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ABSTRACT

MirDIP is a well-established database that aggre-
gates microRNA-gene human interactions from mul-
tiple databases to increase coverage, reduce bias,
and improve usability by providing an integrated
score proportional to the probability of the interac-
tion occurring. In version 5.2, we removed eight out-
dated resources, added a new resource (miRNATIP),
and ran five prediction algorithms for miRBase and
mirGeneDB. In total, mirDIP 5.2 includes 46 364 047
predictions for 27 936 genes and 2734 microRNAs,
making it the first database to provide interactions
using data from mirGeneDB. Moreover, we curated
and integrated 32 497 novel microRNAs from 14 pub-
lications to accelerate the use of these novel data.
In this release, we also extend the content and func-
tionality of mirDIP by associating contexts with mi-
croRNAs, genes, and microRNA–gene interactions.
We collected and processed microRNA and gene ex-
pression data from 20 resources and acquired in-
formation on 330 tissue and disease contexts for
2657 microRNAs, 27 576 genes and 123 651 910
gene–microRNA–tissue interactions. Finally, we im-
proved the usability of mirDIP by enabling the user
to search the database using precursor IDs, and we
integrated miRAnno, a network-based tool for iden-
tifying pathways linked to specific microRNAs. We
also provide a mirDIP API to facilitate access to its
integrated predictions. Updated mirDIP is available
at https://ophid.utoronto.ca/mirDIP.

INTRODUCTION

MicroRNAs (miRNAs) are short single stranded non-
coding RNAs that play an essential role in gene regulation
and thus are involved in a manifold of essential biological
processes. In close interaction with Argonaute family pro-
teins (AGO) (1), they form complex networks that regulate
cell differentiation, development and homeostasis (2). The
corresponding AGO–miRNA complexes are then guided
to complementary (fully or partially) messenger RNAs
(mRNAs) and can initiate regulatory mechanisms such
as mRNA degradation, mRNA destabilization or mRNA
deadenylation (3), as well as interference with mRNA trans-
lation (initiation, repression, elongation or termination) (4).
While their regulatory impact on various biological pro-
cesses, including development, cell growth and metabolism
have long been known, several studies showed a crucial in-
volvement in human pathologies, making them good candi-
dates to become clinical biomarkers or therapeutic targets.
For instance, a study by Hong et al. indicates regulatory
effects on bone formation and regeneration as well as an
involvement in inflammation, osteoporosis and periodonti-
tis, and provides potential for gene therapeutic approaches
involving miRNAs (5). A study by Kumar and Reddy re-
vealed that the miR-455-3p expression level in people with
Alzheimer’s disease is significantly higher than in healthy in-
dividuals, and thus could be used as a diagnostic biomarker
(6). MiRNAs can also be secreted, and exosomal miRNAs
have been studied in different diseases. For example, lung
exosomes are responsible for protective effects against stress
signals and the maintenance of lung homeostasis. Air con-
tamination and associated pulmonary diseases like asthma,
however, may alter such composition thereby leading to
dysregulation of exosomal miRNAs indicating a potential
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role as biomarker and therapeutic target in the pathogen-
esis of lung diseases (7). Similarly, miRNAs disrupted in a
smoking status-dependent manner have been shown to af-
fect lung cancer patient prognosis, representing biological
markers for lung cancer prognosis or therapeutic interven-
tion (8). Ultimately, miRNAs may also provide therapeutic
targets for viral infections such as SARS-CoV-2 or HCV by
interfering with the host-pathogen interactions (9).

These few examples demonstrate the importance of con-
text annotation, and particularly tissue- and disease-specific
miRNA expression analysis, which provide useful insights
into their involvement in not only molecular and cellular
processes, but more importantly, lead to identifying poten-
tial specific biomarkers and therapeutic targets (7). While a
panacea of research and few databases have gathered infor-
mation on the driving interactions amongst miRNAs and
genes or gene products (10), no resources gather compre-
hensive context-specific miRNA information or annotate
interactions with information such as tissue expression.

