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ABSTRACT

The European Molecular Biology Laboratory’s Eu-
ropean Bioinformatics Institute (EMBL-EBI) is one
of the world’s leading sources of public biomolec-
ular data. Based at the Wellcome Genome Campus
in Hinxton, UK, EMBL-EBI is one of six sites of the
European Molecular Biology Laboratory (EMBL), Eu-
rope’s only intergovernmental life sciences organi-
sation. This overview summarises the status of ser-
vices that EMBL-EBI data resources provide to scien-
tific communities globally. The scale, openness, rich
metadata and extensive curation of EMBL-EBI added-
value databases makes them particularly well-suited
as training sets for deep learning, machine learn-
ing and artificial intelligence applications, a selection
of which are described here. The data resources at
EMBL-EBI can catalyse such developments because
they offer sustainable, high-quality data, collected in
some cases over decades and made openly availabil-
ity to any researcher, globally. Our aim is for EMBL-
EBI data resources to keep providing the foundations
for tools and research insights that transform fields
across the life sciences.

INTRODUCTION

The European Molecular Biology Laboratory’s European
Bioinformatics Institute (EMBL-EBI) is one of the world’s
leading sources of public biomolecular data. Based at the
Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is
one of six sites of the European Molecular Biology Labora-
tory (EMBL), Europe’s only intergovernmental life sciences

organisation, whose world-class research infrastructure and
services support cutting-edge science globally.

EMBL-EBI enables life science research and its transla-
tion to medicine, agriculture, industry and society by:

• freely providing data and bioinformatics services to the
scientific community in ways that promote scientific
progress.

• contributing to the advancement of biology through
investigator-driven research.

• providing bioinformatics training to scientists at all levels.
• disseminating cutting-edge technologies to industry and

applications of science.
• supporting, as an ELIXIR Node, the coordination of

biomolecular data provision in Europe.

EMBL-EBI contributes to EMBL’s 2022–2026
‘Molecules to Ecosystems’ programme, which aims to
establish the molecular basis of life in context, to gain new
knowledge that is relevant to understanding life on Earth,
and to provide translational potential to support advances
in human and planetary health

This overview focuses on services that EMBL-EBI data
resources provide to scientific communities globally, de-
scribing related training and industry applications where
relevant. As many other EMBL-EBI data resources have
dedicated articles elsewhere in this special issue, this
overview focuses primarily on major changes to data re-
sources not described elsewhere.

EMBL-EBI data resources comprise: deposition
databases, which archive experimental data; added-value
databases, which provide annotation, curation, reanalysis
and integration of deposited data; and open source soft-
ware tools, that enable reuse of these resources. Deposition
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databases, added-value databases and tools are described
and accessed via the EMBL-EBI services web portal. All
EMBL-EBI data resources and many software systems
can be downloaded and installed locally, and are made
available on an open and free basis for reuse. Many services
offer further bulk and machine-readable access including
via API, FTP, Aspera and Globus services.

Co-housing these data resources at one institute results
in close integration between resources, demonstrated by the
high degree of between-resource data flow, and the avail-
ability of integrated tools like pan-resource EBI-Search
(1). Data resources also benefit from institutional support
with technical and infrastructure management. EMBL-EBI
resources serve as foundations for hundreds of external
resources and tools (with many recent developments de-
scribed below). Europe’s flagship bioscience data coordi-
nation programme ELIXIR identifies the Core Data Re-
sources and Deposition Databases of most fundamental im-
portance to the wider life-science community and the long-
term preservation of biological data. Many EMBL-EBI re-
sources have achieved this designation.

The scale, openness, rich metadata and extensive curation
of EMBL-EBI added-value databases makes them particu-
larly well-suited as training sets for deep learning, machine
learning and artificial intelligence applications (abbreviated
here under the umbrella term AI applications). A recent ma-
jor AI application is the DeepMind AlphaFold system for
predicting previously unknown 3D structures, which was
trained on openly available experimentally verified protein
structure data from the Protein Databank (2), jointly deliv-
ered by EMBL-EBI and other partners (the wwPDB con-
sortium), as well as protein sequences and annotation from
Uniprot (3) and metagenomics data from MGnify (4). As
of September 2022, the outputs of AlphaFold, hosted by
EMBL-EBI as AlphaFold-DB (5), included 214 684 311
predicted structures, with 48 complete proteomes available
for bulk download. Over 500 000 researchers in 190 coun-
tries used AlphaFoldDB in its first year of operation. The
data is already enabling researchers to progress a number
of previously intractable research questions (6). Further ex-
amples of how EMBL-EBI resources are enabling AI ap-
plications in proteomics, drug discovery, imaging and other
areas are included below.

