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ABSTRACT

tRNA molecules contain dense, abundant modifica-
tions that affect tRNA structure, stability, mRNA de-
coding and tsRNA formation. tRNA modifications
and related enzymes are responsive to environ-
mental cues and are associated with a range of
physiological and pathological processes. However,
there is a lack of resources that can be used to
mine and analyse these dynamically changing tRNA
modifications. In this study, we established tMod-
Base (https://www.tmodbase.com/) for deciphering
the landscape of tRNA modification profiles from epi-
transcriptome data. We analysed 103 datasets gen-
erated with second- and third-generation sequenc-
ing technologies and illustrated the misincorporation
and termination signals of tRNA modification sites
in ten species. We thus systematically demonstrate
the modification profiles across different tissues/cell
lines and summarize the characteristics of tRNA-
associated human diseases. By integrating tran-
scriptome data from 32 cancers, we developed novel
tools for analysing the relationships between tRNA
modifications and RNA modification enzymes, the
expression of 1442 tRNA-derived small RNAs (tsR-
NAs), and 654 DNA variations. Our database will pro-
vide new insights into the features of tRNA modifi-
cations and the biological pathways in which they
participate.

INTRODUCTION

Transfer RNA (tRNA) is a key molecule in the process
of decoding genetic information. tRNA molecules contain
dense, abundant chemical modifications and may represent
a record of the ancient RNA world (1–5). Approximately

400 unique tRNA molecules can potentially be produced in
human cells (6,7). On average, each tRNA carries 13 modi-
fication sites (8). Moreover, recent studies have shown that
tRNA modifications are highly dynamic and show a wide
range of responses to cellular metabolite levels and envi-
ronmental stresses (9–16). Furthermore, these changes in
tRNA modifications affect tRNA structure, codon recog-
nition, and tRNA-derived small RNA (tsRNA) formation
(17–24). A growing number of studies have found that alter-
ations in tRNA modifications can cause serious diseases, re-
ferred to as RNA modopathies (25). These studies have led
a new chapter in tRNA modification research, and future
work will surely reveal the mechanisms of dynamic tRNA
modifications.

There are several databases that collect tRNAs or mod-
ifications thereof. GtRNAdb (26) is the most comprehen-
sive tRNA database, but it mainly collects the sequences and
structures of tRNAs. Similarly, the T-psi-C database (27) fo-
cuses on the presentation of tRNA sequences and 3D struc-
tures. The Modomics database (28) provides comprehensive
information concerning the chemical structures of modified
ribonucleosides and their biosynthetic pathways. However,
this database mainly includes early published results for in-
dividual tRNAs and lacks large-scale tRNA epitranscrip-
tome data. RMBase is a database developed by our team
based on high-throughput sequencing data to analyse RNA
modifications (29). However, it collects data from genome-
wide RNA modification detection techniques, mainly in-
cluding m6A modifications on mRNAs. These databases
are either relatively old or do not specifically focus on tRNA
modifications, making it difficult to reveal the full landscape
of the tRNA epitranscriptome.

Several epitranscriptomic technologies have been devel-
oped in recent years, which use special library construction
strategies and identify tRNA modifications according to
reverse transcription (RT) stop and misincorporation sig-
natures (7,30–33). The most recent third-generation single-
molecule sequencing strategy allows the direct detection of
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modifications on RNA molecules (34–38). However, cur-
rent research on tRNA modopathies still faces many dif-
ficulties. First, each tRNA sequencing technology identifies
tRNA modifications according to a different strategy. For
example, QuantM-tRNA-Seq identifies modification sites
based on the stop signal of tRNA fragments. mim-tRNA-
seq (7) uses the RT misincorporation signature to iden-
tify tRNA modifications, while ARM-Seq (39) and DM-
tRNA-seq (40) require the comparison of data obtained
before and after AlkB treatment to demethylate common
modifications in tRNAs. RBS-seq (41), developed based on
bisulphite sequencing (42–45), utilizes chemical treatment
to specifically identify m1A, � and m5C. AQRNA-seq uses
exonucleases to remove excess adapters to measure tRNA
abundance and modification changes (31). The most re-
cent development of Nanopore tRNA sequencing technol-
ogy (34) allows the direct sequencing of tRNA molecules
without reverse transcription steps, but it also produces a
large number of miscalls. The differences in these sequenc-
ing technologies result in data including modification sites
exhibiting completely different characteristics, making it
difficult to compare data with each other. Second, the se-
quences of different tRNA isotypes are very similar, mean-
ing that standard mapping strategies cannot precisely an-
notate the type of modifications at each site of each tRNA
molecule. This can make it very difficult to identify the dy-
namic changes in these modifications at later stages. Finally,
tRNA modifications are influenced by structural changes
in tRNAs and differences in the levels of modification en-
zymes, and they determine the recognition of codons and
the processing of tsRNAs (18–23). Current tRNA databases
cannot store and display these complex factors simultane-
ously, thus limiting the subsequent resolution of their mech-
anisms and functions.