Similarly, it is important to keep the pace of the miRNAs
discovery and annotation, to enable researchers to study the
miRNA landscape with minimal biases and comprehensive
annotation. While in the past miRBase was used as a ref-
erence database for miRNA research, in recent years the
updates have become sparser, and some quality issues have
started to arise (11). Nonetheless, miRBase is still consid-
ered the database of reference for miRNAs nomenclature.

The presented update of mirDIP aggregates miRNA-
target interactions from multiple updated sources and sub-
sequently annotates them with the previously described
integrated score (12). MirDIP 5.2 also incorporates con-
text annotation such as normal and disease tissues for
miRNA-gene associations, which enables advanced anal-
ysis of condition-specific miRNA interaction networks. It
also includes interaction predictions for miRBase and mir-
GeneDB miRNAs, expanding the number and the quality
of miRNAs, as well as a curation of novel miRNAs from
RNAseq studies in the literature.

DATA COLLECTION

Predicted interactions

To improve reliability and coverage, we have removed eight
outdated resources (as they were not updated in over 10
years), and included miRNATIP (13). Moreover, we ran five
algorithms using miRNAs from miRBase v.22 (14) and mir-
GeneDB 2.0 (15), and 3’ UTRs downloaded from Ensembl
(May 2021, GRCh38 release 103): miranda (16), BiTarget-
ing (17), PITA (18), RNAhybrid (19) and MirMAP (20).
All the tools were run with default parameters, except for a
threshold of –22 kcal/mol applied to RNAhybrid to filter
interactions, as suggested in (21). More details about pa-
rameters used in each tool are listed in Supplementary Ma-
terial, as well as which tools were excluded or failed to run.
Any 3’-UTR sequences shorter than 25nt in length were
not considered. Due to the overlap between mirGeneDB
and miRBase, we ran only the miRNA sequences from mir-
GeneDB not linked to any miRBase ID (n = 78). For the
resources downloaded, miRNA IDs were converted to miR-
Base v. 22 using miRBaseConverter (version 1.14.0 (22))
in R 4.0.3 (23) and gene symbols to HGNC May 2021

Table 1. Summary of miRNA tissue expression datasets used. * indicates
datasets analyzed using Nextflow pipeline

PMID/GEO Author
Number of
miRNAs

Number of
contexts

2810844726 Panwar 2562 23
2942303231 Naccarati 1765 3
2998676732 Schulze 2539 6
GSE134949 Rahman 2506 2
2887796233 McCall 2499 47
2962504534 TCGA 2563 72
3414068035 Lorenzi* 2656 192
3455721936 Varghese* 2656 2
3374847937 Vladimirova* 2656 1
3116994938 Ge* 2656 4
GSE149084 GeW* 2656 2
3275999139 Mao* 2656 2
3190236940 Hua* 2656 2
GSE181922 Francisco* 2656 2
All 2656 301

update using HGNC symbol checker (24). Supplementary
Table S3 lists removed miRNA IDs. An integrated score
was calculated as previously described (25), using the 24
resources described above, but our benchmark and vali-
dation set included the updated version of NPinter (v. 4)
(26) and mirTarBase (v. 8) (27). Score classes are now as-
signed considering top percent targets per miRNA and not
per entire mirDIP, providing a more homogeneous num-
ber of targets per miRNA, independently from the bias
due to a miRNA being present in more resources (usually
caused by a miRNA being included in miRBase at an ear-
lier time). mirDIP 5.2 includes 46 364 047 predictions for
27 936 genes and 2734 miRNAs. mirDIP 5.2 is the only re-
source to provide interactions for the high-quality data from
mirGeneDB.

Novel miRNAs curation

A PubMed search was performed for ‘novel microRNA’
in Humans in December 2020, obtaining 210 papers. We
considered only articles written in English, releasing hu-
man data and including genomic coordinates for each novel
miRNA. We further explored papers not included in this
search but cited by the remaining papers. We curated 14
papers and mapped all genomic coordinates to hg38 using
the UCSC genome liftOver tool (http://genome.ucsc.edu/
cgi-bin/hgLiftOver) when they were mapped to previous ge-
nomic releases. All curated manuscripts and the number of
novel miRNAs collected are shown in Supplementary Ta-
ble S1.

