, the predicted heatmaps are 

128× downscaled from the original resolution. Our overall approach is not limited to these 

choices, and could be applicable to other settings too.

Neural Networks Architecture:

The feature extractors used in LC-MIL (fψ) are built based on the 16-layer VGGNet 

architecture [59]. The last FCN layer is removed to generate fψ. Since the training data 

is limited (one WSI), the VGGNet used has been pre-trained on the ImageNet dataset 
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[60]. When they are further fine-tuned on the histopathology images, the parameters in the 

convolutional layers are kept fixed.

Learning Hyper-Parameters

The MIL model used in LC-MIL is trained on 1,000 MIL bags, consisting of 500 positive 

and 500 negative bags. Adam optimizer [61] is used with an initial learning rate of 5 × 10−5, 

and the learning rate decays 50% every 100 bags. For CAMELYON16 and PAIP2019, each 

MIL bag contains 10 instances; for PAIP2020, each bag contains 3 instances. We discuss the 

sensitivity to the choice of number of bags and bag size below.

Post-Processing

To obtain a fair comparison between the annotations before and after refinement, we conduct 

some simple post-processing on the heatmaps generated by either DkNN (binary map), Rank 

Pruning (scalar map), or LC-MIL (scalar map). The binary heatmap predicted by DkNN is 

post-processed by simple morphology operations: both small holes (smaller than 100 pixels) 

and small objects (smaller than 100 pixels) are removed. The scalar heatmap predicted 

by Rank Pruning and LC-MIL is first converted to a binary map using thresholding. 

The threshold v0 is decided by applying Otsu’s algorithm [58] to the predicted scores of 

instances that are originally (coarsely) annotated positive, denoted as v0 = OTSU({pi|xi ϵ 
Sp}). Finally, the same morphology operations conducted for DkNN are applied to these 

binary maps.

A. Sensitivity to Parameters

1) Using Multiple Slides:  A natural extension of the proposed method is to incorporate 

multiple slides for training when a larger dataset is available. This can be implemented by 

slightly modifying the LC-MIL framework described in Section III-B. To be more specific, 

MIL bags can be constructed from every single slide in exactly the same way, as described 

in Eq. 2. After that, these MIL bags from different slides can be combined to form a larger 

MIL dataset, denoted as SMIL′ = {SMIL
(0 ), …, SMIL

(k) }, where k is the number of slides. The MIL 

model is then trained on this larger MIL dataset SMIL′ . At inference stage, the trained MIL 

model is used to predict tumor segmentation on held-out slides.

We empirically tested this new implementation and explored how the number of slides 

affects the prediction performance. The detailed setting is described as follows. We 

randomly split the 54 WSIs in PAIP2019 into a training set (49 slides), and a held-out 

validation set (5 slides). The MIL model is trained on k slides (with coarse annotations) that 

are randomly selected from the training set, and tested on the held-out validation set. We set 

k = 1, 2, 4, 8 to explore different conditions. At each k, the training-validation process is 

repeated 5. We plot the F1 scores of the prediction results on the held-out validation set in 

Fig. 10. As can be seen, as k increases the obtained F1 scores of the predicted annotations 

increase, and their variance decreases. This experiment demonstrates how the proposed LC-

MIL framework could be adjusted in a multi-slides setting and make predictions on held-out 

sets containing slides with no annotations. Naturally, this experiment also demonstrates that 

a larger training set leads to better and more stable predictions.
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2) Choice of Bag Size and Bag Numbers:  As presented in Eq. 2, there are two adjustable 

hyper-parameters in the construction of MIL sets: the number of instances within a bag 

(i.e. bag size), denoted as n j, and the number of bags, denoted as M. Here we present the 

detailed settings for those parameters, and discuss the sensitivity to their respective choices. 

Bag size n j: The bag size is affected by the amount of label noise as well as the complexity 

of the task (in terms of the heterogeneity of the histopathology images), and both aspects 

should be considered in determining an optimal bag size. We first conduct an experiment 

to discuss the choice of bag size in different noise conditions. We randomly select 4 slides, 

and generate three versions of coarse annotations for each of them. To explicitly control 

the noise rates, those coarse annotations are generated by uniformly flipping patches, as we 

described in Section IV-B.1. The noise rates for these three versions of coarse annotations 

are: (1) ρ0 = ρ1 = 10%; (2) ρ0 = ρ1 = 20%; (3) ρ0 = ρ1 = 40%. For each slide with a specific 

version of coarse annotations, we applied LC-MIL-atten to refine the annotations, and the 

mean F1 scores of refined annotations are summarized in Fig. 11. The presented results 

suggest that a bag size around 10 can be considered an appropriate setting in general. When 

noise rate is low (e.g., ρ0 = ρ1 = 10%), a smaller bag size achieves the best results. This 

is consistent with intuition—in the extreme case where coarse annotations are exactly the 

ground truth (i.e. no label noise exists), a bag size of 1 should be the best choice. Naturally, 

this case reduces the MIL classifier to a standard instance-level binary classifier. On the 

other hand, we do not suggest a very large bag size (e.g., n j > 50) in all circumstances. 