In summary, the detection of tRNA modifications re-
quires specialized library construction strategies and bioin-
formatic analysis methods to ensure accuracy and high res-
olution. Based on the above research needs and problems,
this study developed tModBase, a specialized resource for
deciphering the landscape of tRNA modification profiles
from epitranscriptome data.

MATERIALS AND METHODS

Data acquisition and download

For Homo sapiens (GRCh38/hg38), Mus musculus
(GRCm39/mm39), Saccharomyces cerevisiae (S288c),
Schizosaccharomyces pombe (972h-), Drosophila
melanogaster (BDGP Rel. 6/dm6), Arabidopsis thaliana
(TAIR10), Oryza sativa japonica group (Japanese rice
IRGSP-1.0), Medicago truncatula A17 (MedtrA17 4.0),
Mycobacterium bovis BCG (str. Pasteur 1173P2) and
Escherichia coli (str. K-12 substr. MG1655), the mature
tRNA sequences from GtRNAdb (26) were adapted,
and identical sequences were merged at the isodecoder
level. We used BLASTN to best match the dot-bracket
structure and canonical structure from tRNAdb for each
sequence in the tRNA reference library. For species with
mitochondrial tRNA, we obtained mitochondrial tRNA
reference sequences, dot-bracket structures and canonical

structures from mitotRNAdb (46) or tRNAdb (46). The
above steps are performed using the Python script.

The raw sequencing data were obtained from SRA files
obtained with various sequencing technologies in the Gene
Expression Omnibus (GEO) (47) database. The RNA-
seq transcriptome profiling data of normal tumour sam-
ples from 32 cancer types were obtained from the TCGA
database, and FPKM values were calculated using counts to
represent the gene expression levels of the modification en-
zyme. RPM values were calculated to represent the expres-
sion levels of tRNA molecules. In addition, human (hg38)
SNP data were obtained from the dbSNP database (48).

Annotation of known tRNA modifications and modification
enzymes

Based on the available information on modifications for
each species from the Modomics database modification
were manually counted, and BLASTN (49) was used
to align the modified sequences provided by Modomics
with the compiled isodecoder sequence set. Modifications
matching the tRNA molecules were screened from RMBase
as complementary data. For human mitochondrial modifi-
cations, we collected more comprehensive annotation infor-
mation from the literature (50).

tRNA quantification and identification of modification sig-
nals in epitranscriptome sequencing data

We collected sequence read data from 103 datasets of 11
high-throughput sequencing (HTS) technologies (Supple-
mentary Table S1). These raw sequencing reads were sub-
jected to quality control and sequence alignment, and the
alignment results were quantified with the custom Python
scripts.

• DM-tRNA-seq

Before mapping, we used Trim Galore! v0.6.7 for the
quality control of all sequencing datasets from DM-tRNA-
seq (40) with the following parameters:

-q 20 –phred33 –stringency 5 –length 15 -e 0.1
followed by alignment to the reference library using

Bowtie2 (51) with the parameters:
D 20 -R 3 -N 1 -i S,1,0.50.

• ARM-seq

We used the quality control tool Trim Galore! v0.6.7 to
trim reads with the following parameters:

-q 20 –phred33 –stringency 5 –length 15 -e 0.1
Followed by alignment to the reference library using

Bowtie2 (51) with the following parameters:
–quiet –min-score G,1,8 –local -D 20 -R 3 -N 1 -L 10 -i

S,1,0.5.
Multiple mapping reads were filtered out with the custom

Python scripts.

