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ABSTRACT

The MGnify platform (https://www.ebi.ac.uk/
metagenomics) facilitates the assembly, analy-
sis and archiving of microbiome-derived nucleic
acid sequences. The platform provides access to
taxonomic assignments and functional annotations
for nearly half a million analyses covering metabar-
coding, metatranscriptomic, and metagenomic
datasets, which are derived from a wide range
of different environments. Over the past 3 years,
MGnify has not only grown in terms of the number of
datasets contained but also increased the breadth
of analyses provided, such as the analysis of
long-read sequences. The MGnify protein database
now exceeds 2.4 billion non-redundant sequences
predicted from metagenomic assemblies. This col-
lection is now organised into a relational database
making it possible to understand the genomic
context of the protein through navigation back to the
source assembly and sample metadata, marking a
major improvement. To extend beyond the functional
annotations already provided in MGnify, we have
applied deep learning-based annotation methods.
The technology underlying MGnify’s Application
Programming Interface (API) and website has been
upgraded, and we have enabled the ability to perform
downstream analysis of the MGnify data through the
introduction of a coupled Jupyter Lab environment.

GRAPHICAL ABSTRACT

INTRODUCTION

The number of investigations characterising microbial com-
munities continues to grow at a rapid pace as increas-
ingly diverse biomes (environments) are sampled and anal-
ysed in greater depth using modern nucleic acid sequenc-
ing technologies. This expansion represents various con-
tinually evolving methodologies ranging from DNA-based
metabarcoding and metagenomic approaches to RNA-
based metatranscriptomics, along with protein and metabo-
lite profiling of communities through metaproteomics and
metabolomics, respectively (1). MGnify is a centralised
hub for the discovery of meta’omics sequence data and
the provision of harmonised analysis, facilitating compara-
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tive analyses of datasets originating from different projects.
MGnify’s growth has mirrored the developments occurring
in the wider research area. For instance, microbiome sam-
pling is heavily skewed towards common biomes with a long
tail of less frequently sampled environments. Currently, 297
different biomes are represented in the database with over
half of MGnify’s analyses originating from merely nine of
them: human-faecal, -oral, -digestive system, -skin, and un-
specified human; marine; soil; mammalian digestive sys-
tems; and mixed biome samples. However, as the range of
sampled biomes continues to expand, coverage has con-
comitantly increased, which is reflected by nine distinct new
biomes hosted in MGnify previously absent at the time of
our last update (2): human hindgut; aquatic hypersaline mi-
crobial mats; mammalian foregut; arthropoda hindgut and
oral; lab enriched anaerobic media; rhizoplane soil; annel-
ida digestive system; and composting wood. In parallel, 53
biomes have more than doubled in their analyses count.

MGnify employs standardised (versioned) analysis
pipelines allowing results to be interpreted in con-
text with other datasets. All tools and pipelines are
open and freely available within public repositories
(https://github.com/EBI-Metagenomics) and all work-
flows are formally described in Common Workflow
Language (CWL, https://www.commonwl.org/ (3))
and are gradually being deposited in WorkflowHub
(https://workflowhub.eu/projects/9 (4)) to support easy
reuse within the research community. MGnify works
closely with the European Nucleotide Archive (ENA),
which archives sample metadata, sequence reads, and
assemblies. Researchers can submit pre-publication data to
the ENA and request the assembly and/or analysis of those
data by MGnify with results subsequently provided within
the user’s own private area of MGnify. Users may also
request the assembly and/or (re-)analysis of any relevant
public dataset available in the International Nucleotide
Sequence Database Collaboration (INSDC) initiative.

Beyond data growth, both the field of microbiome re-
search and MGnify as a resource are expanding into a new
era of microbial coverage. Approaches for the recovery of
genomes from environmental samples first appeared in 2004
(5), with reference-free approaches being developed in the
following decade (6). Since then there has been a paradigm
shift, as a result of the now routine large-scale recovery
of genomes from metagenomes (so called metagenome as-
sembled genomes, MAGs) (7,8). This approach has been
applied extensively in the most-sampled biome, namely
the human gut, where the Unified Human Gastrointesti-
nal Genome catalogue provided draft genomes for 4644
prokaryotic species of which 70% lacked cultured represen-
tative genomes (9).

