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Leveraging molecular structure and bioac-
tivity with chemical language models for de
novo drug design

Michael Moret 1, Irene Pachon Angona 1, Leandro Cotos1, Shen Yan 2,
Kenneth Atz 1, Cyrill Brunner1, Martin Baumgartner 2,
Francesca Grisoni 1,3,4 & Gisbert Schneider 1,5

Generative chemical language models (CLMs) can be used for de novo mole-
cular structure generation by learning from a textual representation of mole-
cules. Here, we show that hybridCLMs can additionally leverage thebioactivity
information available for the training compounds. To computationally design
ligands of phosphoinositide 3-kinase gamma (PI3Kγ), a collection of virtual
molecules was created with a generative CLM. This virtual compound library
was refined using aCLM-based classifier for bioactivity prediction. This second
hybrid CLMwas pretrained with patentedmolecular structures and fine-tuned
with known PI3Kγ ligands. Several of the computer-generated molecular
designs were commercially available, enabling fast prescreening and pre-
liminary experimental validation. A new PI3Kγ ligand with sub-micromolar
activity was identified, highlighting the method’s scaffold-hopping potential.
Chemical synthesis and biochemical testing of two of the top-ranked de novo
designed molecules and their derivatives corroborated the model’s ability to
generate PI3Kγ ligands with medium to low nanomolar activity for hit-to-lead
expansion. Themost potent compounds led to pronounced inhibition of PI3K-
dependent Akt phosphorylation in a medulloblastoma cell model, demon-
strating efficacy of PI3Kγ ligands in PI3K/Akt pathway repression in human
tumor cells. The results positively advocate hybrid CLMs for virtual compound
screening and activity-focused molecular design.

Computational methods have become key players in hit and lead dis-
covery in pharmaceutical research, complementing experimental
high-throughput screening1. Bespoke virtual compound libraries pro-
vide access to untapped regions of the chemical space2, thereby
extending the diversity of potential drug candidates. However, owing
to the potentially unlimited size of virtual chemical libraries, concerns
have been raised over the pragmatism of successfully screening

billions of molecules virtually with a potentially high risk of false
positives2,3. To mitigate some of these challenges, researchers have
employed generative deep learning models to construct compounds
on demand by de novo design and to obtain small, focused virtual
compound libraries4,5. A variety of data-driven approaches can be used
to generate focused virtual chemical libraries and create molecules
with the desired properties5–18. Chemical language models (CLMs) are

Received: 26 October 2021

Accepted: 19 December 2022

Check for updates

1ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093Zurich, Switzerland. 2University of Zurich, University Children’s
Hospital, Children’s Research Center, Pediatric Molecular Neuro-Oncology Research, Lengghalde 5, 8008 Zurich, Switzerland. 3Eindhoven University of
Technology, Institute for ComplexMolecular Systems and Eindhoven Artificial Intelligence Systems Institute, Department of Biomedical Engineering,Groene
Loper 7, 5612AZ Eindhoven, The Netherlands. 4Center for 393 Living Technologies, Alliance TU/e, WUR, UU, UMC 394 Utrecht, Utrecht 3584 CB, The
Netherlands. 5ETH Singapore SEC Ltd, 1 CREATE Way, #06-01 CREATE Tower, Singapore 138602, Singapore. e-mail: f.grisoni@tue.nl; gisbert@ethz.ch

Nature Communications |          (2023) 14:114 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8672-3386
http://orcid.org/0000-0002-8672-3386
http://orcid.org/0000-0002-8672-3386
http://orcid.org/0000-0002-8672-3386
http://orcid.org/0000-0002-8672-3386
http://orcid.org/0000-0002-3212-9111
http://orcid.org/0000-0002-3212-9111
http://orcid.org/0000-0002-3212-9111
http://orcid.org/0000-0002-3212-9111
http://orcid.org/0000-0002-3212-9111
http://orcid.org/0000-0002-4316-7156
http://orcid.org/0000-0002-4316-7156
http://orcid.org/0000-0002-4316-7156
http://orcid.org/0000-0002-4316-7156
http://orcid.org/0000-0002-4316-7156
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0001-9539-7204
http://orcid.org/0000-0001-9539-7204
http://orcid.org/0000-0001-9539-7204
http://orcid.org/0000-0001-9539-7204
http://orcid.org/0000-0001-9539-7204
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35692-6&domain=pdf
mailto:f.grisoni@tue.nl
mailto:gisbert@ethz.ch


based on neural networks for processing string representations of
molecules (e.g., simplified molecular input line entry system [SMILES]
strings; Fig. 1a)5,7,19. CLMs have already been successfully employed to
generate focused virtual chemical libraries. Examples of de novo-
designed bioactive molecules include inhibitors of vascular endothe-
lial growth factor receptor 2 (VEGFR-2) pathway7, as well as nuclear
hormone receptor modulators20–23.

The creation of a focused virtual chemical library with a CLM
generally includes three basic steps: (i) model pretraining with a large
set of molecules to learn the SMILES grammar and the feature dis-
tribution of the pretraining data, (ii) transfer learningwith a smaller set
of molecules (fine-tuning set) to bias the molecule generation by the
CLM toward the chemical space of interest, and (iii) sampling of new
molecules from the data distributions modeled in steps (i) and (ii)5,24.
There are alternative approaches for CLM development, e.g., model
fine-tuning (step ii) by reinforcement learning6,25.

