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ABSTRACT

Microbial communities are massively resident in the
human body, yet dysbiosis has been reported to cor-
relate with many diseases, including various can-
cers. Most studies focus on the gut microbiome,
while the bacteria that participate in tumor mi-
croenvironments on site remain unclear. Previous
studies have acquired the bacteria expression pro-
files from RNA-seq, whole genome sequencing, and
whole exon sequencing in The Cancer Genome Atlas
(TCGA). However, small-RNA sequencing data were
rarely used. Using TCGA miRNA sequencing data, we
evaluated bacterial abundance in 32 types of cancer.
To uncover the bacteria involved in cancer, we ap-
plied an analytical process to align unmapped human
reads to bacterial references and developed the BIC
database for the transcriptional landscape of bacte-
ria in cancer. BIC provides cancer-associated bacte-
rial information, including the relative abundance of
bacteria, bacterial diversity, associations with clini-
cal relevance, the co-expression network of bacteria
and human genes, and their associated biological
functions. These results can complement previously
published databases. Users can easily download the
result plots and tables, or download the bacterial
abundance matrix for further analyses. In summary,
BIC can provide information on cancer microenvi-
ronments related to microbial communities. BIC is
available at: http://bic.jhlab.tw/.

INTRODUCTION

The human microbiota massively lives, varies in our bod-
ies, and is diverse in different body sides (1,2). It was esti-

mated that a human body harbors more than three trillion
bacterial members, similar to the number of human cells
(3). Host–microbiome interactions impact multiple physi-
ological processes and disease susceptibilities. The human
microbiota plays an important role in human health, such
as maintaining homeostasis, immunity and inflammation
(4,5). Most microbial studies focus on the gut microbiome
and related diseases, such as inflammatory bowel disease
(IBD) and depression and anxiety (6). Furthermore, stud-
ies have shown that the microbial compositions are different
and associated with cancer (7,8).

While many studies focus on the gut microbiome de-
rived from patients’ stool (9–11), the bacteria that partic-
ipate in the on-site tumor microenvironments remain un-
clear. Dohlman et al. and Poore et al. have acquired the
bacteria expression profiles from RNA-seq, whole genome
sequencing (WGS), and whole exon sequencing (WXS) in
The Cancer Genome Atlas (TCGA) (12,13). However, the
small-RNA sequencing data are not used. We developed an
analytical approach using the small-RNA sequencing data
of colorectal cancer (CRC) tissue samples to study cancer-
associated microbiome in CRC and observed similar re-
sults compared to other studies using 16S rDNA sequenc-
ing (14).

There are certain benefits in using miRNA-seq com-
pared to WGS, WXS, and RNA-seq. First, small RNAs
(sRNAs) have been found to play regulatory roles in both
bacteria and bacterial infectious diseases (15,16). Com-
pared to WGS and WXS, sRNAs were transcribed and
functional in either bacteria or hosts. Only a small frac-
tion of total RNA was polyadenylated and appeared tran-
siently in bacteria (17,18). In many RNA-seq studies, RNAs
were extracted and reverse-transcribed to cDNAs through
poly-A tails. Most bacterial RNAs without poly-A tails
will be filtered in RNA-seq data. Compared to RNA-
seq, miRNA-seq which is processed without poly-A filter-
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Figure 1. An overview of BIC analysis workflow. We downloaded miRNA-seq data from TCGA and used sRNAnalyzer for read processing. We parsed
and merged count tables, conducted GMPR normalization, and produced the bacterial relative abundance matrixes of each taxonomic level in our scripts.
We provide seven modules in the BIC Analyses panel for users to query and download results.

Figure 2. Workflow of data processes to produce bacterial relative abundance matrixes.
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Figure 3. Data tables saved in PostgreSQL. All the precomputed analysis results were saved in PostgreSQL and the primary key of each table was labeled
with a star symbol (*).

ing could have a chance to identify bacteria not found in
RNA-seq.

Using TCGA miRNA sequencing data, we evaluated
tissue-resident bacterial abundance in 32 types of cancer.
We aligned unmapped human reads to bacterial references
by sRNAnalyzer and merged them for each taxonomic rank
of 32 cancer types (14,19). The bacterial relative abundance
and sample diversity were compared across different can-
cer types. We parsed all the data and developed the BIC
database for the transcriptional landscape of bacteria in
cancer. BIC provides the following information: (i) rela-
tive abundance of bacteria, (ii) bacterial diversity, (iii) bac-
terial composition, (iv) clinical relevance, (v) bacterial co-
abundance network, (vi) bacteria-correlated human gene
expression network and (vii) bacteria-associated biological
function (Figure 1). Users can easily query and browse the
analysis plots and result tables, or download the bacterial
expression matrices for further analyses.

