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ABSTRACT

In recent years, the explosive growth of spatial tech-
nologies has enabled the characterization of spa-
tial heterogeneity of tissue architectures. Compared
to traditional sequencing, spatial transcriptomics re-
serves the spatial information of each captured loca-
tion and provides novel insights into diverse spatially
related biological contexts. Even though two spatial
transcriptomics databases exist, they provide limited
analytical information. Information such as spatial
heterogeneity of genes and cells, cell-cell commu-
nication activities in space, and the cell type com-
positions in the microenvironment are critical clues
to unveil the mechanism of tumorigenesis and em-
bryo differentiation. Therefore, we constructed a new
spatial transcriptomics database, named SPASCER
(https://ccsm.uth.edu/SPASCER), designed to help
understand the heterogeneity of tissue organiza-
tions, region-specific microenvironment, and inter-
cellular interactions across tissue architectures at
multiple levels. SPASCER contains datasets from
43 studies, including 1082 sub-datasets from 16 or-
gan types across four species. scRNA-seq was in-
tegrated to deconvolve/map spatial transcriptomics,
and processed with spatial cell-cell interaction, gene
pattern and pathway enrichment analysis. Cell–cell
interactions and gene regulation network of scRNA-
seq from matched spatial transcriptomics were per-
formed as well. The application of SPASCER will
provide new insights into tissue architecture and a
solid foundation for the mechanistic understanding

of many biological processes in healthy and dis-
eased tissues.

INTRODUCTION

Spatial transcriptomics (ST) has recently been developed
to capture the spatial location of transcriptional activi-
ties within intact tissues (1–4), which cannot be achieved
from traditional bulk transcriptome and single-cell RNA-
sequencing (scRNA-Seq) data. Spatial transcriptomics has
been applied to study the homeostasis/heterogeneity of tis-
sue architectures in the brain (2,5–12), lung (13,14), breast
(15–18), heart (19–21), liver (22–26), intestine (27–29), kid-
ney (30–32), gastric (33,34), prostate (35,36), uterus (37),
bladder (38), embryo (39–41), skin (42,43), etc. These stud-
ies have broadened our understanding of tissue organiza-
tion at unprecedented molecular resolution in biomedical
research, especially in developmental biology (9,29,44), re-
generative medicine (21,27), disease/tumor microenviron-
ment (2,15,16,30,35,38,42,45–52). Navarro et al. (11) found
that detected spatially patterned genes in the mouse brain
model could be used as potential molecular targets for the
treatment of Alzheimer’s disease. In the zebrafish tumor-
microenvironment interface study (52), Hunter et al. iden-
tified several biological pathways, such as ‘lipid import into
cell’ and ‘IMP biosynthetic process’, that were specifically
distributed in the tumor microenvironment and associated
with tumor growth and invasion. Current spatial transcrip-
tomics techniques typically either adopt spatially-barcoded
probes to locate and sequence mRNA abundance across tis-
sue sections, known as next-generation sequencing-based
(NGS-based) spatial transcriptomics (27,41,42,53–56) (i.e.
10X Genomics Visium, Slide-seq, HDST, DBiT-seq, etc.) or
record the positions of mRNA profiles by multiple rounds
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of in situ hybridization, sequencing, and imaging, known as
high-plex RNA imaging based (HPRI-based) spatial tran-
scriptomics (4,57,58) (i.e. MERFISH, seqFISH, osmFISH,
etc.). However, due to the limitations of transcriptome-wide
coverage or sequencing depth of these spatial technologies,
the current methods are still difficult to generate spatial
transcriptomics where the transcriptome of each location
can be reached to the unicellular level at large scales. Even
though, with the ultrafast accumulation of publicly avail-
able scRNA-seq data, combining spatial transcriptomics
data with matched specific contexts scRNA-seq can greatly
improve the utilization efficiency of spatial data (59). Single-
cell signatures can be used either as references to deconvo-
lute NGS-based spatial transcriptomics data to predict cell-
type proportions or map to HPRI-based spatial transcrip-
tomics data to estimate cell-type distribution across tissue
samples.