• YAMAT-seq

Since the original article for YAMAT-seq (30) did
not specify quality control tools or parameters, we used
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Trim Galore! v0.6.7 for the quality control of YAMAT-seq
reads with the following parameters:

-q 20 –phred33 –stringency 5 -e 0.1
Since the maintenance of SHRiMP2, used in the

YAMAT-seq article, had stopped, we used Bowtie2 (51) in-
stead with the following parameters:

–quiet –min-score G,1,8 –local -D 20 -R 3 -N 1 -L 10 -i
S,1,0.5.

• hydro-tRNA-seq

We trimmed the hydro-tRNA-seq reads using Cutadapt
v4.1 (52), and the 3′ adapter sequences of 4 replicates were
as follows:

TCGTATGCCGTCCTCTGTTTG; TCACTTCGTG
TCGTTCTGTGTGT; TCACTTCGTGTGCCGTCCTC
TGTGTGTG; TCTAGTCGTATGCCGTCTTCTCTC
TGTG

For sequence alignment, the default parameters of BWA-
MEM were used.

• QuantM-tRNA-seq

Commands for quality control and alignment were pro-
vided in the QuantM-tRNA-seq reference:

cutadapt –cut 2 -a CCAGTATCCAGTTGGAATT -g
TCCAACTGGATACTGGN -e 0.2

bowtie2 –quiet –min-score G,1,8 –local -D 20 -R 3 -N 1
-L 10 -i S,1,0.5

• mim-tRNA-seq

We used the pipeline provided by mim-tRNA-seq (7)
for bioinformatics analysis and processed the results of the
pipeline into a unified format through the custom script.

• AQRNA-seq

In AQRNA-seq, fastxtoolkit was used for read quality
control, but the adapter sequences were not given. Hence,
we used Trim Galore! v0.6.7 instead with the following pa-
rameters:

-q 20 –phred33 –stringency 5 –length 10 -e 0.1
We used BLAST for sequence alignment, and the param-

eters were as follows:
blast -perc identity 90 -word size 9 -dust no -soft masking

false

• BS-seq

We use the default parameters of Bismark (53) through-
out the analysis of BS-seq data.

• Pseudo-seq

The following command was used to perform quality
control and sequence alignment as the Pseudo-seq article
provided:

cutadapt -a ADAPTER SEQ –overlap 3 –minimum-
length 18 -o trimmed reads.fastq.gz input reads.fastq.gz.

bowtie2 –quiet –min-score G,1,8 –local -D 20 -R 3 -N 1
-L 10 -i S,1,0.5

The Pseudo-seq peak value was calculated for the
paired + CMC/-CMC samples with the following formula:

peak = ws
r+ − r−

wr+ + wr−

Here, ws is the window size, which is set to 10 because the
reference tRNA sequences are small. In addition, r+ and
r− are the numbers of reads terminating at the 3′ ends of
the + CMC sample and -CMC sample, respectively. More-
over, wr+ and wr− are the numbers of all reads terminating
within the windows for + CMC samples and -CMC sam-
ples, respectively. These calculations can be performed with
the custom script.

• m1A-seq

The supplementary file of the m1A-MAP article provided
results including mismatch information at various positions
in all the tRNA sequences, and we sorted the results into a
unified format with the custom script.

• Nanopore sequencing

After obtaining the original data (fast5 format) from
Thomas et al. (34), we performed base calling using Guppy,
which is recommended in the NanoProcess portion of the
Master of Pores process. Then, we replaced U in the fastq
format file with T. The obtained results were aligned with
the reference tRNA sequences provided by the original ar-
ticle using Bowtie2 (51), filtered according to MAPQ scores
greater than or equal to 1. Finally, the custom Python script
was used to calculate the counts.

Differential expression analysis of tRNA and RNA modifica-
tion enzymes

We collected all RNA-modifying enzymes responsible for
tRNA modification from databases (28,29) and the lit-
eratures (54–56) and classified them into deamination,
methylation, pseudouridylation, oxidation, hydroxylation,
thiolation, acetylation, dihydrouridine modification, tau-
rine modification, queuine modification, guanylylation and
alkylation enzymes, for a total of 12 categories. In addition,
we divided tRNA modification enzymes into two types,
writers and erasers, according to their modification func-
tions. To study the changes in modification enzymes in can-
cers, we downloaded data from >10 000 samples from 32
cancers available in the TCGA database (57). FPKM val-
ues were used to evaluate the expression of all genes based
on the transcriptome sequencing data, and the expression
levels of various modification enzymes were extracted from
these data.