The impact of EMBL-EBI data resources

EMBL-EBI tracks the use of data resources through met-
rics including the number of web requests and unique IP
addresses visiting service websites, the volume of data de-
posited, and the number of open citations EMBL-EBI data
resources receive in scientific publications. While each met-
ric has limitations and cannot provide an exact quantifica-
tion of use, considered together they give an indication of
the scale and trend in usage.

Demand from researchers for EMBL-EBI data resources
increased considerably in 2020, particularly during the sec-
ond quarter (April–June 2020) which coincided with the
beginning of the global COVID-19 pandemic. Usage con-
tinued to grow throughout the rest of 2020 and into 2021,
as many researchers transitioned back from remote to in-
person or hybrid working (Figure 1). Demand has remained

high in the first two quarters of 2022 with an average of 3.1
billion web requests and 5.2 million unique IPs per month
in the second quarter of the year. This is ∼100% higher than
user demand for the equivalent period in 2018. EMBL-EBI
data resources have a global reach, with every UN member
state country represented in our user base in 2021, and the
data available for the current year to date suggests similar
global user demand in 2022.

The rate of data deposition by volume into EMBL-
EBI’s archival resources continues to accelerate, with over
25 PB of data deposited in 2021, bringing the cumula-
tive total storage up to approximately 75 Petabytes (Fig-
ure 2). The two largest archival resources are European
Nucleotide Archive (ENA) (7) and European Genome-
phenome Archive (EGA) (8), between them accounting for
over 90% of total data deposited to date. Notably rapid
data growth in recent years has been in imaging data re-
sources - BioImage Archive (BIA) (9); and the electron
microscopy imaging resources Electron Microscopy Public
Image Archive (EMPIAR) (10) and Electron Microscopy
Databank (EMDB) (11)

In 2021, an independent study estimated the economic
value and impact of EMBL-EBI data resources. The study
found that researchers spent 140 million hours/year using
EMBL-EBI data resources, with a value equivalent to £5.5
billion.

MAJOR CHANGES IN THE EMBL-EBI DATA RE-
SOURCE PORTFOLIO

Federated EGA network officially launched

Until recently, most of the individual-level human omics
data made discoverable on the EMBL-EBI European
Genome-phenome Archive (EGA) (8) were generated by re-
search consortia, not in healthcare settings. Many countries
now have personalised medicine programmes that are gen-
erating data from national or regional initiatives, resulting
in a shift from research-driven to healthcare-driven genomic
data. Data generated in a healthcare context can be subject
to different governance and national data protection leg-
islation than research data, and these access controls risk
blocking reuse for research. If reuse for research were not
possible, the potential value and impact of emerging health-
care genomic data would be significantly reduced. Feder-
ated EGA uses a distributed network of international repos-
itories to ensure genomic data accelerates research by en-
abling transnational discovery of and access to human data,
while also respecting jurisdictional data protection regula-
tions, thus enabling scale and more powerful research in-
sights.

One of the first applications of Federated EGA is to pro-
vide transnational data discovery and access infrastructure
for the European 1+ Million Genomes and Genome Data
Infrastructure projects. The subsequent Beyond One Mil-
lion Genomes EC coordination and support actions project
will demonstrate how Federated EGA enables rare disease
federated discovery and access.

The Federated EGA network was officially launched in
2022 with the signing of the first legal agreements with in-
augural nodes in Sweden, Norway, Germany, Finland, and
Spain. Dozens of additional nodes across Europe and the
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Figure 1. Web requests (yellow, A) and Unique IP visits (blue, B) to EMBL-EBI data resources, 2018–2022.

world are working towards joining the Federated EGA net-
work, with a shared vision of establishing a truly global re-
source for sensitive human data discovery and sharing.