Herein, we describe major recent updates to the MG-
nify resource aimed at streamlining access to the MGnify
analyses and derived data products. These updates include
improvements to the website and associated Application
Programming Interface (API), the provision of enhanced
analysis options directly from the web pages, and a sub-
stantial overhaul of the MGnify protein database com-
bined with a new release comprising more than 2.4 bil-
lion non-redundant sequences. Together, these updates ex-
pand the utility of the MGnify resource by improving inter-
connections between data products, and enhancing access

to both MGnify-generated results and user-defined down-
stream analyses.

Expansion of data in MGnify

Since our last update (2), we have continued to expand
the content of MGnify through a combination of user-
requested analyses and analyses of targeted public datasets.
Since we can achieve substantially richer functional annota-
tions with assembled datasets compared to raw read anal-
ysis, our primary focus has been to provide assembly and
analysis of metagenomic and metatranscriptomic datasets.
In addition to the improved protein predictions from as-
sembled sequences, they also allow us to provide higher-
level annotations, such as pathway predictions (KEGG
(10), Genome Properties (11)) and prediction of biosyn-
thetic gene clusters (BGC) using antiSMASH (12) and our
inhouse tool for BGC prediction (https://github.com/Finn-
Lab/SanntiS). We remain committed in ensuring sequence
data is appropriately archived as well as analysed, so all as-
sembled public datasets are also submitted to the ENA as
a linked third party annotation. The provision of assembly
as a service by MGnify allows users without the sufficient
compute resources to undertake this form of analysis, thus
democratising the process of metagenomic assembly for the
community. We work closely with the ENA and continually
seek to improve the data flow between the two resources.
Notably, we have developed a private brokering procedure
that has streamlined the process of submitting private/pre-
publication assemblies on behalf of the data owner into
their own account. This significantly reduces effort on the
part of the submitter who previously had to fetch the assem-
blies from a file sharing system, and then upload the data
to the ENA themselves. The timescale for assembly of data
(both public and private) is highly variable as it depends on
factors such as the microbial diversity and sequencing depth
of the sample, the number of concurrent requests, as well as
the availability of shared compute capacity. As such, assem-
blies take weeks rather than days to produce and analyse
via MGnify. However, we endeavour to keep users updated
throughout the process of assembly and analysis.

The prioritisation of metagenomics assembly cou-
pled with their corresponding submission as primary
metagenomes to the ENA has resulted in a further 33K
MGnify generated assemblies in the last three years (see
Figure 1). In fact, the vast majority of assembled metage-
nomics raw reads in the ENA (44 758 out of 50 705, 88%)
have an assembly generated by MGnify. While a substan-
tial portion of raw metagenomic data currently available
remains unassembled, several reasons explain why an as-
sociated assembly may not exist: (a) environmental sam-
ples (such as soil and aquatic) often represent particularly
diverse environments and consequently, can be extremely
memory intensive to assemble with standard algorithms;
(b) there will be cases where the sequencing coverage of a
particular sample is simply too low to allow successful as-
sembly, further compounding the memory issues; (c) some
samples are mislabelled and actually represent metabarcod-
ing datasets.

Alongside the analysis of assembled datasets, we continue
to provide analysis of amplicon (also termed metabarcod-
ing) datasets, as these still represent a substantial portion
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Figure 1. The number of assembled metagenomics datasets in the ENA
and MGnify over time. MGnify launched assembly and analysis of assem-
blies in 2017, however counts of primary assemblies submitted to the ENA
are only available from 2018 due to a change in recording. Until 1 August
2022, the MGnify team has generated and submitted an assembly for 88%
of all primary assembled metagenomic datasets in the ENA.

of the available microbiome data. Currently, MGnify con-
tains 382 093 amplicon analyses, which represent 10% of the
total amplicon data available in the ENA. Overall MGnify
contains 475 390 analyses that pertain to 343 695 distinct
samples, arranged into 4601 studies.