Although a large bag size guarantees that the majority of instances within a MIL bag are 

correctly labeled, it also brings substantial ambiguity to instance-level prediction, and might 

decrease the F1 scores of patch-wise classification.

Furthermore, we recommend using a smaller bag size for tissues with compounded 

morphology, such as colorectal tissues. In the colorectal slides, normal epithelial tissue 

shows similar textures to cancerous tissues, while other components (fat tissue, smooth 

muscle) have significantly different textures, simply because they are different types of 

tissues. When humans identify tumors in colorectal samples, both local texture and global 

information are taken into account. On the other hand, LC-MIL can purely utilize local 

texture information, and tend to misclassify normal epithelial tissues as tumor, especially 

when the bag size is large. Utilizing a smaller bag size in this case leads to a more 

conservative refinement system, and thus decreases false negatives.

In this work, we used n j = 10 for slides in CAMELYON16 (lymph node metastasis of breast 

cancer) and PAIP2019 (liver cancer), and n j = 3 for slides in PAIP2020 (colorectal cancer) 

considering its complex and heterogeneous morphology. Note however that these parameters 

were not optimized per case. Further improvements are to be expected if these parameters 

are adjusted based on the label noise conditions and specific histology in the WSI. We leave 

this as a future direction of the proposed method.

a) Bag number M: The number of bags represents the number of training samples 

provided to the multiple instance learner. Consequently, a minimal number of M is expected 

for the algorithm to achieve a reasonable performance. We will now demonstrate that this 

number is relatively small, so that in all cases the models have sufficient training data. To 

explore the effect of bag number M, we use a constant bag size of 10, and gradually increase 
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M. We used the same slides and coarse annotations as those used in the discussion of bag 

size n j. The F1 scores of refined annotations are summarized in Fig. 12, demonstrating that 

400 bags suffice to obtain reasonable results in the single-slide refinement setting. In this 

work, we set M = 1000 for every single slide in all experiments.

VI. Discussion

The main hypothesis studied in this work is that coarse annotations on whole-slide images 

can be refined automatically even from very limited data, alleviating the workload of expert 

pathologists. This problem had remained unstudied until now due to the technical challenges 

that often make deep learning models require very large training sets.

To test our hypothesis, we developed the Label Cleaning Multiple Instance Learning 

(LC-MIL) method to refine the coarse annotations. Our experiments on a heterogeneous 

dataset with 120 WSIs across three different types of cancers show that LC-MIL can 

be used to generate a significantly better version of disease segmentation, even while 

learning from a single WSI with very coarse annotations. When compared to other baseline 

alternatives specifically adapted to this setting (since again, this problem had not been 

studied before), our proposed algorithm generally outperforms competing methods across all 

cases considered.

Our methodology has implications in both engineering and clinical domains. From a 

machine learning perspective, LC-MIL demonstrates the potential of the MIL framework 

to be used in a label cleaning context. Our setting can be considered as a significant 

complement to existing label cleaning methods, without requiring the need for an auxiliary 

clean set of samples. From a clinical perspective, the proposed methodology could be 

used to alleviate pathologists’ workload in annotation tasks. LC-MIL allows pathologists to 

draw coarse annotations quickly and obtain a refined version from it. On the other hand, 

our results show that the refinement produced by LC-MIL is especially significant when 

the coarse annotations are very inaccurate, which implies that the proposed methodology 

could be useful for helping very inexperienced annotators. Importantly, our approach is 

particularly useful for increasing TPR, therefore detecting tumor areas that might have been 

missed by an inexperienced, or distracted, annotator.