Pfam merging into InterPro

EMBL-EBI hosts two major protein family resources, Pfam
(12) and InterPro (13). The Pfam database of protein fami-
lies was formerly hosted at the Sanger Institute until 2012,
when it was migrated to EMBL-EBI. Although similar
in scope, there are important differences between the two
resources. InterPro provides a comprehensive view across
most of the world’s protein family resources by aggregat-
ing data from 13 other resources, including Pfam (13). Al-
though it brings protein family data together it does not
generate the signatures for identifying a particular protein
family, such as a profile-hidden Markov model. The signa-

tures are provided by the 13 member databases. Pfam pro-
vides EMBL-EBI the ability to create new family signatures
as well as update existing ones and thus provides an impor-
tant complementary functionality to InterPro. To make the
production and dissemination of these two resources as effi-
cient and scalable as possible, the functionality of the Pfam
website was merged into Interpro. The Pfam website was de-
commissioned in January 2023, but all of its data and func-
tionality continue to be provided via InterPro.

ArrayExpress migrating into BioStudies

The BioStudies Database (14) is a resource for encapsulat-
ing all the data associated with a biological study, which
may exist across a number of different data resources. One
of the goals of BioStudies is to manage data generated in
experiments that can be characterized as ‘multi-omics’. In-
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Figure 2. (A) Annual (yellow) and cumulative (blue) data deposition into EMBL-EBI archival data resources. (B) Annual deposition into nine archival
resources. Note the logarithmic scale. and rapid rate of growth for the Imaging and cryo-electron microscopy resources Bioimage Archive, EMPIAR and
EMDB. (C) Annual quarterly data growth for the Bioimage Archive, EMPIAR and EMDB imaging and cryo-electron microscopy data resources. Note
the logarithmic scale.



Nucleic Acids Research, 2023, Vol. 51, Database issue D13

creasingly, many experiments that used to belong to the do-
mains of transcriptomics or functional genomics are now
multi-modal, resulting in decreased depositions into the
array-specific ArrayExpress data resource (15). Since 2020,
to streamline the data submission processes and data rep-
resentation at EMBL-EBI, data served from ArrayExpress
has been migrated to BioStudies, under the ‘ArrayExpress
collection’. Following positive user feedback on the new
pipelines and processes, the ArrayExpress interface was de-
commissioned in September 2022 and all new functional ge-
nomics submissions are now processed and loaded in BioS-
tudies, before flowing on into other data resources including
ENA [7].

NEW FEATURES AND AI APPLICATIONS OF EXIST-
ING DATA RESOURCES

UniProt annotates 50 million previously uncharacterised pro-
teins using machine-learning

The UniProt Knowledgebase of protein sequence and func-
tion (16) combines both automated and expert-curated
annotations of protein function. Expert biocurators link
UniProtKB/Swiss-Prot entries to a summary of experimen-
tally verified, or computationally predicted, functional in-
formation about each protein. Information is added to non-
reviewed entries in the UniProtKB/TrEMBL system us-
ing annotation transfer from reviewed entries by automated
systems (17).

A UniProt-organised challenge in 2022 asked competi-
tors from the machine learning community to develop soft-
ware tools and algorithms which predict metal binding sites
in proteins with accuracy and at scale. The best of these
tools will be incorporated into future production pipelines.

UniProt data is made available in formats suitable for
researchers to develop their own tools and resources.
As of release 22 05, sequence embeddings for all of
UniProtKB/Swiss-Prot are released on the UniProt ftp
site. Longer-term plans are to make records more readily
machine-readable, for example by increasing usage of on-
tologies, to support utility as positive training sets in AI ap-
plications.