MiRNA and gene context expression

To support users in analyzing miRNA and their inter-
actions within the context of a specific tissue or disease,
mirDIP 5.2 was extended with context information for miR-
NAs, genes, and corresponding miRNA-gene interactions.
We obtained paired datasets from studies that analyzed
both miRNA and mRNA expression of the same samples
across multiple contexts, as listed in Tables 1 and 2. To re-
duce the issues related to the aging of array annotations, es-
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Table 2. Summary of gene tissue expression datasets used. * indicates
datasets analyzed using Nextflow pipeline

PMID/GEO Dataset
Number of

genes
Number of

contexts

2648456931 GTEx 18 340 55
3040759127 IID 17 313 46
2962504532 TCGA 19 847 72
2998676733 Schulze 22 461 2
3414068034 Lorenzi 21 723 206
3455721935 Varghese* 24 379 2
3374847936 Vladimirova* 24 379 1
3116994937 Ge* 24 379 4
GSE149084 GeW* 24 379 2
3275999138 Mao* 24 379 2
GSE137308 Lyu* 24 379 2
GSE126448 Bongiovanni* 24 379 1
2340517539 Kim* 24 379 2
All 27 576 278

pecially for miRNAs, we focused only on high-throughput
micro- and mRNA sequencing datasets.

To this aim, the Gene Expression Omnibus (GEO) (22)
was queried on 3 March 2022 using the query:

‘Homo sapiens’[Organism] AND ‘Non-coding RNA
profiling by high throughput sequencing’[Filter] AND ‘Ex-
pression profiling by high throughput sequencing’[Filter]
AND ‘mirna-seq’[All Fields]

From GEO, we obtained 76 paired datasets that satisfied
our search criteria (see Figure 1A). In the subsequent selec-
tion process, 40 paired datasets were excluded because the
studies focused only on cells, cell lines, or treatment. Of the
remaining paired datasets, 22 were excluded due to a lack
of available data, non-human samples, or included too few
patients or context that did not map to a disease or tissue
ontology (e.g. ‘in vitro fertilization’). 14 remaining paired
datasets were submitted to the Nextflow pipelines for pro-
cessing, see Figures 1B and C, respectively. The raw data
sets were processed using the Nextflow pipeline RNA-seq v.
3.8.1 (https://nf-co.re/rnaseq/3.8.1) for RNA-seq data (Fig-
ure 1C) and smRNA-seq v. 2.0.0 (https://nf-co.re/smrnaseq)
for miRNA-seq data (Figure 1B) on a server running the
CentOS 7 operating system with 40 threads with hyper-
threading available on the 20 cores. Details on packages
and versions used for processing in these pipelines is de-
scribed in Supplementary Material. Eight of the 14 datasets
were successfully processed in smRNA-seq and five of the
14 corresponding mRNAs in mRNA-seq, while the remain-
ing failed to run. In parallel, we collected data from datasets
that included multiple tissues, even if they studied only miR-
NAs. These datasets were derived from other databases of
miRNA tissue expression. More details on all the datasets
are available in Supplementary Table S2.

For the datasets not run through the Nextflow pipeline,
pre-processed data were downloaded from GEO, except
for:

• The Panwar dataset was obtained through its R package
miRmine (v1.12.0) (28).

• TCGA (clinical, mRNA, and miRNA) was downloaded
from https://gdac.broadinstitute.org.

• GTEx was downloaded from https://www.gtexportal.
org/home/datasets.

• IID has been obtained from http://ophid.utoronto.ca/iid
(29).