DATA COLLECTION

The TCGA miRNA-seq BAM files were retrieved
from the NCI Genomic Data Commons (GDC)
using the GDC Data Transfer Tool (20). Human
RNA expression profiles (EBPlusPlusAdjustPAN-
CAN IlluminaHiSeq RNASeqV2.geneExp.tsv), tumor

stages, races, survival events, and time (TCGA-CDR-
Supplemental Table S1.xlsx) were downloaded from the
Supplemental Data in PanCanAtlas Publications (https:
//gdc.cancer.gov/about-data/publications/pancanatlas).
The gene symbols in the RNA expression profiles were
renamed according to org.Hs.eg.db (version 3.6.0) (21).
Only samples from primary tumors and their adjacent
normal tissues were used. We acquired the biospeci-
men information using TCGAbiolinks (version 2.17.3)
(22).

DATA PROCESSING AND INTEGRATION

Bacteria relative abundance matrixes

We used SAMtools (version 1.3.1) to extract the unmapped
reads from human miRNA-seq BAM files and stored
them in FASTQ format (23). sRNAnalyzer scripts (‘pre-
process.pl’, ‘align.pl’, ‘desProfile.pl’ and ‘taxProfile.pl’) were
used for read preprocessing, alignment, taxonomy annota-
tion (19). We set the minimal read length to 20 nucleotides
and mapped the reads to multiple references, but did not al-
low any mismatch to obtain the highest alignment accuracy.
The references used in alignment were provided by sRNAn-
alyzer, including CDS and DNA of bacteria, nt bacteria,
and microbiomes. After taxonomy annotation by the sRN-
Analyzer scripts, we reassigned the reads mapped to multi-
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Figure 4. BIC user interface and analysis modules. (A) The user interface and analysis modules. (B, C) Modules I and II show the relative abundance and
diversity of bacteria across cancers. (D) Module III shows the bacteria composition. (E–H) Module IV shows the clinical relevance, such as overall survival,
and relative abundance compared in different groups (tumor versus adjacency normal; tumor stages; races). (I) Module V shows the bacteria co-abundance
network. (J) Module VI shows the bacteria-correlated human gene expression network. (K) Module VII shows the bacteria-associated biological functions.

ple species to their common higher-level taxa and generated
the read matrixes at different taxonomic levels (14). The
processed read counts in each data processing step are sum-
marized in Supplementary Figure S1. We identified 1617
genera, 303 families, 126 orders, 56 classes, and 47 phyla
from 10362 samples (9709 patients) across 32 cancer types.
Since the count matrixes were sparse, we applied the geo-
metric mean of pairwise ratio (GMPR), a robust normaliza-
tion method for zero-inflated data, to produce normalized
count tables (24). To keep all 10 362 samples, the intersec-
tion numbers of the phylum, class, order, family, and genus
count tables were set to 3, 5, 5, 6 and 5, respectively. Normal-
ized count matrices were transformed into relative abun-
dance matrices. The relative bacterial abundance of each
taxonomy level was used for all subsequent analyses in BIC.
An overview of these processes is shown in Figure 2. De-
tailed bacterial references and processing scripts are avail-
able on GitHub.

Precomputed analysis data and database construction

Based on bacterial relative abundances, we calculated the
bacterial diversity in each taxonomy level for every kind
of cancer. Vegan (version 2.5–7, https://CRAN.R-project.
org/package=vegan) was used to calculate the Shannon,
Gini-Simpson, and inverse Simpson indices (25). Bacte-
ria with a prevalence (nonzero count) of ≥20% in the

individual type of cancer were used to analyze the co-
abundance of bacteria, the correlation with host gene ex-
pression, and the associated biological function. We ap-
plied SparCC, a method designed for compositional data,
to calculate bacterial co-abundance relationships and es-
tablish the co-abundance networks for individual cancer
types (26,27). The function sparccboot in SpiecEasi (ver-
sion 1.1.0) was used to acquire SparCC correlation coeffi-
cients and empirical p-values of the bacterial co-abundance
with 10 000 times of bootstraps (28). Spearman corre-
lation coefficients (SCC) were calculated for the bacte-
rial correlation with human gene expression using com-
mon samples between bacteria and tissue transcriptome
data. Only human genes that were measured with nonzero
counts in ≥20% of the samples were considered. To cor-
rect for the sample size effect, we applied Fisher’s z-
transformation for SCC. To reveal the possible biological
processes in which the queried bacteria are involved, we
performed gene set enrichment analysis (FGSEA, version
1.12.0) for bacteria-correlated gene expression ranked in
the descending order of the corrected z-score. The gene sets
of biological processes annotated by Gene Ontology (GO,
c5.go.bp.v7.2) (29), KEGG (c2.cp.kegg.v7.5.1) (30) and Re-
actome (c2.cp.reactome.v7.5.1) (31) were downloaded from
the Molecular Signatures Database (32,33). These anal-
yses were performed with R scripts (version 3.6.0) (34)
and all the precomputed analysis data are stored in Post-