Mass spectrometry-based proteomics datasets drive AI appli-
cations

Proteomics Identification Database (PRIDE) is the world-
leading database for mass spectrometry (MS)-based pro-
teomics datasets (18) and is one of the founding members
of the International ProteomeXchange Consortium of pro-
teomics resources (19). On average, ∼500 datasets were sub-
mitted to PRIDE every month in 2022. The unprecedented
availability of proteomics datasets in the public domain is
driving multiple applications reusing this data. AI applica-
tions have been applied to improve every step in the pro-
teomics analytical workflow––for a recent review see (20).
These approaches are enabling new biological findings, for
instance in the context of protein phosphorylation (21),
identification of antimicrobial peptides (22) and predic-
tion of antigen presentation of HLA molecules (23). Multi-
omics approaches involving proteomics data are an area
where further applications of public datasets will generate

novel tools. All PRIDE datasets that have been used for AI
applications, including training and evaluating models, are
tagged using the term ‘Machine Learning’. This shows the
enormous value of public datasets with high quality anno-
tation to enable novel ‘big data’ approaches in proteomics
(24).

Applications of small molecule bioactivity data for in silico
drug discovery

The ChEMBL database (25) is a large-scale open resource
of small molecule bioactivity data which was first launched
in 2009. It mainly hosts curated data extracted from the
medicinal chemistry literature as well as deposited datasets,
and has grown significantly in size and complexity since its
first release. The current release of ChEMBL (version 31,
prepared in July 2022) hosts around 20 million bioactivity
data points for 2.3 million compounds corresponding to 1.5
million assays, 15 000 targets, and 85 000 documents.

Prior to the launch of ChEMBL, only large private or-
ganisations were able to access diverse and high-quality
(proprietary or commercial) bioactivity data sets for a wide
range of biological targets at scale. Data from ChEMBL has
proven indispensable for the development (26), validation
and benchmarking (27–29) of a wide range of AI and other
in silico applications, including those described below.

Given its vast size and coverage of medicinal chem-
istry space, ChEMBL is frequently leveraged for chemi-
cal space analysis, either driven by a focus on drugs (30),
a chemotype-centric view (31,32), or a specific area of
drug discovery research (33–35). ChEMBL also facilitates
large-scale comparison of species differences in bioactivity
data (36), and assay and bioactivity endpoint comparisons
(37,38). Insights from such analyses influence how predic-
tive models are built and applied, and guide experimental
design when searching for new chemical matter.

ChEMBL facilitates the development of in silico target
prediction algorithms (39–41) and molecular de novo de-
sign (42,43). Bioactivity data from ChEMBL, in conjunc-
tion with other data types such as pathway and disease in-
formation, is a foundational part of knowledge graph-based
discovery tools, with applications such as phenotypic assay
target deconvolution (44,45).

AI-ready imaging datasets and interoperability standards

The BioImage Archive (9) is EMBL-EBI’s deposition
database for life sciences imaging data associated with pub-
lications, as well as reference imaging datasets. AI appli-
cations are revolutionising the process of analysing and
gaining insight from biological images. However, such tech-
niques often generate ‘black box’ models. Understanding
how these models function, what biases they may contain
and what type of data they can be safely applied to, is very
difficult without access to original training data.

To support reproducibility of AI applications in im-
age analysis, the BioImage Archive supports deposition of
both images and ground truth annotations used in train-
ing datasets. The archive already makes available over 30
imaging datasets with these AI-suitable annotations, which
allows method developers to use existing data to acceler-
ate development. Work is underway to enhance support
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for these ‘AI-ready’ datasets, through dedicated deposition
pipelines, and developer friendly presentations. Bioimage
Archive is playing an active role in the development of the
community standards for interoperable segmentation, im-
age categorisation and other annotation required to enable
widespread imaging data sharing for AI applications (46).

The Electron Microscopy Public Image Archive EM-
PIAR (10), is a public resource for raw images underpin-
ning 3D cryo-EM maps and tomograms (the latter archived
in the Electron Microscopy Databank, EMDB (11)). EM-
PIAR also accommodates 3D datasets obtained with vol-
ume EM techniques, and soft and hard X-ray tomography.
All data archived in EMPIAR can be re-used freely with-
out any conditions or restrictions via a ‘CC0’ license model,
making it an easily accessed source of data for AI appli-
cations in image analysis. EMPIAR released two datasets
in 2022 specifically developed to support machine learning
– CEM-MitoLab, a dataset of ∼22K cellular EM 2D im-
ages with label maps of ∼135K mitochondrial instances,
and CEM1.5M: a cellular EM dataset containing ∼1.5M
unlabeled 2D image patches curated for deep learning.