All miRNA datasets used to extract context infor-
mation included in mirDIP v.5.2 are listed in Table 2.
Each dataset was post-processed separately to ensure
that all miRNAs were updated to miRBase v.22 IDs and
that all tissue/cell type/disease names were consistent
across the datasets. miRNA identifiers were updated using
miRBaseConverter (v1.14.0) in R 4.0.3 when possible;
otherwise, they were removed (Supplementary Table
S4). Moreover, all gene expression datasets, as listed in
Table 2, were post-processed to ensure that all gene sym-
bols were consistent with the HGNC-approved symbols
(https://www.genenames.org/tools/multi-symbol-checker/).
To ensure term consistency, we used the Disease Ontology
(30) and BRENDA Tissue Ontology (31) to standardize
context names. Out of the 1250 relationships present
in the created ontology, 53% were obtained through
these two ontologies. When a term was not present, its
relationships were identified through other ontologies
in the Ontology Lookup Service (OLS)––namely FMA
(http://si.washington.edu/projects/fma), NCIT (https:
//github.com/NCI-Thesaurus/thesaurus-obo-edition),
UBERON (32) and OBA (https://github.com/
obophenotype/bio-attribute-ontology), accounting for
20% of the relationships. Finally, we curated the re-
maining 27% of relationships to map them to terms
already included. ACH, ZA, GKAE mapped the terms
and CP verified them. Contexts corresponding to cell
lines and qualifiers outside normal and disease (for ex-
ample, developmental stage) were not included in this
release.

All miRNA expression information was converted into
binary values. For smRNA-Seq datasets, a miRNA was
considered ‘expressed’ in a context if any of the replicates
for the context had the miRNA expressed (i.e. had a non-
zero expression value). Moreover, to enable a more fine-
grained analysis of miRNA abundance, miRNA expres-
sion values were quantile-normalized (see mirDIP-Tissues
(scale)). Therefore, for each sample, any miRNA with an ex-
pression value of zero remained so. The remaining non-zero
values were converted to a number between one and five that
represented which of the 20th percentiles of non-zero val-
ues it corresponded to. The percentiles were taken from the
non-zero values in order to account for the varying fraction
of zero values (sometimes up to 80%) among the samples.
Then for each context, its quantile-normalized values were
averaged per miRNA (biological replicates, for instance).
Any miRNA ID-sequence pair that appeared multiple times
in a dataset (as a result of redundancy in precursor-to-
mature ID mappings) was merged prior to transformation.
Likewise, the gene expression datasets were post-processed
and transformed to binary values in the same procedure as
previously described for miRNA expression. The datasets
are listed in Table 2.

Finally, miRNA and gene expression data and the asso-
ciated context information were integrated into the mirDIP
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Figure 1. Overview of miRNA and gene expression dataset processing. Yellow icons refer to downloaded datasets, while blue icons to datasets processed
in house. Created with BioRender.com

database. To support variety of workflows, mirDIP sup-
ports multiple types of queries:

1. The Search Tissues via miRNAs and miRNAs (scale)
option enables the user to directly search for binary
or quantile-normalized miRNA context association, re-
spectively. The information from the selected datasets is
combined to give a score for each miRNA in each con-
text that represents how well supported the miRNA’s
expression is in that context. For a query on bi-
nary values, the score of a miRNA in a context is
the number of selected sources in which the miRNA
is expressed in the context divided by the number
of selected sources that measure the miRNA in the
context.

2. The Search Tissues and interactions option integrates
both miRNA and gene contexts with the correspond-
ing mirDIP interaction information and thus selects
context-specific interactions.

3. The Tissue Matrix option allows querying of both
context-specific miRNA and interactions and presents
the results in an accumulated matrix that contains one
column per tissue.

For each miRNA-gene interaction in the mirDIP
database, the context is scored based on information about
both miRNA and gene expression being measured across
multiple datasets. A value of 1 indicates that both entities’
expression is unanimous among their respective sources (i.e.
all the datasets that measured the gene and miRNA in that
context), while value 0 means that at least one of the two
molecules has no expression in the context amongst all its
sources.

Figure 2 summarizes data collection.