A significant advantage of the LC-MIL is its ability to work in extreme data-scarcity 

scenarios, as it can be deployed on a single WSI. We have chosen to study this setting 

to showcase the flexibility of our approach. However, this also constrains the minimal 

and maximal ratio of cancerous regions if the refinement is conducted per slide, since a 

minimal amount of both negative and positive samples within one slide are needed for the 

learning algorithm. This limitation could be addressed by moving beyond the single WSI 

case and aggregating patches from multiple slides during the learning phase, if such data is 

available. Moving from this single-slide to multiple-slides settings is a natural extension of 

our methodology, as we demonstrated in Section V-A.1.

Another limitation of LC-MIL, also shared by other binary classifiers, is that the model 

can be confused by irrelevant information when the histology structure is complex and 
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heterogeneous. An example of this is represented by the difficulty in discriminating 

epithelial tissue from other types of tissues (loose connective tissue, smooth muscle), 

instead of focusing on learning the difference between benign and malignant tissue. On 

the other hand, this may not be a challenging task for a human (experienced) annotator. This 

could be addressed by extending the current version of LC-MIL to a multi-class setting. 

Moreover, pathologists usually make use of both local texture information and global 

information (e.g., shape, location) to make decisions, while our proposed approach, as well 

as other patch-based methods, merely depend on the local texture and fail to incorporate 

global information. Efficiently incorporating this global context can be a challenging and 

significant problem, which we also leave as future work.

An important open question remains: can detailed and labor-intensive annotations be 

replaced by simple and quick coarse annotations, with the help of our methodology? In 

our real-world experiment, where expert pathologists made quick annotations that were 

later refined by our LC-MIL algorithm, about 0.85 F1 scores were obtained (from initial 

values of about 0.73, an improvement of 16%), having taken only 30 seconds for each slide. 

Moreover, it remains unclear what the inter- and intra-reader variability of these annotations 

are. Judging by other studies in different contexts [17], [18], it is natural to assume that 

an F1 score of 1 is unrealistic across readers, and that F1 scores in the range of 0.9–1 

might suffice. Further and larger scale studies should be designed to thoroughly evaluate this 

possibility.

VII. Conclusion

Altogether, in this paper we developed LC-MIL, a label cleaning method under a multiple 

instance learning framework, to automatically refine coarse annotations on a single WSI. 

The proposed methodology demonstrates the potential of the MIL framework in a label 

cleaning context, and provides a new way of deploying MIL models so that they can 

be trained on even a single slide. LC-MIL holds promise to relieve the workload of 

pathologists, as well as in helping inexperienced annotators with challenging annotation 

tasks.
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Appendix

See Tables IV–VI and Figures 13–16.
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Fig. 1. 
Example of the refining coarse annotation of breast cancer metastasis made by pathologists 

on a WSI of lymph node section, without requiring any external training data.
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Fig. 2. 
Illustration of the “noisy” label problem in coarse annotations of WSI.
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Fig. 3. 
WSI patching and patch-level noisy labels assignment.
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Fig. 4. Overview of the LC-MIL framework.
(a) MIL dataset construction: patches in WSI are split into two subsets SP  and SN based 

on the original coarse annotations. (b) An attention based MIL model is trained on bags 

Xi = xij j = 1
ni . (c) At inference, each patch is considered as a singleton bag and receives risk 

score to generate a predicted heatmap.
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Fig. 5. Data inclusion diagram.
A total of 120 slides are included. From these, 24 are lymph node sections from breast 

cancer patients (CAMELYON16), 54 are liver cancer resection samples (PAIP2019), and the 

remaining 42 are colorectal cancer resection samples (PAIP2020).
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Fig. 6. Generation of synthetic coarse annotations
S-I: Coarse annotations generated by randomly (and uniformly) flipping patches’ labels; 

S-II: Coarse annotations generated by omitting small lesions. ρ0 represents the fraction of 

mislabeled instances in true negative instances; and ρ1 denotes the fraction of mislabeled 

instances in true positive instances.
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Fig. 7. Examples of synthetic coarse annotations and refinement.
(a-c) S-I: synthetic coarse annotations generated by uniformly flipping patches; (d-f): S-II: 

synthetic coarse annotations generated by omitting small lesions. Among those examples, 

(a) and (d) are from CAMELYON16, (b) and (e) are from PAIP2019, (c) and (f) are from 

PAIP2020. From left to right, six versions (coarse annotations (1st column, heatmap/lime 

lines); predicted contours using DkNN (2nd column, yellow lines); predicted contours using 

Rank Pruning (3rd column, yellow lines); predicted contours using LC-MIL-miNet (4th 

column, yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); 

ground truth (6th column, red lines)) of cancerous region contours are shown.
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Fig. 8. Examples of hand-drawn coarse annotations and refinement.
Among those examples, (a) and (b) are from CAMELYON16, (c) and (d) are from 

PAIP2019, (e) and (f) are from PAIP2020. From left to right, six versions (coarse 

annotations (1st column, lime lines); predicted contours using DkNN (2nd column, yellow 

lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted contours 

using LC-MIL-miNet (4th column, yellow lines)); predicted contours using LC-MIL-atten 

(5th column, yellow lines)); ground truth (6th column, red lines)) of cancerous regions 

contours are shown.
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Fig. 9. Examples of tissue region identification.
One example of each subset is shown. The first rows shows thumbnails of WSIs, and the 

second row shows the corresponding tissue masks.