In this study, we developed a data-driven molecular design pipe-
line that leverages both the structural and bioactivity information of
known ligands to generate bespoke molecules by learning from a
textual representation of molecules. We pretrained two CLMs, each
with a distinct pretraining strategy, on a large set of patented com-
pound structures (one for molecular generation and one for classifi-
cation). Both CLMs were fine-tuned on inhibitors of phosphoinositide
3-kinasegamma (PI3Kγ), which is an anticancer, anti-inflammatory, and
immunomodulatory drug target26,27. For rapid validation, commer-
cially available compounds from the set of de novo-generated mole-
cules were tested first, as opposed to synthesizing them, revealing a
new ligand of phosphoinositide 3-kinase gamma (PI3Kγ) with sub-
micromolar activity. This result confirmed the scaffold-hopping cap-
ability of the de novomolecular design pipeline. In addition, two of the
top-ranked de novo-generated molecular designs and several deriva-
tives were synthesized. These compounds potently inhibited PI3Kγ
activity, corroborating the applicability of the computational
approach to hit-to-lead optimization.

Results and discussion
Molecular design and scoring were performed in two steps, each of
which was executed by a distinct CLM: (i) molecular de novo design
and (ii) refinement of the generated virtual molecule library using the
available ligand bioactivity data for the target of interest (PI3Kγ).

Focused library generation
Chemical language model. A CLM based on a long short-term
memory (LSTM) neural network and SMILES strings as input was
developed for the de novo generation of a focused virtual chemical
library for PI3Kγ28. To learn from unlabeled data, CLMs leverage “self-
supervised” learning29. Specifically, the CLM was trained with an
autoregressive approach, i.e., the process of iteratively predicting the
next character in a SMILES string given all the previous characters in
the string (Fig. 2a)30. In previous studies, CLMs were pretrained on
molecules with known biological activity (IC50, EC50, Kd, and Ki) <1 µM
retrieved from the ChEMBL database20,23,31–33. Although the training set
can capture the general features of bioactive compounds, it does not
necessarily represent the physicochemical properties of approved
drugs.Here, to enable theCLM to capture features related to approved
drugs, we used 839,674 molecules from the US patent database for
pretraining34. We hypothesized that patented compounds are more
likely to become marketed drugs than the bioactive molecules
deposited in ChEMBL. Transfer learning was performed to properly
focus the pretrained CLM toward the target space of PI3Kγ ligands. For
transfer learning, 46 PI3Kγ inhibitors with IC50 ≤ 100 nMwere selected
from the Drug Target Commons (DTC) database35.

Nucleus sampling for molecule generation. CLMs generate new
molecules by extending strings from a “start” character until the “stop”
character is sampled or when reaching a presetmaximumstring length.
String characters are iteratively added by weighted random sampling
from the probability distribution learned by the CLM during training.
The more likely a given character is at a given step according to the

Fig. 1 | De novo molecular generation with the CLM. a SMILES string repre-
sentation of a molecule. b Example of the effect of the temperature parameter on
the probability distribution learnt by the CLM. c Example of the effect of the
nucleus sampling threshold. Only the characters N and C can be sampled here.
d Fréchet ChemNet Distance (FCD) comparison between temperature and nucleus
sampling after the pretraining (reported as the mean with standard deviation over
10 repeats with 5000molecules sampled per repeat). e Comparison of the novelty

of the generated SMILES strings during the transfer learning between temperature
sampling (temperature = 0.7) andnucleus sampling (threshold = 0.85).Mean values
(lines) and standard deviations (shaded areas) are shown for ten repeats (1000
SMILES strings were sampled every second epoch over 40 epochs). Novelty is
expressed as the percentage of SMILES strings generated that were valid and not
included in either the training or the fine-tuning data.
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probabilities learned by the CLM, themore often it will be sampled, and
vice versa. Narrowing the probabilities learned by the CLM with a
parameter (the so-called temperature; Fig. 1b) generally improves the
sampling process31. This improvement occurs in terms of (i) the quality
of the SMILES strings generated, as reflected by their validity (gram-
matically valid SMILES strings), uniqueness (nonrepetitive molecules),
and novelty (molecules not present in the pretraining and fine-tuning
data) and (ii) the similarity of the sampled virtual chemical libraries to
the reference data in terms of their chemical structures and predicted
bioactivities, as measured by the Fréchet ChemNet Distance (FCD)36.
However, with this “temperature sampling” approach, unlikely SMILES
characters can be sampled, which could result in the construction of
molecules that do not match the design objectives. Here, aiming to
prevent the CLM from picking unlikely SMILES characters by tempera-
ture sampling, we employed “nucleus sampling”37. This method reflects
the confidence of themodel in its predictions by allowing only themost
probable character(s) to be sampled using a probability threshold
based on the cumulative probabilities of the SMILES characters (Fig. 1c).

Nucleus sampling improved upon temperature sampling in terms
of lower FCD values (Fig. 1d), indicating a greater overall similarity of
the de novo-generated molecules to the pretraining set in terms of
structural and bioactivity properties. During transfer learning, nucleus
sampling generally improved the quality of the sampled molecules in
terms of the novelty of the SMILES strings compared to the best
temperature sampling data obtained (Fig. 1e)33. The results were stable
over a range of sampling threshold values (Supplementary Table 1).
However, nucleus sampling did not outperform temperature sampling
in terms of the uniqueness, validity, and novelty of the SMILES strings
generated after the pretraining (Supplementary Table 2). To create a
PI3Kγ focused chemical library during transfer learning, we used
nucleus sampling with a threshold of 0.85. A total of 5000 SMILES
strings were sampled over 50 transfer learning epochs with ten repe-
titions (5000× 50 × 10). A total of 2,500,000 SMILES strings were
generated, of which 1,121,735 were valid, unique, and novel (non-
identical) compared to both the training and fine-tuning compounds.