DATABASE CONTENT

Novel features

Several functionalities have been added to the database: a
researcher can now input precursor IDs and retrieve pre-
dicted interactions for their corresponding mature miR-
NAs. This is particularly useful due to the increasing
amount of high-throughput data providing precursor-based
data (and the lack of online tools to translate a precursor ID
to its mature counterparts).

mirDIP 5.2 includes an API that allows users to query
the database programmatically using R, Python or Java, to
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Figure 2. Graphical overview of mirDIP v5.2 content, context annotation and novel miRNA curation. Created with BioRender.com.

transform the data as needed and into their favorite format,
and to include the results in their pipelines for further analy-
ses. The database also integrates miRAnno (33), a tool that
measures the association between miRNAs and individual
pathways. mirDIP data can be downloaded as tab-separated
text files, FASTA and GFF. The ontology network can be
downloaded in NAViGaTOR n4n format.

Updated content: improved coverage

Novel miRNAs. There is currently no resource that system-
atically collects, annotates, and makes available RNAseq
data for discovering novel, often tissue-specific miRNAs.
miRCarta (34) allows the search for overlap of a miRNA
sequence to miRNAs that users analyzed in miRMaster or
that were published in (35) and (36), but does not allow
users to gather all miRNAs present in one publication (or
miRMaster dataset). As miRBase no longer provides regu-
lar new releases, the gap between the set of curated miR-
NAs and more recently discovered novel miRNAs is in-
creasing. To address this gap, we curated and collected 32
497 novel miRNAs (28 557 unique sequences) from 14 pub-
lications and provide the user with the possibility to search
for specific sequences or complete studies. We also pro-
vide sequence overlap among novel miRNAs and between
novel and known miRNAs (both from miRBase and mir-
GeneDB). 680 of the novel miRNA sequences are already
present in either one of the databases of known miRNAs
(Figure 3A).

For example, a study by Ali et al. (37) identified 13
novel miRNAs. The authors looked for overlap between

their novel miRNAs and miRNAs identified by Londin
et al. (35), and 4 overlapping miRNAs were identified.
Looking for the sequences of the same 13 miRNAs in
mirDIP, it is now possible to quickly identify the same over-
lap across multiple studies. In this case, 7 overlapping miR-
NAs were identified, 3 of which are present in 5, 6 and 7
other papers, as shown in Figure 3B, making these miR-
NAs quite interesting for further curation in databases like
miRbase, and prioritization for research.

Novel content: added biological context

miRNA and gene context. Scored miRNA–gene predic-
tions are fundamental to help researchers to prioritize inter-
actions to validate, as well as to identify molecular functions
linked to the sets of gene targets for specific miRNAs of in-
terest. Nonetheless, not all miRNAs are expressed equally
across diverse tissues (similar to all other molecules, from
genes to proteins to other non-coding RNAs). To address
this, we collected miRNA expression for 301 tissue/cell
type and disease contexts, with 209 different normal tis-
sues and cell types (at varying levels of tissue specificity)
and 92 different disease conditions. Combined, mirDIP
v.5.2 tissue annotation includes 2656 miRNA IDs, that can
be queried both as binary (presence/absence) or as scaled
classes of expression, see Table 1 for details on the data
origin.

Figure 4 shows the distribution of miRNAs expressed per
tissue or disease and the number of tissues or diseases where
a set of miRNAs is expressed, for canonical miRNAs. Inter-
estingly, in disease conditions miRNAs appear tissue spe-
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Figure 3. (A) Overlap between unique novel miRNA sequences and sequences of known miRNAs (derived from miRBase or mirGeneDB). (B). Overlap
between novel miRNA sequences in Ali et al. and sequences of novel miRNAs in other curated papers.