Currently, there are two representative resources of spa-
tial data integration, SpatialDB (60) and STOmicsDB (61).
STOmicsDB only provides a repository of literature and
few datasets related to spatial transcriptomics topics, and
does not provide any further analysis using these data. Spa-
tialDB only conducts spatially variable (SV) genes analysis
and enrichment analysis on only 10 primarily HPRI-based
datasets (i.e. seqFISH and MERFISH). Due to the low
transcriptome-wide coverage, HPRI-based datasets only
contain hundreds of canonical genes (69–249), which were
selected based on known biological knowledge. Besides,
the results of each dataset are independent. It is challeng-
ing to explore their connections across different datasets.
Most importantly, genes do not function alone; instead,
they constantly interact with one another, and those bio-
logical interactions are critical for gene regulation, signal
transduction, biochemical networks. Therefore, it is difficult
to dig deep into the heterogeneity of tissue microenviron-
ment compositions and their interactions based on the anal-
ysis from the current two existing spatial databases. There-
fore, we developed a new database SPASCER, to system-
atically study the spatial heterogeneity of tissue organiza-
tions and their related biological processes at the unicellular
level. SPASCER provides systematic annotations of spatial
transcriptomics, including (i) spatially patterned genes, (ii)
spatially patterned pathways, (iii) gene regulatory networks,
(iv) cell–cell interactions and (v) spatial transcriptomics de-
convolution and interactions.

In our database, we collected 1082 datasets from 43 stud-
ies across 16 tissue types and four species (human, mouse,
chicken and zebrafish). Datasets included in our database
are either HPRI-based or NGS-based spatial transcrip-
tomics with corresponding scRNA-seq data. In total, we
detected 12 116, 16 530, 1476 and 4915 unique spatial pat-
tern genes for human, mouse, chicken and zebrafish, respec-
tively. Through spatial pattern pathway analysis, we identi-
fied 22 792 pathways associated with 24 533 unique spatial
pattern genes. The number of pathways identified from hu-
man, mouse, chicken and zebrafish was 7560, 7650, 7288
and 294, respectively. Gene regulatory network analysis was
performed to detect cell-type specific key regulons and their
downstream target genes, and 697 key regulons involved in
97 cell types were identified. We performed cell-cell inter-
action analysis using scRNA-seq to understand cellular be-

haviors and their responses to neighboring cells in the pro-
cess of signaling transduction, and spatial transcriptomics
data deconvolution analysis to estimate cell types distribu-
tion across tissue organizations. We also evaluated the spa-
tial interactions based on the proximity of all of the co-
expressing cells. The results of these analyses can be viewed
from the online website (https://ccsm.uth.edu/SPASCER).
We believe SPASCER will be a valuable reference resource
for spatial transcriptomics analysis.

MATERIALS AND METHODS

Data collection

We searched the published literature on spatial transcrip-
tomics from PubMed and released studies from bioRxiv
using the keywords: ‘spatial transcriptomics’ OR ‘spatial
transcriptomic’ OR ‘spatial genome’ OR ‘spatial RNA-seq’
OR ‘spatial sequencing’ (the query was done before May
2022). A total of 625 related papers were found. After se-
lecting and pre-processing steps, all HPRI-based or NGS-
based spatial transcriptomics data with matched scRNA-
seq data were retained. Finally, we obtained data from 43
studies across 16 organ types and four species (Supplemen-
tary Table S1, Supplementary Figure S2A). We divided the
dataset with multiple experimental replicates into different
sub-datasets according to the given conditions. Therefore,
1082 sub-datasets were obtained. For the spatial transcrip-
tomics data, spatial pattern analyses depend on the spe-
cific context of captured locations of each tissue sample.
Besides, different tissue samples may have different coordi-
nate systems due to different spatial technologies. For tissue
samples using the same technology, the coordinate of cap-
tured spots may overlap, and integrating them may cause
the loss of part spatial information. Currently, there exists
one tool to integrate spatial transcriptomics data, PASTE
(62), which is designed to align and integrate ST data from
multiple adjacent tissue slices, and cannot be applied to
different tissue types. Thus, for a study with several sub-
datasets, we used Harmony (63) to remove batch effects and
analyzed each sub-dataset separately. Most analyses were
performed in R (version 4.1.2).