Pre-print corpus for text-mining and AI applications

Europe Pubmed Central (Europe PMC) (47) provides open
access to a worldwide collection of life science preprints
and peer-reviewed journal articles. Following the COVID-
19 full text preprints initiative, since April 2022 Europe
PMC makes the full text of preprints supported by its 37
funders available for search, reading, and reuse, both on
the Europe PMC website and programmatically in stan-
dard JATS XML format. As of September 2022 there were
over 450 000 preprints indexed in Europe PMC from 24
preprint servers and nearly 32 000 of these are available as
full text. Of the full text preprints 98% have an open ac-
cess licence and are available via bulk download for text an-
alytics and machine learning applications. To further pos-
sibilities for large-scale meta analyses, preprints in Europe
PMC are linked to underlying research data, open peer re-
view materials, citations, grants and other useful resources.
The preprint corpus will increase discoverability, ensure the
continued access to findings presented in preprints and en-
able new analytical possibilities including AI applications.

Improving preprint transparency and tracking

The ability to improve and correct the manuscript through
new versions is an important part of preprints’ appeal.
However, changes to preprints can be difficult to track, es-
pecially across many different preprint servers and journals.
Researchers working with preprints need to know which
version should be cited, how a preprint differs from its
published version, and whether conclusions presented in a
preprint are valid after a preprint has been withdrawn or re-
moved. To address these issues Europe PMC now offers a
way to check for preprints updates. The Article Status Mon-
itor is a Europe PMC tool that allows users to check if a
preprint has been withdrawn, removed, published in a jour-
nal, or updated with a new version. Updates can be retrieved
using a simple website tool, email alert or programmatically
via the status-update-search module of the Articles API.

Big data for target-disease association and disease-causing
genes now available in the Cloud

The Open Targets consortium is a pre-competitive part-
nership between EMBL-EBI, the Wellcome Sanger Insti-
tute, and pharmaceutical company partners GSK, Sanofi,
BMS––with Pfizer joining in 2022. The consortium gener-
ates data and builds informatics tools to enhance the identi-
fication and prioritisation of targets that will ultimately lead
to more effective and safer drugs. Open Targets produce two
open source informatics resources: the Open Targets Plat-
form (48), which provides a knowledgebase and tools for
target-disease association evidence and prioritisation; and
Open Targets Genetics (49), developed to address the chal-
lenge of identifying disease-causing genes (and thus poten-
tial drug targets) from Genome-Wide Association Studies.
These are increasingly being adopted as reference databases
in their own right, but in addition provide structured data
to enable other data integration and AI applications.

In May 2022, the resources were made available in the
cloud via Google BigQuery and AWS Open Data. This in-
tegration and accessibility enables the data to be used in
AI applications, such as machine learning to identify novel
target-disease associations (50), building knowledge graphs
for different biological insights (51–54) and for benchmark-
ing new computational methods for drug target prioritisa-
tion (55,56).

As the code base is open source, separate instances
of the Platform can be created and adapted to user
requirements––an example is the recent release of the NIH
Childhood Cancer Data Initiative Molecular Targets Plat-
form, which integrates tumor gene expression and somatic
alteration data (Figure 3).

Open data standards for proteomics

EMBL-EBI continues to lead many activities of the Pro-
teomics Standards Initiative (PSI), the organisation in
charge of developing open data standards in proteomics
(57). Among these activities, during 2022, in collaboration
with the Consortium for Top-Down Proteomics, the PSI re-
leased the ProForma 2.0 notation (58), providing a standard
way to represent peptidoforms and proteoforms (combina-
tions of protein sequences plus protein modifications).

ProForma can be used in conjunction with Universal
Spectrum Identifiers (59), a PSI standard released in 2021
that provides a unique identifier for mass spectra in Pro-
teomeXchange repositories (including PRIDE).

TRAINING

Recent years have provided many challenges in terms of
training development and delivery, but 2022 saw the rein-
troduction of in-person training at EMBL-EBI as well as
the retention of an extensive virtual programme.