Support for long-read sequencing technologies

Although the vast majority of metagenomic data is still
generated using short-read technologies (predominantly Il-
lumina), long-read sequencing data from PacBio and Ox-
ford Nanopore Technologies sequencing platforms has be-
come increasingly available. Therefore, we have expanded
our pipelines to better support the assembly and analysis
of both long-read only datasets and hybrid datasets, i.e.
where the same sample has been sequenced using both a
long- and short-read approach. As with all the MGnify
analysis workflows, the pipeline providing support for long-
read sequencing technologies is formally described in CWL
and available within the MGnify GitHub repository (https:
//github.com/EBI-Metagenomics/mgnify-lr). Users can re-
quest long-read or hybrid assembly of existing datasets via
the same mechanism used for short-read analysis (i.e. by
generating an analysis request from the MGnify website)
but are prompted to explicitly highlight the relevant datasets
required for hybrid assemblies.

Enrichment of microbiome metadata

One of the major limiting factors in the interpretation of mi-
crobiome data and analysis is the availability of descriptive
metadata. Comprehensive metadata describing the sam-
ple can be inconsistently submitted alongside the sequence
record and therefore, crucial context for interpretation may
be lacking. In many cases, additional metadata can be found
associated with the sample in the free text of a publication.
Recent advances in text mining have enabled the extraction
of relevant metadata terms from the free text of publica-

tions and the deposition of those metadata into annota-
tion databases. Nassar et al. (13) describe the extraction of
metadata from 19 900 metagenomic studies present in MG-
nify. These annotations––describing metadata, such as geo-
graphic locations and sequencing methods––are now shown
within the MGnify website, alongside the structured meta-
data associated with samples and studies in the ENA (see
Figure 2). Of the 1746 publications in MGnify, 1398 have
annotations extracted from publications. These are particu-
larly useful when structured sample metadata is missing: for
example, MGnify contains 1120 agricultural soil samples
lacking location metadata, but 143 of these samples (13%)
now show geographic annotations on the MGnify website
through their linked publications.

We have supplemented this source of metadata with
that from the Contextual Data Clearing House (CDCH,
https://www.ebi.ac.uk/ena/clearinghouse/api/). The CDCH
enables curation of sample metadata by correcting and
adding records. A curation is a single attribute:value pair,
which is associated with a sample, sequence, or study, and
supported by an evidence assertion. For example, the sam-
ple DRS026550 is missing geolocation data in the ENA
but a CDCH curation lists Country:Japan as evidenced
by an author statement. Like the publication annotations,
these CDCH curations are now shown alongside exist-
ing metadata from the ENA when viewing a sample in
MGnify.

Latest release of the MGnify protein database

The MGnify protein database is a resource comprising all
protein sequences derived from the analyses of assembled
data in MGnify. This resource has been used for multi-
ple streams of ongoing research. Examples include: (i) the
protein database was cited as a crucial source of addi-
tional sequences for multiple sequence alignments (MSAs)
used by AlphaFold2 (14), with sequences from metage-
nomic sources enriching poorly represented protein fami-
lies in more classical protein databases; (ii) Eiamthong et al.
(15) successfully mined the protein database in search of
novel polyethylene terephthalate (PET) hydrolases using se-
quence homology to a known PETase; (iii) Inoue et al. (16)
used the sequence set to determine the relationship between
specific clades of metabolically important Ni-containing
carbon monoxide dehydrogenases (Ni-CODHs) and their
biome distribution and (iv) Kazlauskas et al. (17) utilised
the protein database in their analysis of the diversity and
evolution of B-family DNA polymerases.

Since its initial release in 2017, the MGnify protein se-
quence set has grown steadily over the years in line with the
growth of MGnify assemblies. To overcome the challenges
associated with the processes used to collate the sequence
set, we have completely redesigned the protein database and
the process that is used to generate it. As part of the reim-
plementation process, each non-redundant protein is now
assigned a unique identifier with the prefix MGYP, instead
of the sha256 digest that was previously used as an ac-
cession. Contigs are now also accessioned with the prefix
MGYC. Internally, the flat files have been replaced with a
MySQL database that stores information and relationships
between studies, assemblies, contigs, proteins, protein meta-
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Figure 2. A sample in MGnify that lacks structured geolocation information in the ENA. However a Contextual Data Clearing House curation is available,
listing the country of origin as Japan.