Cell type annotation of scRNA-seq

To obtain spatial transcriptomics data at single cell resolu-
tion, scRNA-seq datasets are indispensable for our database
construction. In order to annotate cell types of scRNA-
seq data, raw counts were normalized using SCTransform
firstly, then principal component analysis (PCA), cluster-
ing and Uniform Manifold Approximation and Projection
(UMAP) dimensionality reduction were done using Run-
PCA, FindClusters and RunUMAP functions with default
parameters from Seurat (64). Differential genes of each
identified cluster were analyzed using FindAllMarkers func-
tion. Cell types of each cluster were inferred by compar-
ing the top differentially expressed genes of each cluster
with known cell-type canonical genes. The signature genes
used to define each cell type are adopted from CellMarker
database (65) and literatures, and can be found in Supple-
mentary Table S2. Visualization and annotation of identi-
fied cell-types were displayed in the low dimension UMAP
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space. For the data with cell type annotation information,
we used it directly for convenience. Data was processed in
Seurat R package (version 4.1.0).

Spatially patterned genes analysis

An important initial step in spatial transcriptomics analysis
is identifying genes with highly spatial variation. Increas-
ing evidence shows that the heterogeneity of those highly
variable genes across tissue locations is closely associated
with tissue organizations, cell states and microenvironment
changes (8,11,19,43,66), providing opportunities to eluci-
date certain biological processes, and enhance our under-
standing of gene functions. Several computational meth-
ods (67–69) have been developed to estimate gene expres-
sion spatial variation by calculating the association be-
tween spatial coordinates and gene expression profiles. Un-
like the trendsceek (67) and SpatialDE (68) used in Spa-
tialDB, we adopted SPARK (69) for spatial pattern gene
analysis. SPARK uses a generalized linear mixed model
and different Gaussian kernels and periodic kernels to es-
timate spatial variation. The kernel matrices are computed
automatically by coordinates of spots. SPARK yields well-
calibrated p-values than trendsceek and SpatialDE. Cre-
ateSPARKObject, spark.vc, spark.test functions were used
to create SPARK object, fit the statistical model, and test
the spatially expressed pattern genes, respectively. Our anal-
ysis used raw count data and default parameters from
SPARK (adjusted P-value < 0.05).

spatially patterned pathway analysis

In addition to spatially patterned single genes, multigene-
integrated pathways may also exhibit a high degree of spa-
tial variation. As done in the melanoma study(52), we
downloaded all human, mouse, chicken and zebrafish Gene
Ontology (GO) terms from R package msigdbr (version
7.5.1) (70), and filtered out ‘biological process’ subontol-
ogy for each species. There were 7568, 7656, 7655 and 7651
GO terms for human, mouse, chicken and zebrafish, respec-
tively. For each GO term, the mean expression of associ-
ated genes involved in each spot was calculated across the
tissue locations, then highly expressed spots were selected
by defining spots whose mean expression value was above
the 95% confidence interval. Euclidean distance was mea-
sured among these highly expressed spots. Next, an equal
number of spots were randomly selected to compute the
random distance, and this was repeated 1000 times to con-
struct a null distribution. Finally, Wilcoxon’s rank sum test
was adopted to compute the P-value by mapping the true
highly expressed distance onto the distance of the null dis-
tribution (P-value < 0.05), assuming that the aggregation
of those highly expressed spots is likely to be in the active
state of the metabolic pathways in the region.

Gene regulatory network analysis

Gene regulatory networks can infer interactions among
multiple genes (71,72). Transcriptional regulatory network
(73) is designed to identify working transcription factors

and related target genes. Analyzing gene regulatory net-
works can help to understand how gene modules are in-
tegrated to construct functional modules. We performed
gene regulatory network analysis using scRNA-seq data,
then checked whether those detected transcription factors
and related target genes have spatial patterns or are in-
volved in spatial pattern pathways. We conducted transcrip-
tion factor regulatory analysis for each major cell type using
pySCENIC (version 0.11.2) (73), a computational pipeline
for transcription factor and gene regulatory network infer-
ence from scRNA-seq data. This tool infers co-expression
modules between transcription factors and candidate target
genes. Subsequently, regulons are obtained based on the en-
richment of the transcription factor motif around the tran-
scription start site of the potential target genes. pySCENIC
uses AUCell to calculate AUC scores and rank the cells for
a given regulon. In this study, we performed pySCENIC
workflow using default parameters.

Cell-cell interactions analysis using scRNA-seq

For multicellular organisms, cells interact with others by
triggering downstream signal molecules through cognate re-
ceptors on the surface of the other cells, and it is vital for
mediating diverse cellular functions, including immune re-
sponses, cellular differentiation and cell fate decisions (74).
Cell–cell interactions were predicted based on scRNA-seq
data by using CellPhoneDB software (version 1.1.0) (75).
The average expression of each ligand–receptor pair was
compared between different cell types, and only those with
P < 0.05 were used for subsequent prediction of cell–cell
communication.