Bioactivity prediction with a hybrid chemical language model
Leveraging bioactivity data for molecule selection. The availability
of bioactivity data for the fine-tuningmolecules permitted the training
of a bioactivity predictionmodel to select themost promising de novo
designs38. Chemoinformatics methods often rely on precomputed
features (molecular descriptors), combined with a machine learning
algorithm formolecular property prediction. In this study,we aimed to
explore the potential of a SMILES string-based hybrid CLM to predict
bioactivity. This neural network model combines a generative CLM
with a classifier network. Given that (i) inactive molecules
on PI3Kγ were annotated with pIC50 = 4.0 (Fig. 2c) and (ii) there is a
natural ordering of the PI3Kγ ligands according to their pIC50 values,
the bioactivity prediction task was framed as an ordinal classification
task, i.e., classification with a class order39. Such a model considers
both the active and inactive compounds for training and preserves
both the class labels and the class order. For model training, we
defined three class labels: “inactive” (pIC50 ≤ 4.0, 34 molecules),
“moderately active” (4.0 < pIC50 ≤ 6.5, 121 molecules), and “highly
active” (pIC50 > 6.5, 43 molecules). The CLM generated a focused vir-
tual chemical library by leveraging the structural information of the
molecules used for fine-tuning, while the classifier layer factored their
activity labels into the model (Fig. 2d).

We explored two different pretraining strategies for feature
learning with a large amount of unlabeled data.
1. Autoregressive pretraining (Fig. 2a). This strategy is analogous to

the one performed for the generative CLM.
2. ELECTRA (efficiently learning an encoder that classifies token

replacements accurately) pretraining (Fig. 2b)40. The ELECTRA
approach is based on training a model to distinguish between
“real” input characters and “corrupt” ones, which was previously
shown to be useful for contextual representation of natural
language40. We adapted ELECTRA for the CLM training with an
LSTM model and SMILES strings as input28. The training data
contained corrupted input SMILES strings generated by randomly
substituting multiple characters with other characters of the
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Fig. 2 | Bioactivity prediction. a A CLM for molecule generation iteratively pre-
dicts the next character in a SMILES string given the preceding characters (“auto-
regressive” approach).bAnE-CLM (aCLMpretrainedwith the ELECTRAmethod) is
trained on corrupted SMILES strings aiming to predict, for each string character,
whether it is the original (correct) or a corrupted (substituted) character. c Activity
distribution of the PI3Kγ ligands. Compounds with annotated pIC50 ≤ 4.0 were

considered “inactive”, and a pIC50 value of 6.5was used to separate the “moderately
active” from the “highly active” compounds. d The molecular structures (in the
form of a SMILES string) of the fine-tuning set were used to focus the CLM (pre-
trained on the US patent database) on the chemical space of the target of interest
(PI3Kγ). To account for the uncertainty in the predictions, we employed an
ensembleof 100models to rank the generatedmolecules by the number of “votes”.
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SMILES language. The CLM was trained to spot these corrupted
characters.

We hypothesized that, compared to autoregressive pretraining,
ELECTRA pretraining has amore appropriate inductive bias (i.e., the set
of algorithmic assumptions to solve a given task) to extract useful fea-
tures for ordinal classification. The inductive bias of autoregressive
pretraining is particularly suited for generating SMILES strings because
the training and generative tasks are the same, namely, adding char-
acters iteratively. However, ligands of the same macromolecular target
tend to have similar chemical substructures, and, therefore, the ability
of amodel to distinguish small structural changeswasdeemed relevant.
At the same time, small structural changes might lead to a drastic var-
iation in biological activity (the so-called activity cliffs41). Hereinafter,
the model that was pretrained with the ELECTRAmethod is referred to
as “E-CLM”.

To probe the effect of the pretraining scheme on the predictions,
we added only a single feedforward layer to the pretrained CLM and
E-CLM for bioactivity prediction. This additional network layer con-
sisted of three neurons, one for each of the three bioactivity classes. It
was added to fine-tune the entire network for bioactivity
prediction42,43. To mitigate the class data imbalance, we applied over-
sampling to the classes with fewer data (i.e., the “inactive” and “highly
active” classes)44.

Overall, we found that the E-CLM performed better than the
standard CLM for the task of identifying the most active molecules,
while minimizing the number of inactive molecules misclassified as
“highly active”. For the chosen threshold (0.4), the E-CLM had a false
positive rate of 10.0% compared to 46.7% for theCLM for the same true
positive rate (71.3%) (Supplementary Figs. 2a, 3a). Fine-tuning of all
neural network weights performed better than keeping the weights of
one of the two layers constant (Supplementary Fig. 2a, c, d). These
results highlight the importance of choosing an appropriate pretrain-
ing method for cheminformatic applications, depending on the
downstream task, e.g., data generation or classification.

Increasing the prediction confidence using deep ensemble learn-
ing. Deep learningmodels suffer fromadecrease inperformancewhen
applied to out-of-domain data45, a well-known issue in quantitative
structure-activity relationship modeling46,47. To increase the con-
fidence in the bioactivity predictions, we used a deep ensemblemodel
by combining the predictions of multiple models with a majority vot-
ing approach48,49. Owing to thenondeterministic optimizationprocess,
repeats of the same CLM training procedure will lead to different
models. Deep ensemble learning has been shown to perform well
across different domains to account for the predictive uncertainty of
the models, while having the benefit of being straightforward to
implement50. Accordingly, 100 different E-CLM classifiers were trained
on the bioactivity prediction task. The level of confidence in a pre-
diction was defined as the number of models that classified a given
input molecule as “highly active”.