To compare the differences in tRNA expression between
tumour and normal tissues, we first downloaded raw small
RNA sequencing data from the TCGA database and then
mapped them on mature tRNA sequences to quantify the
tRNA expression levels in each sample. The results were
next normalized using the expression levels of the modifi-
cation enzymes with the following formula:

NormtRNAi = tRNAexpi
∑ni

j = 1 RMPexp j
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where, for a specific tRNA molecule i, the normalized value
is the expression level of the tRNA divided by the sum of the
expression levels of the modification enzymes (RNA mod-
ification Protein, RMP) corresponding to all modification
sites (from j to ni) on that tRNA.

tsRNA level quantification and relationship analysis of mod-
ification sites

We previously established the tsRFinder tool for identi-
fying tsRNA molecules from all small RNA samples in
the TCGA database. Subsequently, we annotated the loca-
tions where the tsRNA molecules were generated on the
tRNAs in detail in the identification results. The annota-
tion results intersected with the modification sites on the
tRNA molecules that we collected. Notably, studies have
confirmed that the modification of tRNA has little effect
on the identification of tsRNAs based on the TCGA library
construction method (58).

Analysis of the relationship between RNA modification and
DNA variation sites

To analyse the relationships between tRNA modification
sites and known DNA variations, we downloaded the sites
of known human DNA variations, including SNVs, in-
sertions, deletions, and indels, from the dbSNP database.
Then, the bedintersect tool (59) was used to identify the
intersection between various DNA variants and all posi-
tions of tRNA modification sites in the reference tRNA se-
quences.

RESULTS

Dynamic interaction of tRNA modification positions and cor-
responding modification enzymes

A graph of the interaction between tRNA structure and
modification is available on the tModBase home page (Fig-
ure 1). Users can intuitively check the modification type of
each site in the consensus sequence of human cytoplasmic
and mitochondrial tRNAs. For example, in human cyto-
plasmic tRNAs, position 34 is the site with the most abun-
dant modification types, including a total of 20 modification
types (Figure 1A). Additionally, this site corresponds to the
wobble position of the mRNA codon, which affects the ac-
curacy of codon recognition and the fidelity of translation.
It can also be seen from the figure that whether the tRNA is
cytoplasmic or mitochondrial, the most commonly affected
modification site is pseudouridine (�), and the bases with
this modification are mainly distributed in the anticodon
arm structure of the tRNA clover (Figure 1B, C).

Different types of tRNA modifications are mediated by
a variety of RNA modification enzymes (RNA modifica-
tion proteins, RMPs). tModBase maps the modification
types at each site to the corresponding modification en-
zymes and divides the modification enzymes into writers
and erasers. For example, tRNA position 34 may be af-
fected by 15 different writer enzymes (NSUN2, NSUN3,
ADAT2, ADAT3, CTU1, CTU2, ELP3, MTO1, QTRT1,
WDR6, PUS1, FTSJ1, ALKBH8, GTPBP3 and TRMU)
and one eraser enzyme (ALKBH1) (Figure 1D). Users can

easily search for modification enzymes based on the modi-
fication of interest and may search for the type and site of
tRNA modification affected by a specific enzyme. In addi-
tion to the interactive diagram on the home page, users can
access and filter more detailed information through three
pages: tRNA, Modification, and Enzyme.

In conclusion, the currently known tRNA modification
sites in humans and mice are well annotated in tMod-
Base. However, we found that these annotated tRNAs rep-
resented only a small fraction of the total tRNA isotypes
(Table 1). For example, the human genome contains a total
of 432 tRNA loci, encoding 283 different tRNA isotypes,
only 54 of which have well-annotated modification sites, ac-
counting for 19% of all isotypes. Thus, the question arises
of which sites on the remaining more than 80% of tRNA
molecules are likely to contain annotations? We next mine
through epitranscriptomic data.