Figure 3. Schematic of the protein database. Proteins are predicted on
each contig (MGYC) using Prodigal (18) and FragGeneScan (19). The se-
quence and metadata of unique proteins (MGYP) are stored in a MySQL
database. Annotations from Pfam (23) and ProtENN2 (Bileschi et al., in
prep., (24)) for each protein are also stored.

data, and annotations (see Figure 3). The implementation
of this protein and contig accessioning within the protein
database represents the first step in adopting these iden-
tifiers throughout the MGnify resource, providing a refer-
ence framework for researchers in reporting and interpret-
ing metagenomic analysis results.

These developments allow us to better address some of
the requests posed by MGnify users. Specifically, common
requests have been to: (i) identify the specific set of studies,
assemblies and even contigs that a unique protein had been
identified in; (ii) retrieve the genomic contexts for a given
protein. The reimplementation of the protein database in-
volved a programme of retrofitting older assemblies already
included in previous releases, analysed using MGnify’s v4.1
and v5 analysis pipelines, provision of the metadata links for
this study, provision of assembly and genomic context, all

while still maintaining the unique identifiers they had been
assigned in previous releases. For each protein, the process
populates a metadata table that stores the original contig
and assembly identifiers, the protein prediction tool (Prodi-
gal (18) or FragGeneScan (19)), whether the protein is a full
length or partial sequence (based on the gene structure), and
the position of the protein on the contig (start position, end
position, and strand).

The current release of the MGnify protein database com-
prises 2 477 479 951 protein sequences. At each release this
set of sequences is clustered using Linclust, part of the MM-
seqs2 package (20), employing coverage and identity thresh-
olds of 0.90, resulting in a current set of 623 796 864 clusters.
The clusters range in size, with the largest containing 29 209
sequences, but a substantial portion (72%, 446 078 728) are
clusters of a single sequence (singletons). The clustering ap-
proach is unidirectional, meaning that similar sequences are
grouped together even if one sequence is a partial prediction
of another (i.e. a partial prediction from the same gene as a
full length sequence would be grouped together). Notably,
only 51 749 298 (12%) of the singletons are predicted to be
full-length sequences, and thus singleton clusters of partial
predicted protein sequences should perhaps be treated with
some caution. Regardless, over 2 billion sequences are still
contained within those clusters containing two or more se-
quences, with a mean cluster size of 11, indicating that the
majority of proteins (or highly similar sequences) have been
seen more than once.

In previous releases of the protein database, we also clus-
tered the metagenomics derived sequences with UniPro-
tKB (21,22) to calculate the overlap between the two re-
sources. However, due to the continually increasing num-
ber of protein sequences in MGnify and the low numbers
of clusters that contained a UniProt sequence, this func-
tionality has been removed. For each cluster, we anno-
tated the cluster representative sequences with Pfam (23)
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Figure 4. The access options for users of MGnify’s web resources: website, API, and notebooks server. The redesigned website now includes links to
programmatically access datasets (in this example, a study) using the API. A conceptual flow for launching an R Notebook is shown: following a deep
link from the website into the notebook server, and using one of the example code notebooks. In this comparative metagenomics example available on the
server, taxonomic diversity is being compared at different water depths using multidimensional scaling (MDS) and a variety of distance metrics.

using HMMER (http://hmmer.org) with Pfam gathering
thresholds (i.e. using --cut-ga parameter in HMMER),
which is the curated Pfam cutoff score that represents a
significant match between the Pfam model and the se-
quence. This provided an annotation for 285 839 621 of
the 623 796 864 cluster representative sequences, indicating
about half of all clusters contain some form of functional
annotation.