With increasing confidence levels, the number of molecules pre-
dicted as “highly active” decreased (Fig. 3a), a documented effect of
ensemble voting51. None of the molecules from the focused virtual
library was predicted as “highly active” with all 100 votes. Forty-seven
de novo designs were predicted as highly active, with 99 votes (Sup-
plementary Figs. 4, 5). Among these top-ranked molecules, 64% fea-
tured a new atom scaffold and 62% featured a new graph scaffold with
respect to the fine-tuning set (see Supplementary Fig. 6 for exemplary
molecule decompositions into graph and atom scaffolds)52,53. Higher
confidencewas reflected in the increased substructure similarity of the
predicted actives to the molecules of the fine-tuning set, as captured
by the Tanimoto index computed onMorganfingerprints (Fig. 3b)54. In
line with the chemical similarity principle55, this observation suggests
that there is a greater chance of identifying active molecules when the

number of votes is high. The fivemost dissimilar molecules among the
top-ranked molecules had a similarity to their respective nearest
neighbors of the fine-tuning set, ranging from 53 to 58% (Fig. 3c). The
closest molecules of the fine-tuning set have a similarity ranging
between 77 and 100%, meaning that one molecule of the fine-tuning
set was re-created by the CLM, although with a different stereo-
chemistry (Fig. 3d), a structural feature that is not captured byMorgan
fingerprints. This result highlights the potential of the approach to
explore both closely related molecules to known bioactives, e.g., for
structure-activity relationship studies or hit-to-lead expansion, as well
as more structurally innovative compounds for “scaffold hopping”.

In vitro bioactivity of commercially available compounds
For a proof of concept, some of the molecules generated by the CLM
were tested for PI3Kγ binding in vitro. To optimize the efficiency in
terms of both time and resources, we selected the testmolecules from
the refined virtual chemical libraries that could be purchased from
commercial suppliers, asopposed to synthesizing the de novodesigns.
In total, 16 computer-generated molecules were commercially avail-
able. Their predictive confidence ranged from 80/100 votes for com-
pound 1 to 24/100 votes for compound 16 (Fig. 4).

Although none of the ordered molecules was part of the top-
ranked set (i.e., receiving 99/100 votes), compound 1, the molecule
with the highest number of votes (80/100), was a hit, with Kd ranging
between 0.6 and 0.7 µM (N = 2; 670 nM; 620nM) (Figs. 4, 5 and Sup-
plementary Table 3). None of the lower-ranking compounds inhibited
PI3Kγ in the biochemical assay (Fig. 4). The confidence level of our
ensemble correctly prioritized compound 1 (active in vitro) over
compounds 2 and 4 (inactive in vitro), despite all of them having the
same scaffold but with different substituents (Fig. 4). We hypothesize
that this might be due to the positive effect of the ELECTRA pretrain-
ing, which was aimed at recognizing the effect of small structural
changes.

Compound 1 has a new atom scaffold compared to all molecules
in the ChEMBL database (version 28) annotated with “pActivity” ≥ 5.0
on PI3Kγ (pActivity: −log(molar IC50, XC50, EC50, AC50, Ki, Kd, or
“potency”)). It constitutes a “scaffold hop” from known inhibitors. The
most similarmolecule among these has a Tanimoto similarity of 34% to
that of compound 1 (Supplementary Fig. 7). When screening the
commercial library with the ensemble of predictive models, com-
pound 1 (80/100 votes)would have appeared in the top 52, showcasing
the effect of combining de novo design with scoring. It should be
noted that no commercially available molecule received more than 89
votes. The presenceof a top-ranking de novodesignwith 99 out of 100
votes highlights the ability of generative molecular design to explore
the chemical space beyond commercially available compounds.

Aiming to benchmark these results, similarity-based virtual
screening using the commercial compound library was carried out
using Morgan fingerprints (Tanimoto index) and the fine-tuning
molecules as queries56. Compound 1 ranked in position 25,693, high-
lighting the ability of our pipeline to uncover a hit thatwould likely not
have been found by chemical structure-based similarity searching. The
in vitro validation advocates the E-CLM ensemble prediction approach
for ranking the computer-generated molecular designs, aiming to
identify bioactive molecules with new scaffolds (core structures).

Synthesis and bioactivity testing generated molecules
Motivated by the positive results of the scaffold-hopping exercise
for hit finding, we synthesized two of the computer-generated top-
rankedmolecules (17, 20; 99/100 votes) and derivatives thereof (18,
19, 21, 22). De novo designs 17 and 20 were selected from all
computer-generated molecules receiving 99/100 votes by the
E-CLM ensemble model. Aiming to distinguish between these top-
scoring molecules we used TIGER software (v19.7, inSili.com LLC)
for target prediction and grouped the molecules according to their
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scaffolds. Scaffold S1 (Fig. 5) was the most frequently generated
core of the de novo designs, for which PI3K binding or inhibition
was predicted by TIGER. De novo compounds 17 and 20 received
favorable TIGER scores (1.8 and 2.1). They are structurally closely
related to the known dual Bruton’s tyrosine kinase (Btk) and PI3Kδ
inhibitor 23 and PI3Kγ/δ inhibitor 24 (Fig. 5)57,58. It is noteworthy
that molecules 17, 20, 23, and 24 were not contained in the CLM
training or fine-tuning data. The highest similarity of 17 and 20 to
compounds from the CLM fine-tuning set were 57 and 63%,
respectively. These compounds feature the same pyrazolopyr-
imidine kinase hinge binding motif, but the de novo-generated
molecules structurally differ in sidechain positions R1-4 (Fig. 5). The
generative molecule construction method re-created the known
generic scaffold S1 with new sidechain variations. However,
ensemble E-CLM scoring alone could not differentiate between
compounds 17 and 20. Both received equally confident votes. We
chose this particular example to investigate the applicability of the
generative approach to hit expansion rather than hit finding. Such a
situation emulates hit-to-lead development in medicinal chemistry.