Mining tRNA modification signals from epitranscriptomic
data

In recent years, a series of tRNA epitranscriptome se-
quencing technologies have been developed to obtain high-
throughput tRNA modification signals. We collected and
analysed 103 high-throughput sequencing datasets based
on 11 library construction strategies for tRNA quantifi-
cation and the identification of modification types from
species including Homo sapiens, Mus musculus, Saccha-
romyces cerevisiae, Schizosaccharomyces pombe, Drosophila
melanogaster, Arabidopsis thaliana, Oryza sativa, Medicago
truncatula, Solanum tuberosum, Mycobacterium tuberculosis
variant bovis BCG and Escherichia coli (Supplementary Ta-
ble S1). We developed corresponding analysis workflows for
different library construction strategies (see Methods), and
finally obtained the distribution of the modification signals
(misincorporation or termination) in each tRNA molecule
(Figure 2A). tModBase shows the overlapping relationships
between the sites of different modification signals and the
known modification sites in the molecule in detail. For ex-
ample, according to the annotation, there is an m1A modi-
fication at the 9th site of mt-tRNA-His-GTG. Using mim-
tRNA-seq technology (7), it can be observed that this site
shows a strong A to T mismatch signal, which is determined
by the properties of TGIRT RTase (60–62).

To better illustrate the common features of the distribu-
tion of modification signals on multiple tRNAs, we gener-
ated a heatmap of the distribution of modification signals
of multiple tRNAs, corresponding to known modification
sites, based on which the proportion and extent of the signal
distribution on various tRNA molecules could be clearly
displayed (Figure 2B).

Comparison of tRNA modification profiles between different
tissues/cell lines

tModBase provides modification signal profiles recorded
under various conditions, including profiles from three hu-
man cell lines (HEK293, K562 and iPSC) (Figure 3A),
nine types of mouse tissues (heart, liver, cerebellum, cortex,
medulla oblongata, spinal cord, tibialis, brain, and intes-
tine) and different time points of T-cell activation in mice
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Figure 1. Dynamic interaction diagram of the modifications and modification enzyme types corresponding to each site in the tRNA consensus structure.
(A) Modifications corresponding to each site in cytoplasmic tRNA, where the modification types at position 34 are highlighted. The type of modification
corresponding to each site in cytoplasmic (B) and mitochondrial (C) tRNA molecules, with the modified sites affected by pseudouridine highlighted. (D)
Map of possible tRNA sites of RNA-modifying enzymes, with the modification enzymes that affect the modification at position 34 of tRNA highlighted.
The pencil icon represents an enzyme with writer function, and the eraser icon represents an enzyme with eraser function.

(naı̈ve, 20 h after activation, 48 h after activation, 72 h af-
ter activation). In addition, tModBase provides the results
of comparisons between the modification profiles of mouse
tissues with or without microbial or virus infection (Figure
3B). Users can select tRNAs of interest to view the changes
in the modification signals at various sites under different
conditions.

Some sequencing methods (such as Pseudo-seq) require
comparisons of datasets before and after chemical treat-
ments (such as carbodiimide and CMC treatment). As a
result, we calculated the rates of changes in the sequenc-
ing signals before and after treatment at each tRNA locus

(Figure 4A). In addition, tModBase provides an analysis
tool, Mod2Compare, for comparing any two epitranscrip-
tome sequencing signals (Figure 4B). In Mod2Compare,
the user can select any two datasets for comparison to ob-
tain a downloadable table showing the misincorporation
signal values detected in a common or unique part of the
two datasets. In addition, mod2Compare provides an up-
load function, and the user can not only compare any two
datasets contained in tModBase but can also upload a new
dataset. With the two functions above, users can employ the
first function to download the intersection or difference be-
tween any two datasets and then use the second function to



D320 Nucleic Acids Research, 2023, Vol. 51, Database issue

Table 1. List of the ratios of annotated modified tRNA molecules to the total number of tRNAs

Species
# tRNA
isotypes

# tRNA isotypes with
annotated modification

site
Percentage of known
modified tRNAs (%)

# tRNA molecules
with sequencing signals

identified in
epitranscriptomic data

Percentage of potential
modified tRNAs

identified by tModBase
(%)

Homo sapiens 283 54 19 274 97
Mus musculus 240 12 5 201 84
Saccharomyces
cerevisiae

81 54 67 77 95

Escherichia coli 49 38 76 43 88

reupload the results to a new dataset and compare it with a
third dataset. Even more custom permutations can be per-
formed by the user in a comparative manner.