Spatial transcriptomics data deconvolution analysis

Spatial transcriptomics techniques, such as sci-Space, seq-
FISH and MERFISH, generated transcriptomics are mea-
sured in single-cell resolution; therefore, each spatial spot
has been already at a single resolution, and each spatial
spot has been labeled with a cell type. While spatial tran-
scriptomics measured by NGS-based techniques, such as
Visium, Slide-seq, HDST and DBiT-seq, contains several
cells in one spot. Cell type prediction for each spot was cal-
culated via the runPAGEEnrich function in Giotto (76). In
this method, the cell-type specific marker genes were calcu-
lated from annotated scRNA-seq data that was provided by
the source paper. Then the enrichment score was calculated
based on the fold change of cell-type-specific marker genes
for each spot.

Cell–cell interactions analysis of Spatial Transcriptomics

Spatial cell–cell interactions were performed by Giotto tool-
box as well. First, spatial spots were clustered using the cre-
ateNearestNetwork and doLeidenCluster functions. Then a
spatial grid with Delaunay neighborhood network was es-
tablished by createSpatialGrid function. Cells located in a
spatially proximal manner, as a proxy for potential cell–
cell interactions were calculated by cellProximityEnrich-
ment function. In order to find the spots involved in spa-
tial interactions, spatCellCellcom function was used to cal-
culate the communication score between the paired ligands
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and receptors for each spot. Significant ligand-receptors in-
teractions were selected based on criteria of adjusted P-
value < 0.05 and |log2FC| > 0.1.

Drug and disease information

Disease and Drug information related to spatially pat-
terned genes was extracted from DisGeNet (version7.0)
(77) database and DrugBank (version 5.1.9) database (78),
respectively. For each spatial pattern gene, we examined
whether it is associated with known diseases and targetable
by FDA-approved drugs.

Database architecture

SPASCER is freely available at https://ccsm.uth.edu/
SPASCER. SPASCER system is constructed based on a
three-tier architecture: client, server and database. It in-
cludes a user-friendly web interface, a Perl’s DBI module,
and a MySQL database. This database was developed in
MySQL 3.23 with the MyISAM storage engine.

RESULTS

Overview of SPASCER

The design and construction of SPASCER is shown in Fig-
ure 1. SPASCER provided spatial transcriptomics data in-
formation in five respects (Supplementary Figure S1): spa-
tially patterned genes, spatially patterned pathway, gene
regulatory networks, cell-cell interactions and cell type de-
convolution, aiming to characterize the heterogeneity of
different organ tissues comprehensively. In total, we col-
lected 1082 datasets from 43 studies which across 16 or-
gan types and four species (human, mouse, chicken and
zebrafish) (Figure 2A, Supplementary Table S1). A total
of 118 cell types, including 263 minor cell types, were an-
notated. Cell types, such as endothelial, epithelial, fibrob-
lasts, and immune cells are shared by multiple organs. For
the spatially patterned genes, totally 35 037 unique spa-
tially patterned genes were identified across all sub-datasets.
Human, mouse, chicken and zebrafish had 12 216, 16 531,
1476, 4915 spatial heterogeneity genes, respectively. Comb-
ing available H&E-stained histological images, the specific
distribution of those spatially patterned genes benefits us in
looking into biological process at local scale, e.g. tumor re-
gion. For the Spatially patterned pathway analysis, we iden-
tified 22 792 pathways with spatial patterns across all the tis-
sue samples, including 7560, 7650, 7288 and 294 pathways
for human, mouse, chicken and zebrafish, respectively. Hu-
man breast, intestine, and uterus had the highest spatially
patterned pathways numbers, which were 5922, 5313 and
4532, respectively. Gene regulatory network analysis iden-
tified 697 key regulons and a list of potential regulators,
involving in a total of 97 cell types. Specifically, 541 tran-
scription factors were identified in human tissue. Jund (jun
D proto-oncogene) was the most detected regulon in mouse
kidney, liver and lymph, involving in PT (proximal tubule
segments) cell, monocyte, T cell, etc. Cell-cell interaction
analysis using scRNA-seq identified 1020 unique ligand-
receptor pairs in 135 cell types, while 1763 unique ligand–
receptor pairs were detected in 97 cell types using spatial
transcriptomics data.