Molecules 17 and20 couldnot beobtained via thepreferred retro-
synthetic routes suggested by IBM RXN (www.rxn.res.ibm.com)59. We,
therefore, devised suitable synthesis paths manually. The compounds
were afforded in seven and four steps, respectively (Supplementary
Information: Chemical Synthesis and Analytics). Purified compounds
were tested for direct PI3Kγ binding. The results of this assay revealed
potent activity in the nanomolar range (Kd values, expressed as the
average of N = 2 independent experiments: 17, 63 nM; 18, 52 nM; 19,
160 nM; 20, 120 nM; 21, 290 nM; 22, 13 nM; Supplementary Figs. 8–10).
Compounds 17 and 20 were considerably more active than hit com-
pound 1, which was appropriately reflected in the more confident
E-CLM voting (99/100 for 17 and 20; 80/100 votes for 1). The most
potent compound 22was devised manually, motivated by the original
de novo designs.

Aiming to rationalize the difference in activity between com-
pound 1 and the 4-amino-pyrazolopyrimidine derivatives 17–22,
automated ligand docking was performed using GOLD software60.
Plausible ligand binding poses in the modeled active site of human
PI3Kγ (PDB ID: 3ENE)57 were obtained for all molecules (Fig. 6).
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Induced-fit docking of molecules 17–22 suggested the aromatic and
exocyclic nitrogens forming key hydrogen bridges to the kinase hinge
residues Glu880 and Val882. Free energies of binding were estimated
to range from −29.8 to −34.7 kJmol−1 for compounds 1 and 17,
respectively (Supplementary Table 4). These values are generally in
agreement with the experimental bioactivities, reflecting the relatively

weaker kinase binding of compound 1. The 4-amino-
pyrazolopyrimidine derivatives 17–22 achieved lower estimated
binding energies than compound 1, highlighting the importance of the
hydrogen bridges to the kinase hinge residues Glu880 and Val882. At
the same time, the docking results also reveal shortcomings of the
quantitative estimation of free energies, which, for this given an
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example, failed to correctly rank the 4-amino-pyrazolopyrimidine
derivatives 17–22 according to their experimental Kd values (Supple-
mentary Table 4).

Taken together, the results indicate that the molecular design
approach presented here could identify both new scaffolds and
structural analogs of bioactive compounds for computer-assisted hit
finding and expansion. E-CLM ensemble scoring proved applicable to
virtual ligand screening but could not differentiate between structu-
rally closely related potent ligands. Using an external scoring function
(TIGER software) for target prediction proved useful in this study,
complementing the twin-CLM approach.

To confirm the biological activities of the most potent com-
pounds 18 (Kd = 52nM) and 22 (Kd = 13 nM) in cells, we tested com-
pound effects on epidermal growth factor receptor (EGFR)-induced

activation of AKT/protein kinase B (PKB), a well-established effector
downstream of EGFR-PI3K signaling in cancer61. In response to growth
factor receptor and PI3K activation, AKT is phosphorylated on Ser473
by the Rictor-mTOR complex62. Thus, the phosphorylation of AKT on
Ser473 can be used as a surrogate read-out for PI3K activity in cells.
Treatment of the serum-starved humanbrain tumor cell line HD-MB03
with epidermal growth factor (EGF), the physiological ligand of the
EGFR, leads to the phosphorylation of AKTS473 (Fig. 7a and Supple-
mentary Fig. 11). Pre-treatment of the cells with 18 or 22 at 100nM
concentration prevents AKTS473 phosphorylation (Fig. 7a) and causes
an ~70–90% reduction in AKT phosphorylation levels (Fig. 7b). The
reduction in EGF-induced AKT phosphorylation by compounds 18 and
22 is comparable to the inhibition caused by an equimolar con-
centration of the pan-PI3Kα/β/γ/δ inhibitor copanlisib (BAY 80-6946)
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Fig. 6 | Compounds 18 and 22 repress PI3K-AKT signaling in tumor cells.
a Representative immunoblot analysis p-AKT (S473), AKT, and GAPDH (loading
control) using total lysates of human HD-MB03 tumor cells stimulated with
10 ngml−1 EGF for 15min in the absence or presence of compounds 18 or 22, or
copanlisib (Cop.). Compounds and copanlisib were used at 100 nM concentration.
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stimulatedDMSOcontrol.N = 2 from two independent experiments. cCellTiter-Glo
assay to monitor the viability of cells after 72 h of exposure to increasing con-
centrations of 18, 22, or copanlisib in a medium supplemented with FBS. A non-
linear fit of inhibitor versus normalized response is shown. Means (dots) and SD
(error bars) of N = 4 (copanlisib) or N = 7 (compounds 18 or 22) measurements
combined from two independent experiments are shown.

Fig. 7 | Docking poses of novel PI3Kγ inhibitors. a Global view of PI3Kγ (PDB ID:
3ENE) with stick models of molecules 21 (blue) and 22 (magenta) docked into the
active site of PI3Kγ.bClose-up view of the suggested binding poses ofmolecules21

(blue) and 22 (magenta). c Close-up view of the binding poses of molecules 17
(magenta) and 18 (blue). d Close-up view of the computed binding pose of mole-
cule 1 (in blue).