Wang et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Prediction results using multiple slides for training.
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Fig. 11. 
Prediction results using various bag size.
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Fig. 12. 
Prediction results using various number of bags.
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Fig. 13. Supplementary examples of simulated coarse annotations and refinement.
(a-c) S-I: synthetic coarse annotations generated by uniformly flipping patches; (d-f): S-II: 

synthetic coarse annotations generated by omitting small lesions. Among those examples, 

(a) and (d) are from CAMELYON16, (b) and (e) are from PAIP2019, (c) and (f) are from 

PAIP2020. From left to right, six versions (coarse annotations (1st column, lime lines); 

predicted contours using DkNN (2nd column, yellow lines); predicted contours using Rank 

Pruning (3rd column, yellow lines); predicted contours using LC-MIL-miNet (4th column, 

yellow lines)); predicted contours using LC-MIL-atten (5th column, yellow lines)); ground 

truth (6th column, red lines)) of cancerous regions contours are shown.
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Fig. 14. Supplementary examples of hand-drawn coarse annotations and refinement.
Among those examples, (a) and (b) are from CAMELYON16, (c) and (d) are from 

PAIP2019, (e) and (f) are from PAIP2020. From left to right, six versions (coarse 

annotations (1st column, lime lines); predicted contours using DkNN (2nd column, yellow 

lines); predicted contours using Rank Pruning (3rd column, yellow lines); predicted contours 

using LC-MIL-miNet (4th column, yellow lines)); predicted contours using LC-MIL-atten 

(5th column, yellow lines)); ground truth (6th column, red lines)) of cancerous regions 

contours are shown.
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Fig. 15. Refinement performance under different noise conditions (synthetic annotations).
F1 scores of coarse annotations (red), refined annotations by DkNN (blue), Rank Pruning 

(green), LC-MIL-miNet (purple), and LC-MIL-atten (organge), with slides sorted by F1 

scores of their coarse annotations. The moving average (solid lines), where window size k = 

15, and the 68% confidence interval for k observations (shaded areas) are also shown.
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Fig. 16. Refinement performance under different noise conditions (hand-drawn annotations).
F1 scores of coarse annotations and refined annotations (using different methods), with 

slides are sorted by F1 scores of their coarse annotations. The moving average (solid lines), 

where window size k = 15, and the 68% confidence interval for k observations (shaded 

areas) are also shown.

Wang et al. Page 36

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 37

TA
B

L
E

 I

Su
m

m
ar

y 
of

 R
ef

in
em

en
t o

n 
Sy

nt
he

tic
 C

oa
rs

e 
A

nn
ot

at
io

ns

D
at

as
et

s
M

et
ho

ds
S-

I:
 U

ni
fo

rm
ly

 F
lip

 I
ns

ta
nc

es
S-

II
: 

O
m

it
 S

m
al

l L
es

io
ns

P
P

V
T

P
R

F
1

P
P

V
T

P
R

F
1

C
A

M
E

LY
O

N
16

C
oa

rs
e 

an
no

ta
tio

ns
0.

54
5 

±
 0

.2
46

0.
73

3 
±

 0
.1

53
0.

59
2 

±
 0

.1
95

0.
57

3 
±

 0
.1

23
0.

60
6 

±
 0

.2
28

0.
56

1 
±

 0
.1

36

D
kN

N
0.

79
8 

±
 0

.3
08

0.
64

9 
±

 0
.3

43
0.

68
6 

±
 0

.3
13

0.
81

0 
±

 0
.2

59
0.

52
3 

±
 0

.2
89

0.
59

7 
±

 0
.2

66

R
an

k 
Pr

un
in

g
0.

91
5 

±
 0

.0
50

0.
86

5 
±

 0
.1

48
0.

87
9 

±
 0

.1
13

0.
90

6 
±

 0
.0

83
0.