Extending protein annotations

As part of a collaboration with Google Research, we also
provide in this release annotations produced by ProtENN2
(Bileschi et al., in prep., (24)), which uses convolutional
neural networks to annotate each protein residue in the
database with a Pfam family (or clan) label that is then
converted into domain calls. Supplementing the more clas-
sical Pfam annotations assigned by HMMER with those
provided by ProtENN2 increases the overall number of se-
quences we can label with a functional annotation. Specifi-
cally, ProtENN2 provided 2.24 billion annotations on 1.46
billion sequences. Our estimates indicate that this reflects
annotations for an additional 200 million proteins that lack
any annotation using Pfam (gathering thresholds) and HM-
MER, which in turn provides annotations for a further
44 million cluster representatives in the protein database.
Many of these ProtENN2 annotations are found to be close
yet below the Pfam gathering thresholds when using HM-
MER, indicating that a similar signal is detected by both
approaches. Given that 38.4 million cluster representatives
receive an annotation solely from classical Pfam gathering
thresholds, and not from ProtENN2, it is worth noting that
we are not indicating that one approach is better than an-
other, simply that the union of the annotations is more com-
prehensive.

API and website improvements

MGnify’s traditional web interface allows users to browse
individual datasets and is complemented by an API to sup-
port the increasing demand for programmatic access to
large sections of the data housed in MGnify. We have re-
cently improved programmatic access on several fronts with
a view to supporting easier access to the data for life science
users (25), see Figure 4.

The MGnify API is built on top of the Django web frame-
work. Upgrading from the Django 2 series to Django 3.2
has enabled a cascade of other updates. Notably, the trans-
lation layer between the Object Relational Mapping and
the API surface is more compliant with our chosen REST-
like API specification, namely JSON:API. The formal API
specification is now provided according to the OpenAPI
Specification (OAS) version 3, making it easier to use stan-
dard libraries to access the MGnify API. Many smaller
changes to support API performance have also been made,
for example, to pagination, ordering, query optimisation,
and relationship rendering.

Two of MGnify’s microservice APIs that provide dis-
tinct additional functionality (searching across the MAG
catalogues in MGnify by sequence fragment using COBS
(26) and by MAG using Sourmash (27)) are now prox-
ied through the main MGnify API, to improve consistency
and discoverability. In addition to simplifying our code-
bases, these microservices can now also be viewed and called
via the Browsable API––the self-documenting, interactive
HTML rendering of the API endpoints (https://www.ebi.ac.
uk/metagenomics/api). Based on the Django Rest Frame-
work, the Browsable API itself has been upgraded so that
the filtering options for each API endpoint are rendered in
the user interface. This allows users to interactively find the
API URL for a query (e.g. samples only from human host-
associated biomes) and copy it into a script.

https://www.ebi.ac.uk/metagenomics/api
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Alongside these API improvements, the web client has
been upgraded to modern web technologies and best prac-
tices. Together, these improvements significantly optimise
the most common actions, such as browsing a large dataset,
filtering it, and paging through the results.

The MGnify Notebooks Server

To facilitate easier and wider exploration of the MGnify
data than is possible via the website, we have introduced the
MGnify Notebooks Server (http://notebooks.mgnify.org)
as a hosted Jupyter Lab (28) environment. This environ-
ment allows users to read, write, and run code notebooks
in R and Python without installing software on their own
computer––the computational resources used are those of
the remote host server. To demonstrate the utility of the
notebooks and the API more broadly, prewritten notebooks
have been made available, which are editable and inter-
active examples of the recommended approaches to using
the MGnify API from R and Python scripts. The Note-
books Server is preinstalled with various data analysis pack-
ages, including MGnifyR (https://github.com/beadyallen/
MGnifyR), a package to facilitate consumption of the MG-
nify API in R scripts. MGnifyR wraps the MGnify API in
R functions and translates the API responses into formats
familiar to the R bioinformatics ecosystem, like Phyloseq
objects (29). There are example notebooks using these pack-
ages, as well as documenting their features. SIAMCAT (30)
is also installed, enabling users to explore machine learn-
ing based comparative metagenomics workflows. All of the
installed packages are available from public code reposito-
ries, facilitating installation in any other computing envi-
ronment.