Article https://doi.org/10.1038/s41467-022-35692-6

Nature Communications |          (2023) 14:114 7



with reported sub-nanomolar inhibitory activity against PI3Kα and
PI3Kδ (PI3Kγ IC50 = 6.5 nM)63. In ourmedulloblastoma cell-based assay,
compounds 18, 22, and copanlisib had IC50 values of ~172, 188, and
19 nM, respectively. To exclude the possibility that reduced AKT
phosphorylation caused by compound 18 and 22 treatments is the
result of reduced viability or cell death, we monitored the viability of
compound-treated cells using the CellTiter-Glo assay. We found that
neither 18 nor 22 caused a significant reduction in viability at 100 nM
concentration (Fig. 7c), thus excluding an indirect effect on AKT
function due to toxicity. The predicted best-fit IC50 values in the
CellTiter-Glo assay for compounds 18, 22, and copanlisib are ~172, 188,
and 19 nM, respectively. In conclusion, both compounds 18 and 22
repress the activation of the PI3K effector kinase AKT under physio-
logically relevant conditions in human tumor cells at a low nanomolar
concentration.

De novo drug design aims to generate new molecular scaffolds
with desired properties and, at the same time, suggest more subtle
structuralmodifications for hit-to-lead optimization. The results of this
study positively advocate the CLM approach for both design tasks.
Methodological improvements inCLM training advanced the sampling
of target-focused virtual molecule libraries. The hybrid CLM classifier
included both structural and bioactivity information of the fine-tuning
molecules for the design of a virtual chemical library, thereby com-
plementing the available methodological repertoire for virtual
screening. It remains to be determined in more detail to what extent
the CLM pretraining method affects model performance in the
downstream task, i.e., molecular generation or ordinal classification.
Importantly, CLM training was performed without data augmentation
to study the positive effect of nucleus sampling on the generation of a
SMILES string. Future improvement might be possible by combining
nucleus sampling with data augmentation for CLM transfer
learning33,64–66. Given the setup of the present study, it was not possible
to determinewhether our hypothesis regarding the beneficial effect of
model pretraining on patented chemical structures holds true. The
long time required for hit-to-leadexpansion andpreclinical and clinical
drug development until a marketed drug is obtained will likely pre-
clude such an analysis. Irrespectively, three de novo designs were
successfully tested for bioactivity. Hit compounds 1 (80/100 votes), 17,
and 20 (99/100 votes) were correctly predicted to be active by CLM
ensemble scoring. The difference in votes is reflected in the high
nanomolar and low nanomolar dissociation constants, respectively.
Obtaining rapid experimental validation of a set of readily available de
novo-designed molecules prior to embarking on de novo synthesis
might help assess the value of computationally generated activity-
focused chemical libraries. Future prospective studies will also have to
assess the general applicability of this approach to other drug targets
from different target families, and improve the prediction accuracy of
the CLM classifier for structurally closely related molecules. Further-
more, although in this study we only considered in vitro bioactivity
(direct binding and cellular activity), the workflow could be further
extended to consider the multi-dimensional nature of drug discovery
projects (e.g., membrane permeability, aqueous solubility, and off-
target activity) in a data-drivenmanner. Drawing any conclusions as to
its superiority to other methods or broad applicability would be pre-
mature. Additional prospective studies will be necessary to help
answer this question. Whether a particular de novo design method
may be considered “better” than another one critically depends on the
specific task, rendering any general method evaluation challenging.
We consider practical application the best judge and a way forward.

This study highlights the versatility of generative deep learning
for hit and lead finding in drug discovery. The computational pipeline
can be used to both create new molecules and screen libraries of
existing compounds. We envision future projects in which de novo
design methods are first validated for physically available molecules
froma compound repository or commercial suppliers before investing

in more expensive and time-consuming syntheses of computer-
generated molecules. This strategy could potentially help accelerate
the design-make-test-analyze cycle of drug discovery67.

Methods
Target selection
The protein target PI3Kγ26 was selected on the basis of the data avail-
able in the DTC35 database. We selected one of the targets with the
highest number of annotated data points. Molecules with activity
entries satisfying each of the following conditions were kept (standard
relation: “=”, standard unit: “nM”, substrate value: “10”, substrate unit:
“μM”, test inhibitor type: “competitive inhibitor”, compound con-
centration value: “0.001–50”, test assay format: “biochemical”, test
assay type: “functional”, test assay subtype: “enzyme activity”). This
filtering step resulted in a dataset containing 198molecules. Duplicate
entries of small molecules with orders ofmagnitude difference in their
reported activity were deleted (Supplementary Fig. 1).

Training data
The training molecules were represented as canonical SMILES strings
using the RDKit package (v. 2019.03.2, https://www.rdkit.org). SMILES
strings with a length of up to 90 characters were retained and stan-
dardized in Python (v. 3.6.5) by removing salts and duplicates. The
CLM was pretrained on the pharmaceutical subset of the US patent
database34,68. After the processing, 839,674 uniquemolecules encoded
as canonical SMILES strings constituted the pretraining data. PI3Kγ
inhibitors with reported bioactivity ≤100 nM in the DTC database were
used for the CLM transfer learning (“fine-tuning set”). This criterion
resulted in a fine-tuning set containing 43 molecules.