Association between tRNA modification and tsRNA biogen-
esis

tRNA modifications affect the structure of the tRNA and
the degree of resistance to nucleases at specific sites, which
in turn triggers tsRNA processing (63). We summarized
a list of the relationships between tRNA modifications
and tsRNA processing positions reported in the literature,
which lists tsRNA types, modification sites, modification
enzymes, and the corresponding mechanisms of action. Our
previous study revealed that tsRNAs are abnormally ex-
pressed in a variety of cancers, which is associated with pa-
tient survival and prognosis (64). To further clarify the rela-
tionship between tsRNA occurrence and tRNA modifica-
tions, we analysed the biogenesis sites of tsRNAs in 32 can-
cers and mapped them to known tRNA modification sites.
Since modification changes are affected by modification en-
zymes, we also displayed the changes in various modifica-
tion enzymes in 32 cancers on the Enzyme page. Addition-
ally, we provide a graph comparing tRNA expression lev-
els between tumour and normal tissues on the tRNA page.
Researchers can screen modification enzymes and tsRNA
molecules that undergo synergistic changes in tModBase,
and then design experiments to deeply explore the mecha-
nisms of abnormal tsRNA levels in cancer.

Diseases caused by tRNA modification

Disturbances in tRNA modification can cause serious dis-
eases. However, the types of diseases identified thus far
are still very limited. The relationships between reported
tRNA modifications and four major disease types (mito-
chondrial disease, neurological disorder, cancer, and dia-
betes) are summarized in tModBase. The Mod2Disease
page details disease names, affected genes, types of RNA
modifications, and tRNA molecules. On this basis, we an-
notated whether the phenotype is caused by the influence
of tRNA modification enzymes or the modifications them-
selves in detail and briefly summarized the corresponding
pathogenic mechanisms (Supplementary Table S2). In addi-
tion, we analysed the relationships between tRNA modifi-
cation sites and DNA variation sites. The tRNA molecules,
modification sites, and modification types and DNA vari-
ation sites and variation types are annotated in detail. In
the future, additional diseases caused by tRNA modifica-

tion changes can be identified based on tModBase, and their
pathogenic mechanisms can be further analysed.

DISCUSSION AND CONCLUSIONS

Unlike mRNA modifications, modifications on tRNA
molecules are abundant and densely distributed. Tradi-
tional biochemical methods can identify the types of modi-
fications present on tRNA molecules but cannot perform
large-scale batch detection, let alone distinguish multiple
tRNA isotypes. In recent years, a series of high-resolution
experimental detection methods and bioinformatics analy-
sis procedures focused on tRNA modifications and quan-
tification have been developed. This study integrates and
analyses currently reported tRNA epitranscriptome se-
quencing datasets and demonstrates the misincorporation
and termination signals generated by these sequencing tech-
nologies in detail (Figure 5). Additional tRNA molecules
likely to contain modifications were identified. Based on the
identified misincorporation signals, users can design exper-
iments to further discover new tRNA-modifying molecules
and even rare types of modifications. To avoid the prob-
lem of false-positives caused by the use of a single dataset,
tModBase provides the Mod2Compare tool to compare the
differences in the identification signals of the two datasets.
It is recommended that researchers use the result obtained
from the intersection of multiple datasets as a more credible
modification signal for validation.

Many modifications can cause misincorporation or ter-
mination in the RT process, causing the site to generate a
detectable signal suggesting that the site is a possible modifi-
cation site. However, relying on such a signal alone may pro-
duce a large number of false-positives, as unmodified bases
may also cause misincorporation or termination during the
RT process. This is one of the issues that tModBase is try-
ing to address, that is, to provide cross-validation results for
multiple datasets to increase accuracy. In fact, there may be
multiple reasons for misincorporation or termination, in-
cluding the library construction method, experimental tech-
nique, base type, modification type, tRNA structure, RT en-
zyme characteristics, or sequencing errors involved. To re-
flect this information comprehensively, we built a summary
table on the position page that shows how many datasets
contained a signal at a site, the base type at the site, whether
previous studies reported the presence of modifications at
the site, the reverse transcriptase used for sequencing, etc.
Users can determine the confidence of a modification site
based on these features. In the future, researchers can train
machine learning models to make more accurate predic-
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Figure 2. Distribution of tRNA epitranscriptome sequencing signals displayed in tModBase. (A) Each row in the table represents the misincorporation
signal detected in a tRNA isotype sequence. (B) The x-axis in the histogram represents the tRNA site in the consensus structure, and the y-axis represents
the number of known modification types at that site. Each row of the heatmap represents a tRNA isotype, each column represents a site in the consensus
structure of the tRNA, and the colour indicates the intensity of the misincorporation signal, such as the percentage of mismatches.
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Figure 3. Modification profiles displayed in tModBase. Each row represents a condition: (A) different tissues of mouse and (B) the presence or absence of
microorganisms, and each column represents a site on the tRNA molecule. The colour indicates the strength of the misincorporation signal, such as the
percentage of mismatches.