68
4 

±
 0

.2
04

0.
75

8 
±

 0
.1

44

L
C

-M
IL

L
C

-M
IL

-m
iN

et
0.

83
6 

±
 0

.1
51

0.
93

4 
±

 0
.0

62
0.

87
1 

±
 0

.1
04

0.
82

8 
±

 0
.1

20
0.

88
0 

±
 0

.1
32

0.
84

0 
±

 0
.0

91

L
C

-M
IL

-a
tte

n
0.

86
3 

±
 0

.1
10

0.
91

5 
±

 0
.0

77
0.

88
2 

± 
0.

06
8

0.
83

3 
±

 0
.1

28
0.

89
5 

±
 0

.1
10

0.
84

9 
± 

0.
08

4

PA
IP

20
19

C
oa

rs
e 

an
no

ta
tio

ns
0.

64
1 

±
 0

.2
37

0.
74

7 
±

 0
.1

51
0.

66
5 

±
 0

.1
82

0.
67

4 
±

 0
.1

23
0.

75
7 

±
 0

.2
66

0.
68

7 
±

 0
.1

68

D
kN

N
0.

91
6 

±
 0

.1
49

0.
76

7 
±

 0
.3

17
0.

79
0 

±
 0

.2
91

0.
78

8 
±

 0
.1

85
0.

72
8 

±
 0

.3
03

0.
72

2 
±

 0
.2

42

R
an

k 
Pr

un
in

g
0.

91
1 

±
 0

.1
14

0.
91

5 
±

 0
.0

70
0.

90
7 

±
 0

.0
83

0.
85

8 
±

 0
.1

29
0.

75
5 

±
 0

.2
75

0.
76

8 
±

 0
.2

15

L
C

-M
IL

L
C

-M
IL

-m
iN

et
0.

87
5 

±
 0

.1
56

0.
94

2 
±

 0
.0

58
0.

87
5 

±
 0

.1
56

0.
82

8 
±

 0
.1

51
0.

88
9 

±
 0

.1
37

0.
84

2 
± 

0.
11

9

L
C

-M
IL

-a
tte

n
0.

89
5 

±
 0

.1
38

0.
93

9 
±

 0
.0

66
0.

90
7 

± 
0.

09
8

0.
88

4 
±

 0
.1

29
0.

82
6 

±
 0

.1
77

0.
83

4 
±

 0
.1

28

PA
IP

20
20

C
oa

rs
e 

an
no

ta
tio

ns
0.

54
5 

±
 0

.2
46

0.
69

7 
±

 0
.1

53
0.

59
2 

±
 0

.1
95

0.
68

2 
±

 0
.0

98
0.

49
7 

±
 0

.0
79

0.
57

0 
±

 0
.0

76

D
kN

N
0.

90
1 

±
 0

.2
20

0.
62

6 
±

 0
.3

87
0.

66
2 

±
 0

.3
72

0.
88

2 
±

 0
.0

86
0.

40
8 

±
 0

.1
13

0.
54

8 
±

 0
.1

18

R
an

k 
Pr

un
in

g
0.

90
0 

±
 0

.1
97

0.
80

7 
±

 0
.1

65
0.

84
1 

± 
0.

17
6

0.
91

0 
±

 0
.0

92
0.

47
7 

±
 0

.1
73

0.
60

7 
±

 0
.1

47

L
C

-M
IL

L
C

-M
IL

-m
iN

et
0.

82
0 

±
 0

.1
98

0.
83

6 
±

 0
.2

02
0.

81
1 

±
 0

.1
81

0.
87

4 
±

 0
.0

92
0.

73
6 

±
 0

.1
63

0.
78

6 
± 

0.
10

6

L
C

-M
IL

-a
tte

n
0.

83
3 

±
 0

.1
91

0.
84

8 
±

 0
.1

75
0.

82
3 

±
 0

.1
67

0.
88

1 
±

 0
.1

08
0.

63
8 

±
 0

.1
92

0.
71

8 
±

 0
.1

38

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 January 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 38

TABLE II

Run-Time Comparison (min)

Methods CAMELYON16 PAIP2019 PAIP2020

DkNN 6.94 ± 3.07 38.9 ± 18.3 15.8 ± 3.60

Rank Pruning 11.3 ± 2.69 34.9 ± 18.1 17.8 ± 3.90

LC-MIL-miNet 5.60 ± 1.52 18.2 ± 5.95 9.84 ± 1.65

LC-MIL-atten 5.70 ± 1.48 18.8 ± 5.87 11.8 ± 1.94
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