Combing with available H&E-stained histological im-
ages, the specific distribution of those spatially patterned
genes and pathways would allow us to study biological
processes at a local scale rather than whole tissue struc-
tures, e.g. tumor microenvironment. For the human squa-
mous cell carcinoma data (42), ITGB1 (integrin subunit
beta 1) was specifically distributed in the boundary region
between the tumor and stromal area. The spatial pattern
of ITGB1 was identified in multiple other tissues, includ-
ing bladder tumor, liver tumor, intestine, and breast tu-
mor, consistent with the previous studies (79–81) show-
ing that it could be pro-tumorigenic by enhancing cell
migration and stromal invasion. We found that LAMC2
(laminin subunit gamma 2) showed spatial pattern and was
involved in spatial pathways such as ‘cell differentiation’
and ‘metabolic process’ in the tumor region, which was re-
ported previously to promote tumor metastasis (82–84). Be-
sides, LAMC2, KRT8 and KRT19 spatially patterned tumor
markers shared ‘epidermis development’ and ‘cellular com-
ponent morphogenesis’ spatially patterned pathways in the
tumor region, which may indicate the proliferation of can-
cer cells. Except for the above tumor heterogeneity, detected
spatial patterns may also reflect tissue organization and
specific cell type distribution. For example, in the kidney
mouse model, we found gene Aadat (aminoadipate amino-
transferase) showed a clear spatial structure pattern (Fig-
ure 3A), and was involved in the spatially patterned path-
way ‘L-kynurenine metabolic process’ (Figure 3B). Spatial
spots clustering (Figure 3C) and H&E staining image (Fig-
ure 3D), and together with deconvolution analysis (Figure
3E) suggested that this specific spatial gene and pathway
pattern might relate to the distribution of proximal tubule
segments 3 cells (PT S3 OS). The spatial pattern of Aadat
was decreased after injury and increased with the repair pro-
cess (Supplementary Figure S3B), which will help to study
the regeneration process. As shown from the analysis above,
we provide a rich resource of cell type marker genes, spatial
gene patterns, spatial pathway patterns, gene regulatory net-
works, and cell-cell interactions of scRNA-seq and spatial
transcriptomics. They are important clues to understand
the generation of heterogeneity across tissues. Besides the
examples we mentioned before, there are numerous genes
or molecules that play a key role in biological processes. Re-
searchers can download all the from our database for fur-
ther study.

Cell types category

Based on original cell type labels from single cell resolution
spatial transcriptomics (MERFISH, seqFISH and osm-
FISH, sci-Space) and spatial deconvolution for NGS-based
spatial transcriptomics (Visium, Slide-seq, HDST and
DBiT-seq), 118 major cell types (263 minor cell types) were
identified in total. Cell types, such as endothelial, epithe-
lial, fibroblasts, and immune cells are shared by multiple or-
gans, due to they are basic cell types in tissue construction.
According to the statistical analysis of cell types, endothe-
lial is the major cell type that is included in most studies
(23/43) (Supplementary Figure S2B). Endothelial cells have
important role in supporting the physiological activities of
tissues. Their morphologies and functions are changed over

https://ccsm.uth.edu/SPASCER
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Figure 1. Overview of SPASCER. (A) SPASCER includes 43 datasets (1082 tissue samples) from 16 types of organs across four species (human, mouse,
chicken and zebrafish). scRNA-seq data was used to map onto HPRI-based ST and to deconvolute NGS-based ST data, and through which cell type
distribution could be estimated across tissue organizations. SPASCER provides spatial pattern gene analysis, spatial pattern pathway analysis, cell-cell
interactions and gene regulatory network analysis, from the gene aspect to organ level. (B) Website interface of SPASCER. SPASCER provides gene-based
and paper-based search. Users can query, browse and download related contents.

time and location. In our database, nine human organs and
six mouse organs included endothelial cells. The represent
markers of endothelial cells across tissues are exhibited in
Figure 2B and C. As shown in these figures, different tis-
sues expressed unique marker genes, while polyadenylate-
binding protein 1 (PABPC1, Pabpc1) is highly expressed
in multiple tissues both in human and mouse (Figure 2B,
C). Therefore, this could be a potential research point, as
there are currently no reports revealing the relationship
between polyadenylate-binding protein 1 and endothelial
cells.