tions of tRNA modification sites based on the above infor-
mation provided by tModBase as features.

In addition, many modification types can lead to incom-
plete reverse transcription of tRNA and, thus, the lose of
this part of the signal, which is also a very important issue.
Fortunately, the tRNA sequencing technology collected in
tModBase has been designed to address this issue during
the library construction process. The basic idea includes
three key points: (i) A 3′ adapter is ligated to tRNA 3′
ends. The adapter-ligated tRNA pools are used as templates
for primer-dependent cDNA synthesis by TGIRT. (ii) The
cDNA is circularized with CircLigase to provide a tem-
plate for library construction by PCR. (iii) The previously
ligated adapter is cleaved using a restriction endonuclease,

thus linearizing the circularized RNA again while ensur-
ing that both ends of the target are successfully ligated with
the adapter sequences. Hence, the truncated cDNA result-
ing from the RT stop can also be detected in these libraries.
We have summarized a table of the datasets used in tmod-
Base, describing the library construction strategy for the se-
quencing data and the reverse transcriptase (RTase) that is
used. In the future, researchers can train machine learning
models to make more accurate predictions of tRNA mod-
ification sites based on the above information provided by
tModBase as features.

Using tModBase, researchers can intuitively observe the
signal preferences at known modification sites and corre-
late them with the corresponding modification enzyme sig-
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Figure 4. Comparison of modification profiles between different sequencing sets. (A) Distribution of misincorporation signal ratios between chemically
treated and control groups. The x-axis represents each position of a tRNA molecule, and the y-axis represents the ratio of the misincorporation signal
between chemically treated and control samples. (B) Scatter plot comparing the two datasets. The x- and y-axes represent the full range of misincorporation
signal values in the two datasets selected by the user, with each point representing a site on a tRNA molecule.
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Figure 5. Major contents of tModBase.

natures. For example, TGIRT, a reverse transcriptase, can
cause an RT misincorporation signal of A to T or G at m1A
(determined by the structural properties of the enzyme it-
self) (62). By summarizing the properties of different reverse
transcriptases, researchers can further apply them for the
identification of tRNA modification types.

tRNA modifications change dynamically under differ-
ent conditions, and earlier studies have detected the tRNA
modification changes during cellular changes under stress
conditions (imposed by temperature, chemical reagent
treatment, etc.) using LC–MS/MS techniques (Supplemen-
tary Table S3) (9–11,13–15,65,66). Recent studies using
HTS techniques have identified specific tRNA modifica-
tions in human and mouse cells that are significantly altered
under pathogenic infection (67,68) and during T cell acti-
vation (32). This evidence implies that dynamic changes in
tRNA modifications may be a general response of cells to
stress conditions; however, the modifications that can be de-
tected by LC–MS/MS methods cannot clarify the specific
tRNA isotypes, and the data obtained from HTS are cur-
rently far from sufficient. tModBase will be updated con-
tinuously to collect and demonstrate the dynamic changes
in tRNA modifications. In the future, we will continue to
collect more dynamic modification data generated by HTS
and LC–MS/MS methods and add them to tModBase. In
addition, we provide a user-submitted data function that al-
lows researchers to upload these data into tModBase if rel-
evant work is published, and we believe that having such a
dedicated resource will help advance the field.

The identification and quantification of tRNA modifica-
tions are ultimately aimed at deciphering their mechanisms
and functions, but research in this area is just emerging (69).
In addition to collecting published reports, tModBase also
provides tools such as Enzyme and Mod2tsRNA to corre-

late tRNA modification with changes in modification en-
zyme and tsRNA. In the future, researchers can integrate
and analyse multiple factors to establish a regulatory net-
work of tRNA modifications, RNA modification enzymes,
and tsRNA levels to understand the molecular mechanisms
that affect cell function and fate.