CLM pretraining and fine-tuning for the generation of SMILES
strings
The CLM model was implemented in Python (v. 3.6.5) using Keras (v.
2.2.0, https://keras.io/) with the TensorFlow GPU backend (v. 1.9.0,
https://www.tensorflow.org). The model was implemented as a recur-
rent neural network with LSTM cells. The neural network was com-
posed of four layers with a total of 5,820,515 parameters (layer 1:
BatchNormalization, layer 2: 1024 LSTM cells, layer 3: 256 LSTM cells,
and layer 4: BatchNormalization) and trained with SMILES data enco-
ded as one-hot vectors. The CLM was trained using the Adam opti-
mizer (learning rate = 10−3) and the categorical cross-entropy loss
function. The training was performed over 40 epochs, where one
epoch was defined as one pass over all the training data. Transfer
learningwas performedby keeping the parameters of the first network
layer constant and training the second layerwith a learning rate of 10−4.

ELECTRA pretraining
The E-CLMmodel was implemented in Python (v. 3.6.5) using Keras (v.
2.2.0, https://keras.io/) with the TensorFlow GPU backend (v. 1.9.0,
https://www.tensorflow.org). The ELECTRA model was implemented
with the same architecture as that of the generative CLM, i.e., as a
recurrent neural network with LSTM cells. Model training was per-
formed with the Adam optimizer (learning rate = 10−3, 50 epochs) and
the binary cross-entropy loss function.

Ordinal classifier training
The hybrid CLM network contained the weights of the pretrained
E-CLM plus an additional feedforward layer with three sigmoidal
neurons. The model was trained to solve an ordinal classification task,
where each of the three output neurons corresponded to one class. k-
Means clustering (k = 5, Scikit-learn; https://scikit-learn.org/stable/)
was performed to group the fine-tuning molecules according to their
similarity based on Morgan fingerprints. Four groups were used for
cross-validation and one for classifier testing. The output threshold
values, the number of transfer learning epochs, and the oversampling
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values of the less represented classes were defined by cross-validation.
The best settings were selected based on the performance on the test
set, which was used once (oversampling: +40 molecules for the two
less represented classes, sigmoid threshold: 0.4, number of transfer
learning epochs: 200). Each of the 100 CLM models of the final
ensemble was trained with the best settings on all available data. The
neural network architecture was composed of six layers with a total of
5,646,982 parameters (layer 1: BatchNormalization, layer 2: 1024 LSTM
cells, layer 3: 256 LSTM cells, layer 4: BatchNormalization, layer 5:
Dropout, and layer 6: Dense, with three units, each with a sigmoid
activation function) and was trained with SMILES encoded as one-hot
vectors. The models were trained with the Adam optimizer and the
binary cross-entropy loss function (learning rate = 10−4, 200 epochs).

Temperature sampling
SMILES characters were sampled using the softmax function para-
meterized by the sampling temperature. The probability of the i-th
character being sampled from the CLM predictions was computed as
(Eq. 1)

qi = expðzi=TÞ
�X

j
expðzj=TÞ, ð1Þ

where zi is the CLM prediction for character i, T is the temperature,
and qi is the sampling probability of character i.

Nucleus sampling
SMILES characters were sampled with a temperature value equal to 1
(Eq. 2), considering only characters whose cumulative probability was
greater than the nucleus parameter (“top vocabulary”):

X

x2V ðpÞ
Pðx ∣ x1:i�1Þ>p, ð2Þ

whereV ðpÞ is the top vocabulary, x is an element of the vocabulary, and
p is the nucleus parameter.

Commercial compound library screening
Molecules were ranked based on their similarity (Tanimoto index,
Morgan fingerprints) to themolecules used to fine-tune the generative
CLM. As a fusion rule, the reciprocal sum of ranks was calculated to
obtain a score value, S, for each molecule (Eq. 3)56:

S=
XN

i= 1

1
rank xi

� � , ð3Þ

where i runs over all N fine-tuning molecules, and rank(xi) is the rank
obtained from the similarity between the considered design and the i-
th molecule of the fine-tuning set (the higher the similarity, the higher
the rank). Greater S values correspond to better rank positions in the
fused list of molecules.

Automated ligand docking
The crystal structure of human PI3Kγ (PDB ID: 3ENE) was retrieved
from the Protein Data Bank (https://www.rcsb.org/) and prepared with
MOE v.2019.0102 (Chemical Computing Group, Montreal, Canada)
with the following settings: QuickPrep module: “Preserve Sequence
and Neutralize”; “Use Protonate 3D for Protonation’ = True; ‘Allow
ASN/GLN/HIS “Flips” in Protonate 3D’ = True; ‘Delete Water Molecules
Farther than 4.5 Å from Ligand or Receptor” = True, Tether Receptor:
Strength = 10, Buffer = 0.25; Fix: “Atoms Farther than 8Å from
Ligands”, hydrogens close to ligands not fixed; Refine: “to RMS Gra-
dient of 0.1 kcal/mol/Å”; “Retain QuickPrep Minimization
Restraints” = True. Ligand molecules were docked with GOLD v.5.2.2
within MOE v.2019.0102 (Chemical Computing Group, Montreal,
Canada): Efficiency= default, Score efficiency= 100; Early

Termination = [number:3, RMS= 1.5], GOLD scoring, Induced Fit, 80
poses per compound. Poses were refined with MOE GBVI/WSA dG (40
refinement poses)69, and the top-scoring pose of each compound was
selected for further analysis. The applied GoldScore function GBVI/
WSAdGestimated freebinding energies basedon four components: (i)
protein–ligand hydrogen bond energy, (ii) protein–ligand van der
Waals energy, (iii) ligand internal van der Waals energy, and (iv) ligand
torsional strain energy. Redocking of the crystalized small molecule
ligand (PDB ID: 3ENE, 1-methyl-3-naphthalen-2-yl-1H-pyrazolo[3,4-d]
pyrimidin-4-amine) yielded a root mean square deviation of 0.448Å
and an estimated binding energy of −33.93 kJmol−1.