Spatially patterned genes category

This category provides the genes that have spatial patterns.
For the 1082 sub-datasets across 16 organ types, a total
of 35 037 genes presented spatial heterogeneity across tis-
sue architectures (Supplementary Figure S4A). In the web-
site, we provided all the spatial pattern genes detected from
each tissue type. For individual genes, we visualized the spa-
tial distributions of all statistically significant samples. In
this module, users can input gene symbols of interest to ex-
plore the spatial events for the genes. H&E-stained histo-
logical images are widely preferred for viewing tissue com-
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Figure 2. Summary of datasets used in SPASCER. (A) The number of cells from scRNA-seq (green colour) and spots from spatial transcriptomics data
(red color) used in each data is indicated by the size of each circle. Brain contributed the largest number of papers. (B and C) Violin plots show expression
levels of tissue specific endothelial marker genes across multiple tissues in human and mouse. PABPC1/Pabpc1 is highly expressed in multiple tissues both
in human and mouse, while some, such as SPA17 and Emcn are highly tissue specific.
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Figure 3. Example results of part functional annotations obtained from SPASCER. (A) SPASCER provides distribution map of spatial pattern gene
that has highly spatial variation. Aadat is specifically distributed in the proximal tubule segments of kidney tissue. (B) Spatial pattern pathway across
tissue architecture. GO:0097052, L-kynurenine metabolic process shows similar spatial pattern in the kidney proximal tubule segments, and has Aadat
gene involved in the pathway. (C) Spots clustering shows tissue has clearly distinct layer. (D) Original H&E-stained histological images provides ground
truth for comparison. (E) spatial transcriptomics deconvolution shows the probabilities of cell types distribution across tissue organization. (F) Cell-cell
interactions using deconvoluted spatial transcriptomics shows highly enriched region pattern, and neighbouring cells have the same distribution or short
distance are easier to interact with each other. (G) Selected significant ligand-receptor pairs for CD IC cells and VSM cells, and among which Ccl8-Ccr2
has high interaction score. (H) Mast regulons detected in different cell types. Hoxb3, z2f1 and Foxo6 are specific TFs in VSM cells.
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positions by pathologists to help with disease diagnosis, es-
pecially for cancer. With the H&E image as the reference,
we can select spatially patterned genes located in a specific
region, such as the boundary between tumor and stroma.
ERBB2 (erb-b2 receptor tyrosine kinase 2), also known as
HER2, showed spatial patterns in most breast cancer tissue
samples, and particularly, was highly expressed in the tu-
mor region, as reported to be overexpressed in ∼30% of hu-
man breast cancers (85). Besides, ERBB2 also showed spa-
tial patterns in liver and bladder tumor regions. The tumor-
specific marker genes (i.e. EPCAM, KRT8, EPCAM, B2M,
FCA1 and KRT19) were also highly expressed in the tumor
regions of prostate, colorectal, liver cancer, pancreas and
breast cancer. The specific pattern may reveal the struc-
ture organizations in normal tissues also. CCK (cholecys-
tokinin) was highly distributed in the L2, and L6 layers
of human cortex, and Aadat was enriched in the proximal
tubule region of mouse kidney. We also found that the spa-
tial pattern rapidly decreased 2 hours after injury, almost
disappeared in 2 days, and became normal after 6 weeks,
which may relate to the injury and repairment process of
the proximal tubule (Supplementary Figure S3B). Those de-
tected spatially patterned genes will benefit our understand-
ing of the tissue organization, and the dynamic changes of
these pattern genes in time series tissue will broaden our
knowledge of the key factors in tissue development, dis-
ease progression and injury regeneration. For different tis-
sue types, the detected spatially patterned genes vary greatly,
and for samples from the same tissue type, the spatially pat-
terned genes also have some discrepancies. For example, in
a human dorsolateral prefrontal cortex study, there are 12
sub-datasets, and the number of detected spatially patterned
genes varies from 574 to 2337 (574, 579, 609, 620, 670, 713,
781, 861, 1557, 1583, 2108, 2337), with 246 genes consistent
across all the sub-datasets. There are nine studies on mouse
brain, with 325 sub-datasets, and the number of detected
unique spatially patterned genes is 11 110, while there were
no shared common spatially patterned genes for all those
325 sub-datasets, with only 2 genes (Cck, Mbp) shared by
324 sub-datasets. The reason may be that different regions
of mouse brain, such as hippocampus, olfactory bulb, so-
matosensory cortex, etc. were analyzed. Besides, some stud-
ies used middle-aged adult mice, while some used embryonic
mouse brain, and those situations are complexed. Tissue
sample size could also affect the results. All the compared
results could be found in Supplementary Table S3.