Compared with other tRNA and RNA modification
databases focused mainly on tRNA sequences or modifica-
tions of other RNA molecules, tModBase has some distinct,
important advantages (Figure 5). The advances in tMod-
Base are as follows: (i) tModBase records 27 types of mod-
ifications, including m7G, t6A, � and m1A, at each site
in human and mouse tRNA molecules. (ii) We collected
103 datasets from 11 types of high-throughput tRNA se-
quencing technologies (Supplementary Table S1) and cus-
tomized the data according to the applied library construc-
tion strategies. The signal of each sequencing technology
and its dynamics under different conditions are demon-
strated. In addition, tModBase provides tools for cross-
sectional comparison between different sequencing results.
(iii) tModBase matches the modification at each tRNA site
to the expression of the enzyme that mediates that modi-
fication and shows the dynamics of these modification en-
zymes in 32 types of cancers. (iv) tModBase shows the over-
lap of tRNA modification sites with DNA variations, in-
cluding SNVs, insertions, and deletions. Users can explore
the variation sites corresponding to the modification sites
in any tRNA and the associated diseases. (v) tModBase
demonstrates the relationship between tRNA modification
sites and the production positions of tRNA-derived small
RNAs (tsRNAs). We provide the Mod2tsRNA tool to anal-
yse the expression levels of tsRNA near tRNA modifica-
tion sites, which helped to reveal the relationships between
tRNA modifications and tsRNA production mechanisms.
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In addition, tModBase demonstrates the relationships be-
tween known tRNA modification sites and tsRNA process-
ing from the published literature. (vi) tModBase includes
four types of human diseases caused by aberrant tRNA
modifications, including mitochondrial diseases, neurolog-
ical disorders, cancers, and diabetes, and their associated
tRNA molecules, modification types, and modification en-
zymes. (vii) The analysis results and display charts of all
high-throughput sequencing data in tModBase are available
for download so that users can conduct in-depth analysis
and research based on tModBase.

DATA AVAILABILITY

tModBase is freely available at https://www.tmodbase.com/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The results shown here are in whole or part based upon
data generated by the TCGA Research Network: https:
//www.cancer.gov/tcga. We gratefully acknowledge contri-
butions from the TCGA Research Network and its TCGA
Pan-Cancer Analysis Working Group. We sincerely thank
Guanzheng Luo and Zhang Zhang of Sun Yat-sen Univer-
sity for their valuable comments during the article revision
process.

FUNDING

National Key R&D Program of China [2022YFC3400400];
National Natural Science Foundation of China [32270604,
31900903]; Guangdong Province [2021A1515010542,
2022A1515011321]; Guangdong Province Key Laboratory
of Computational Science; Guangdong Province Com-
putational Science Innovative Research Team (in part).
Funding for open access charge: National Natural Science
Foundation of China.
Conflict of interest statement. None declared.

REFERENCES
1. Rios,A.C. and Tor,Y. (2013) On the origin of the canonical

nucleobases: an assessment of selection pressures across chemical and
early biological evolution. Isr. J. Chem., 53, 469–483.

2. Schneider,C., Becker,S., Okamura,H., Crisp,A., Amatov,T.,
Stadlmeier,M. and Carell,T. (2018) Noncanonical RNA nucleosides
as molecular fossils of an early earth-generation by prebiotic
methylations and carbamoylations. Angew. Chem. Int. Ed., 57,
5943–5946.

3. Müller,F., Escobar,L., Xu,F., Węgrzyn,E., Nainytė,M., Amatov,T.,
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Merits,A., Novoa,E.M. and Dı́ez,J. (2022) CHIKV infection
reprograms codon optimality to favor viral RNA translation by
altering the tRNA epitranscriptome. Nat. Commun., 13, 4725.

68. Tucker,J.M., Schaller,A.M., Willis,I. and Glaunsinger,B.A. (2020)
Alteration of the premature tRNA landscape by gammaherpesvirus
infection. Mbio, 11, e02664-20.

69. Phizicky,E.M. and Hopper,A.K. (2010) tRNA biology charges to the
front. Genes Dev., 24, 1832–1860.