Biochemical kinase binding assay
PI3Kγ binding assays were performed by Eurofins Discovery (https://
www.eurofinsdiscoveryservices.com) on a fee-for-service basis. KINO-
MEscan™ was used to determine the dissociation constant Kd. The
assay was based on the ability of a test compound to compete with an
immobilized active site-directed ligand. Competition of the test com-
poundwith the immobilized ligandwasmeasured via quantitative PCR
(qPCR) of the DNA tag of DNA-tagged kinase70. An 11-point three-fold
serial dilution of each test compound was prepared in 100% DMSO at
100× final test concentration and subsequently diluted to 1× in the
assay (final DMSO concentration = 1%). Dissociation constants were
estimated with a standard dose-response curve using the Hill equation
(Eq. 4)71:

Response=Background+
Signal� Background

1 + KHill slope
d =DoseHillSlope

� � , ð4Þ

where the Hill slope was set to −1. Curves were fitted using a nonlinear
least square fit with the Levenberg–Marquardt algorithm72,73.

Cells and cell culture for in-cell activity analysis
HD-MBO3 Group 3 medulloblastoma cells were cultured in RPMI
medium supplemented with 10% fetal bovine serum (FBS, both from
Sigma-Aldrich, St. Louis, USA), 1% Penicillin-Streptomycin, and 1%
GlutaMAX (both fromGibco/Thermo Fisher Scientific,Waltham, USA).
The cells were maintained at 37 °C in a humidified atmosphere con-
taining 5% CO2. Chemicals: Copanlisib (BAY 80-6946, Selleckchem,
Munich, Germany) and other compounds were dissolved in 100%
dimethyl sulfoxide (DMSO) at a stock concentration of 10 to 100mM
and stored at −20 °C. DMSO was used as solvent control in all assays.

Immunoblotting
The cells were seeded in six-well plates and starved in a serum-free
medium for 48 h before treatment. Cells were pretreated with either
DMSO (solvent control), 100 nM copanlisib (positive control) or
compounds for 3 h, and then treated for 15min with 10 ngml−1

recombinant human EGF protein (PeproTech, London, UK, Cat.100-
15). Cells were then lysed using RIPA buffer (30mM HEPES, pH 7.4,
150mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1%
sodium dodecyl sulfate, 5mM EDTA) supplemented with protease
(Complete Mini) and phosphatase inhibitors (PhosSTOP, both from
Roche, Basel, Switzerland) and cleared by centrifugation for 5min.
Protein concentration was measured using the Pierce BCA Protein
Assay Kit according to the manufacturer’s (Thermo Fisher Scientific,
Waltham, USA) instructions. Protein separation was performed on
Mini-Protean TGX (4–20%) SDS-PAGE gel and transferred to PVDF
membranes (both from Bio-Rad, Hercules, USA). After 1 h of blocking
with 5% non-fat dry milk, membranes were probed with primary anti-
AKT (#9272), anti-phospho-AKT (p-AktSer473) (#4060), and anti-
GAPDHantibodies (#2118, all fromCell Signaling Technology, Danvers,
USA,). HRP-linked secondary antibodies were used to detect the pri-
mary antibodies. Chemiluminescence detection was carried out using
ChemiDoc Touch Gel and Western Blot imaging system (Bio-Rad,

Article https://doi.org/10.1038/s41467-022-35692-6

Nature Communications |          (2023) 14:114 9

https://www.rcsb.org/
https://www.eurofinsdiscoveryservices.com
https://www.eurofinsdiscoveryservices.com


Hercules, USA). Integrated densities of protein bands from two inde-
pendent IB experiments were determined using Fiji software74. Back-
ground signalwas subtracted fromallmeasurements. p-AKT signalwas
normalized to total AKT.

Cell viability/proliferation (Cell TiterGlo) assay
Cell viability was determined using CellTiter-Glo® 2.0 Cell Viability
Assay (G9242, Promega,Madison, USA). About 500 cells per 20μl were
seeded in a flat bottom 384-well plate (781098, Greiner bio-one,
Kremsmünster, Austria). Increasing concentrations of compounds
were deposited on cells using an HP Digital Drug Dispenser (Hewlett-
Packard, Palo Alto, USA) with DMSO total volume normalization. After
72 h, the CellTiter-Glo reagent was added (volume/volume) following
the manufacturer’s instructions. Luminescence representing the
number of viable cells was quantified with a Cytation 3 imaging reader
(BioTek, Winooski, USA). Measurements from a total of N = 4 (copan-
lisib) or 7 (compounds 18 or 22) technical replicas were combined
from two independent experiments. Prism 9 software (GraphPad
Software, San Diego, CA, USA) was used to calculate best-fit values of
inhibitor vs. normalized response and to predict IC50.

Chemical synthesis and analytics
For a full description of the chemical synthesis and compound analy-
tics, see the Supplementary Material.

TIGER target prediction
TIGER software (version 19.7, inSili.com GmbH, Zurich, Switzerland)
was used as described in ref. 75. Molecules were represented in terms
of CopyCATS (version 3.2) topological pharmacophore descriptor
vectors for input to TIGER76. Any predictions of PI3K subtypes were
considered correct predictions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training data used in this study are available from Zenodo at
https://zenodo.org/record/7370858 (https://doi.org/10.5281/zenodo.
7370858).

Code availability
The computational framework presented in this study and the pre-
trained neural network weights are available from Zenodo at https://
zenodo.org/record/7370858 (https://doi.org/10.5281/zenodo.7370858).
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