Spatially patterned pathway category

This category provides the enriched biological pathways of
the identified spatially patterned genes. In total, we identi-
fied 22 792 pathways with spatial patterns across tissue ar-
chitectures using all samples (Supplementary Figure S4B).
For the tumor studies, ‘cell migration’, ‘cell–cell adhesion’,
‘cell differentiation’, ‘cell proliferation’, ‘leukocyte migra-
tion’, etc., are highly enriched in tumor regions, indicating
tumor proliferation and invasion. In the human intestinal
development study (29), we found ‘epidermis development’,
‘epithelial tube morphogenesis’, ‘multicellular organism re-
production’, and other processes are highly enriched in the
outer muscle. ‘Signal transduction by p53 class mediator’

was enriched in breast cancer with CD44, CD73, CDH3
genes involved. For example, LAMC2, was involved in ‘cell
differentiation’ and ‘metabolic process’ spatially patterned
pathways in the human squamous cell carcinoma. In ad-
dition, we identified its spatial gene patterns that are lo-
cated in the tumor area, which is consistent with previous
reports that LAMC2 may promote tumor cell metastasis
(82,84,86). We also found LAMC2, KRT8 and KRT19 spa-
tially patterned tumor markers sharing ‘epidermis devel-
opment’ and ‘cellular component morphogenesis’ spatially
patterned pathways in the tumor region, which may indicate
the proliferation of cancer cells. As shown in these examples,
this annotation can help uncover the underlying biological
functions of the spatial pattern genes.

Transcription factor regulatory network category

This category provides the transcription factor regulatory
network information. 697 key regulons and a list of po-
tential target genes were identified, involving a total of 97
cell types. The detected potential regulons and target genes
were mapped into protein–protein interactions to construct
network. In this module, users can input the gene sym-
bol of interest to check whether this gene plays a regulon
role in multiple tissues, and also its potential target genes.
For the previous study (paper)-based browsing, we provide
all the identified significant transcription factors in each
cell type using a heatmap (Figure 3H). In the kidney in-
jury study (30), Atf3 was identified as a transcription factor
in the ischemia/reperfusion injury (IRI) and lipopolysac-
charide mediated (LPS) mouse model. Atf3-targeting genes
(Tnfrsf12a, Spry1, Hck, etc.) were highly enriched in the
outer stripe in IRI model, and in the collecting duct in CLP
model, suggesting that Atf3 may be associated with neu-
trophil migration. In the human endometrium study (37),
we found HES1 is a key regulon in the early secretory, early-
mid and mid proliferative periods during the menstrual cy-
cle. Except for the endometrium, HES1 was also estimated
as a transcription factor in squamous cell carcinoma tis-
sue, kidney IRI and Sham disease model, and lymph tissue,
which has been reported as one of the downstream effec-
tors of the Notch signaling pathway (87). As shown in this
example, this category can provide the key regulons of the
tissue architecture context.

Cell–cell interaction category

This category provides the significant ligand-receptor pairs
in the single-cell context. Ligand is a substance that forms
a complex with a biomolecule released by one cell to sig-
nal either itself or a different cell. When a ligand binds to
its respective receptor, the biological activity is altered to
initiate several different types of cellular responses. Cell–
cell interaction analysis using scRNA-seq data identified
1020 unique ligand-receptor pairs in 135 cell types. In the
website, we provide all the identified significant ligand-
receptor pairs and related source cells and target cells. For
the gene-based search, the users can search for the indi-
vidual genes’ interaction partners and expression levels in
various cells. For the paper-based browse, the users can
check all the significantly interacting cell types in a network
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module. Thicker edges indicate a stronger interaction. Cel-
lular activities depend on cell–cell interactions, which are
crucial for tissue homeostasis. Abnormal cell-cell interac-
tions may lead to tissue disorder or even disease. For exam-
ple, MIF-CD74 ligand–receptor pair was most frequently
identified in pDCs-cDC from melanoma tumors. Both MIF
(macrophage migration inhibitory factor) and CD74 (CD74
molecule) were found spatially expressed and distributed
in many tumor tissues, including liver cancer, intestine in-
jured tissue and pancreas. MIF was reported to play a role
in the regulation of macrophage function in host defense
(88) and was found involved in the spatially patterned path-
ways, such as ‘macrophage activation’, ‘macrophage migra-
tion’, ‘regulation of intrinsic apoptotic signaling pathway
by P53 class mediator’, ‘regulation of signal transduction
by P53 class mediator’, etc. Previous studies showed that
CD74 promoted breast and brain cancer metastasis (89–91)
and was also found to be involved in the immune-related
spatially patterned pathways, including ‘T cell differenti-
ation’ and ‘leukocyte differentiation’ in our study. We in-
fer that MIF-CD74 may be a potential tumor therapeutic
targets.