Figure 4. Number of miRNAs expressed in a set of tissues (top, A and B) and number of tissues per set of miRNAs (bottom, C and D) in normal tissues
(right) and disease conditions (left). The plot was obtained using only canonical miRNAs and binary values.
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Figure 5. (A) Classes of expression for hsa-miR-92a-3p in disease conditions and normal tissues. (B). Overlap of expressed miRNAs among normal brain,
normal lung and lung cancer.

cific, and only a few miRNAs are expressed across multiple
tissues, while in normal tissues more miRNAs are expressed
across tissues. Moreover, mirDIP v.5.2 integrates gene ex-
pression for 278 tissue/cell type and disease contexts, com-
prising 188 different normal tissues and cell types (at vary-
ing levels of tissue specificity) and 90 different disease con-
ditions for 27 576 genes.

In disease context, miRNAs are expressed in as little as
1 to a maximum of 92 contexts, while in normal tissues the
range expands from 1 to 206. Conversely, while in disease
the different contexts express a number of microRNAs that
varies from 183 to 2529 miRNAs, in normal it varies from
1 to 2526.

For example, hsa-miR-92a-3p is the miRNA expressed
both in most normal tissues (237) and across disease condi-
tions (93), and it has notably been linked to multiple differ-
ent diseases (90 according to HMDD (38)), suggesting that,
rather than its presence/absence, smaller changes in its ex-
pression level could have a dramatic effect on the miRNA’s
downstream effectors. Looking at the classes of expression
for this miRNA, it is apparent that in disease conditions,
the miRNA tends to be less expressed than in normal tis-
sues (Figure 5A).

Akin to miRNA context-specific expression, it is impor-
tant to know if the miRNA’s target gene is expressed in the
relevant tissue or disease. For example, a researcher could be
interested in investigating whether specific miRNAs could
be involved in brain metastasis due to lung cancer. Hypoth-
esizing that the development of the brain metastasis is due
to the interaction between the metastatic cancer cells and
normal brain environment (39), a mirDIP search would fo-
cus on miRNAs expressed in lung cancer and normal brain
but not in normal lung. Searching for miRNAs expressed
in such conditions, the researcher can see that 31 miRNAs
are common between lung cancer and normal brain, but
not expressed in normal lung (Figure 5B). Using a ‘very
high’ threshold, 3,951 genes are found to be targeted by
these 31 miRNAs. Two genes (MECP2 and ONECUT2)
are targeted by 9 out of 31 miRNAs, while the remaining
genes are targeted by fewer miRNAs. MECP2 is a tran-
scriptional regulator that is frequently amplified as an onco-
gene in many cancers, including lung cancer (40). It has

been demonstrated that this overexpression supports inva-
sion and metastasis through SPI1 and ZEB1 (41). More-
over, MECP2 is well known for its role in regulating post-
natal brain development, and its involvement in several
neurodevelopmental disorders (42). Looking at the interac-
tions between the miRNAs and MECP2, the researcher can
see that all 9 interactions are common between lung can-
cer and normal brain, providing an interesting set to fur-
ther explore in the context of brain metastasis from lung
cancer, with a specific computational model to use as a
guide.

CONCLUSION

mirDIP 5.2 provides increased coverage, and richer annota-
tion of, miRNA-target predictions. Our predictions include
data precalculated from databases as well as data run in
house using prediction specific algorithms. The tools publi-
cation or update span different years (as shown in Supple-
mentary Table S5), and we tried to include data from more
classic but well-maintained tools to databases using more
recent methods (well reviewed in (43)). Database usability
is improved by enabling queries with precursor IDs, provid-
ing tissue- and disease-specific miRNA-gene target associa-
tions, supporting analytical workflows through an API, and
providing more accurate miRNA-pathway annotation with
miRAnno.

The inclusion of high-quality known data from mir-
GeneDB and curated data from published novel miRNAs
provides different types of miRNAs, enabling researchers
to answer broader types of questions with less bias. The in-
tegration of tissue and disease expression annotations for
miRNAs and their interactions enables biologically relevant
translational research.

DATA AVAILABILITY

mirDIP 5.2 is publicly available at https://ophid.utoronto.
ca/mirDIP. Code to replicate our data is available at https:
//github.com/ijlab/mirdip.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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