https://CRAN.R-project.org/package=vegan
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Figure 5. Query examples of the analysis modules in BIC. (A–C) Query of Fusobacterium at the genus level and the output distribution plot and tables
for the abundance of Fusobacterium across cancer types in the bacteria abundance module. (D–F) The relative abundance of Fusobacterium in tumor is
significantly higher than in the adjacent normal tissues in COAD, READ and HNSC with the clinical relevance module. (G) The bacteria-human gene
network module displays the z-scores between Fusobacterium and the top 10 correlated genes in COAD. (H) The bacteria-associated biological function
module displays the top 20 Fusobacterium-associated KEGG pathways in COAD.

greSQL (version 13.3). The tables deposited in PostgreSQL
are shown in Figure 3.

Web application framework

The BIC web application framework (Supplementary Fig-
ure S2) was constructed using Python (version 3.6.8) (35)
and Django (version 3.2.3, https://djangoproject.com). The
analyses of clinical relevance were performed under Django,
including overall survival and bacterial abundance compar-
ison of different groups, such as tumor (T) versus adjacent
normal (N), tumor stages and races. The survival analysis
was implemented using lifelines (version 0.26.3) (36). Calcu-
lations of statistical P-values (Kruskal–Wallis and Wilcox
ranksum tests) in different groups were implemented by
kruskal and ranksums in scipy (version 1.5.4) (37). Plots
were produced by bokeh (version 2.3.3, http://www.bokeh.
pydata.org).

USER INTERFACE AND USE CASES

Figure 4 shows the user interface and all the analyses pro-
vided by BIC. Modules I and II enable users to query the
bacterial relative abundance and diversity indexes or even-
ness of the selected taxonomy level across all cancer types.
Modules III to VII allow users to find the bacterial compo-
sition, clinical relevance, co-abundance, correlated human

gene expression, and inferred biological processes of the
queried bacteria under specified taxonomy level of the se-
lected cancer type. Users can easily save the output plots
and tables for their queried analyses.

Figure 5 illustrates an example of how users can investi-
gate the genus Fusobacterium in cancer. For CRC and head
and neck cancer, Fusobacterium is known to be associated
with cancer progression (38,39). With the Bacterial abun-
dance module, users can query Fusobacterium at the genus
level (Figure 5A) and observe that the relative abundances
of Fusobacterium are remarkably high in COAD (colon
adenocarcinoma), READ (rectum adenocarcinoma), and
HNSC (head and neck squamous cell carcinoma) (Figure
5B, C). Furthermore, the Clinical relevance module shows
that Fusobacterium is more abundant in tumor than in ad-
jacent normal tissues in these three types of cancer (Fig-
ure 5D–F). In the Bacteria-human gene network module,
CXCL8 is the top gene positively correlated with Fusobac-
terium in COAD (Figure 5G). CXCL8 has been found to
play an important role in CRC (40,41). With the Bacteria-
associated biological function module, users can view the
most significant KEGG pathways correlated with the abun-
dance of Fusobacterium in COAD (Figure 5H). Among
many cancer-related pathways, the NOD-like receptor sig-
naling pathway has previously been reported to be related
to the onset of CRC (40,41).

https://djangoproject.com
http://www.bokeh.pydata.org
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CONCLUSION

We have developed a user-friendly database, BIC, for bac-
terial profiles derived from TCGA miRNA-seq data in 32
types of cancer. BIC allows comparisons of the relative
abundance and diversities of bacteria in different types of
cancer. BIC also provides the bacterial composition, clin-
ical relevance, co-abundance network, correlated human
gene expression network, and associated gene ontologies,
for each type of cancer. With the comprehensive character-
ization of bacteria in tissues of different cancers, BIC can
greatly facilitate the exploration of bacterial functions and
mechanisms in tumor microenvironments. We believe that
our database will be a valuable resource for understanding
the interactions between humans and microbes in cancer
formation.

DATA AVAILABILITY

BIC is freely accessible at: http://bic.jhlab.tw/. The entire
BIC data collection can be downloaded from the web-
site. The source codes of BIC data processing, database
construction, and web application are available at GitHub
https://github.com/Kai-Pu/BIC production.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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