Spatial deconvolution and interactions analysis category

This category provides highly enriched cellular neighbor-
hoods and interactions through deconvolution analyses.
Even though we made the prediction of cell type for each
spot, in the complicated tissues, one spot may have a high
enrichment score for more than one cell type. Therefore, we
provide the enrichment heatmap of each dataset and ana-
lyzed the spot–spot communication based on Giotto clus-
tering. Using annotated cell types from scRNA-seq, we es-
timated the distributions of individual cell types. Users can
search whether they act as ligands or receptors across tissue
architectures in different cells and can also search for es-
timated cell type distributions and whether they communi-
cate with other cells. For example, in the kidney injury study,
the spatial deconvolution analysis results showed that the
proximal tubule segments 1 (PT S1) and connecting tubule
(CNT) were distributed in the outer layer, while collecting
duct (CD) distributed in the inner region (Figure 3E). These
results were consistent with the anatomical structures from
H&E staining images. Specifically, we could estimate dis-
tinct cell-cell interaction patterns across the tissue archi-
tecture (Figure 3F). We found CNT cells highly interacted
with PT S1 in the outer layer, PT fibrinogen interacted
with PT S3 OS in the middle region and VSM interacted
with CD IC cells in the inner region. Among the detected
ligand-receptor pairs in CD IC-VSM cells, Ccl8 (C–C mo-
tif chemokine ligand 8) highly interacted with Ccr1 (C–C
motif chemokine receptor 1), Ccr2 (C–C motif chemokine
receptor 2), Ccr5 (C-C motif chemokine receptor 5) (Fig-
ure 3G), and these may due to the kidney injury process,
since previous studies showed these chemokine genes family
have a relation with inflammation and macrophage associ-
ated metastasis (92–94). As mentioned above, these region-
specific cell type distribution and interactions would help
us understand the potential mechanism in the disease mi-
croenvironment.

DISCUSSION

SPASCER is a unique database that systematically an-
notates spatial transcriptomics data at single-cell resolu-
tion from four species. Studying spatial transcriptomics
at the single-cell level contributes to a more comprehen-
sive understanding of the heterogeneity of tissue organi-
zations and related biological processes. Spatial pattern
analyses, including spatial single gene patterns and spatial
pathway patterns, allow us to explore highly spatially vari-
able genes/pathways across physical locations and focus
on specific regions, such as the tumor interface. Through
SPASCER, the users also can explore tintercellular interac-
tions using the expression profiling of ligands and receptors
in the tumor/disease microenvironment. These insensitive
annotations will facilitate the discovery of cell states and
the detection of potential therapeutic targets. Even though
spatial transcriptomics has been widely used in biomedical
studies, the available data for certain organs is still limited,
specifically time series data. However, with the rapid devel-
opment of ST sequencing technology, high-resolution plat-
forms for spatial multi-omics data are becoming accessible,
including proteomics and ATAC. We will continue to in-
tegrate more valid spatial multi-omics datasets and extend
SPASCER into organ-based atlases (even 3D based-organ
atlases) to gain a more comprehensive understanding of tis-
sue heterogeneity. In order to keep SPASCER as the fore-
front of the spatial transcriptomics database, new data will
continuously be collected and updated to our database ev-
ery 6 months, and users could also share publicly available
spatial transcriptomics data on our website. Furthermore,
the usage of H&E images falls far short of the information
they contain. We will employ deep learning-based transfor-
mation methods to extract useful information from them,
and integrate them with gene expression profiles to extend
the level of understanding from simple tissues to more com-
plex structures. We believe that SPASCER will provide new
insights into tissue architecture and a solid foundation for
the mechanistic understanding of many biological processes
in healthy and diseased tissues.
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