EMBL-EBI’s training programme focuses on empower-
ing scientists to get the most out of openly accessible data
resources and services, and to develop key bioinformatics
analysis skills. This goal has been supported even further
in 2022 through the addition of training in key principles
for data management and open data in all EMBL-EBI live
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Figure 3. Example results from the Molecular Targets Platform, a US National Cancer Institute-supported instance of the Open Targets Platform with a
focus on preclinical paediatric oncology data.

courses, as emphasised by EMBL’s updated open science
policy.

This enables us to encourage all scientists we train to de-
posit their data in open resources, ensuring they know how
the deposition process works, how to get started and where
to find the support required at all points. We are also work-
ing with countries where deposition rates have traditionally
been low, e.g. LMICs, to determine barriers to deposition
and how these can be overcome. Roughly 500 scientists par-
ticipate in in-person courses per year, with the majority of
these reporting that they go on to pass on their learning to
others. Web-based on-demand training sees around 500 000
unique IP users per year, of which 80% rate webinars as ex-
cellent or very good.

2022 has seen the culmination of a three-year project to
completely redesign the training website. Testing indicated
a great improvement in user experience for those seeking
training courses and content for their own use, or in the
training of others. A key development in 2022 was ensuring
those undertaking self-directed learning through EMBL-
EBI on-demand materials can easily track their progress,
keep a record of courses they have completed, and plan
their future studies. New Personal Account functionality
enables EMBL-EBI trainees to tag favourite courses and
manually log their progress through a course, whilst also
recording their quiz results and maintaining a record of
completion.

New on-demand formats, such as curated collections and
learning pathways provide trainees with a more structured
approach to learning for a particular topic. Created from a
mixture of on-demand tutorials and webinars, alongside ex-
cerpts of video and practical exercises from live courses, this
guided learning is further reinforced through the EMBL-
EBI webinar programme, with the addition of expert panel
Q&A sessions.

A final piece of work has been to further improve the
FAIRness of EMBL-EBI live training materials, by creating
an openly accessible training material set for each course.
Materials have always been available via FTP post course,

but their reuse was limited as the context of the sessions was
often lost. EMBL-EBI new course material sets provide a
complete overview of each course and allow for easier reuse
by both trainers and trainees.

Finally, EMBL-EBI have set up a trainer-specific space
to further build capacity for bioinformatics trainers and ed-
ucators and support the teaching of EMBL-EBI resources
by external trainers using expert written materials.

CONCLUSION

As the world and the scientific community recover from the
ongoing COVID-19 pandemic, there is ample opportunity
to reflect on the importance of open science and open data.
Open data resources such as those at the EMBL-EBI need
to continuously evolve and engage with their user commu-
nities to meet changing scientific needs. Many of the devel-
opments described above reflect the emerging need to pre-
pare data resources for use in AI applications, which are
already starting to transform many scientific fields. Build-
ing for AI is reflected in the collection and curation of ref-
erence datasets, and the development of community-driven
data standards and guidelines that support the reuse of data
beyond the bounds of the experiment that generated them.

The transformative potential of AI applications has been
amply demonstrated with DeepMind’s development of Al-
phaFold, which predicted protein structure for almost all
200M protein sequences in UniProt, and lead to myriad
scientific uses of this new data across many different fields.
The data resources at EMBL-EBI can catalyse such devel-
opments because they offer sustainable, open availability
of high-quality data resources, collected in some cases over
decades. Our aim is for EMBL-EBI data resources to keep
providing the foundations for tools and research insights
that transform fields across the life sciences.

DATA AVAILABILITY

All of the data resources described above are freely available
to access and reuse at https://www.ebi.ac.uk/services.

https://www.ebi.ac.uk/services
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44. Zahoránszky-Kőhalmi,G., Sheils,T. and Oprea,T.I. (2020)
SmartGraph: a network pharmacology investigation platform. J.
Cheminform., 12, 5.

45. Dafniet,B., Cerisier,N., Boezio,B., Clary,A., Ducrot,P., Dorval,T.,
Gohier,A., Brown,D., Audouze,K. and Taboureau,O. (2021)
Development of a chemogenomics library for phenotypic screening.
J. Cheminform., 13, 91.

46. Sarkans,U., Chiu,W., Collinson,L., Darrow,M.C., Ellenberg,J.,
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