We anticipate usage of the Notebooks Server in two
ways: (i) for short data retrieval and manipulation tasks
like concatenating paginated data into a long TSV file,
and (ii) as an interactive documentation resource for
users, who can then create their own software environ-
ments and scripts on their own compute resources. Fur-
thermore, the layers of this technology stack can also
be used independently. The notebooks can be down-
loaded from a public GitHub repository (https://github.
com/ebi-metagenomics/notebooks) and opened with any
Jupyter Lab installation. The Dockerfile can be built
anywhere or the image pulled from a public con-
tainer repository (https://quay.io/repository/microbiome-
informatics/emg-notebooks.dev). The entire stack, includ-
ing ShinyProxy can be installed on any computer or suitable
web server, ensuring easy and wide reuse by the community.

The Notebooks Server is integrated into the MGnify
website through deep links, i.e. URLs on the website that
launch an instance of the Notebooks Server in a particu-
lar state. For example, the programmatic access section of a
Study page on the MGnify website reveals deep links to R
and Python notebooks, with code that reads the details of
that specific study from the MGnify API ready for further
analysis (see Figure 4).

We intend to add further content to the Notebooks
Server, including coverage of all resource types in MGnify
as well as analysis workflows sourced from our user com-
munity.

DISCUSSION

MGnify has recorded continuous growth and development
since our last update. Nevertheless, there is still a gulf be-
tween the number of analysed assembled datasets in MG-
nify and the number of raw read (‘assemble-able’) metage-
nomic datasets in the ENA. As discussed previously, this
can be due to multiple reasons since not all datasets are
tractable for assembly, be it through lack of coverage or an
inability to assemble the dataset due to memory constraints.
As the number of metagenomic datasets being generated
and deposited in sequence archives continues to grow at
rapid speed, we are lagging behind in our attempts to assem-
ble them. For a subset of these we have attempted but failed
to generate a primary assembly. In the interests of open data
and a willingness to report a negative result, we are evalu-
ating approaches on how best to indicate when we have at-
tempted assembly without success, the best forum to store
this information, as well as to define what associated infor-
mation would be useful to capture. For instance, record-
ing the provenance of the assembly pipeline (including all
versioned tools) previously tried along with the reasons for
failure (e.g. maximum memory allocation exceeded) would
help identify specific datasets that are tractable for future
assembly attempts, provided specific improvements are car-
ried out to the pipeline.

It is also evident from a survey of the literature that
many researchers are increasingly assembling metagenomic
datasets themselves. However, few of these assembled
metagenomes are ever deposited (and/or appropriately la-
belled for discoverability) in sequence repositories. To en-
courage data reuse, minimisation of unnecessary compute,
and establishment of data provenance, we strongly encour-
age researchers to submit their own primary assembled
metagenomes to INSDC.

Ultimately, the ability to bridge the gap while keeping
pace with the increasing volume of data being generated
and submitted far exceeds our existing computational re-
sources. Therefore, we will need to address this in the future
by devising new technical solutions while also sharing this
burden across the research community.

We are currently investigating the most appropriate ap-
proach to make the latest version of the protein database
with its substantially increased size easily available for users.
Availability in flat file format presents challenges due to
the sheer volume of data. Downloading the entire database
as flat files would likely be problematic for many users,
let alone having access to a server capable of hosting the
database. As such, we are investigating options to host the
database somewhere accessible, allowing users to query it
directly rather than download the content locally. In terms
of further enhancements to the annotations, we plan to pro-
vide Pfam/HMMER annotations on all sequences (rather
than just the cluster representatives) to complement the
ProtENN2-based Pfam annotations as described above.

DATA AVAILABILITY

MGnify services and data are freely available at (https:
//www.ebi.ac.uk/metagenomics/). MGnify pipelines are
freely available at (https://github.com/EBI-Metagenomics).
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Content is distributed under the EMBL-EBI Terms of Use
available at (https://www.ebi.ac.uk/about/terms-of-use), ex-
cept the MGnify protein database which has been made
available under a CC0 licence.

ACKNOWLEDGEMENTS

We are grateful to Jean-Karim Hériché (EMBL Cell Biol-
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