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Abstract

Multiparametric quantitative imaging biomarkers (QIBs) offer distinct advantages over 

single, univariate descriptors because they provide a more complete measure of complex, 

multidimensional biological systems. In disease, where structural and functional disturbances 

occur across a multitude of subsystems, multivariate QIBs are needed to measure the extent 

of system malfunction. This paper, the first Use Case in a series of articles on multiparameter 

imaging biomarkers, considers multiple QIBs as a multidimensional vector to represent all 

relevant disease constructs more completely. The approach proposed offers several advantages 

over QIBs as multiple endpoints and avoids combining them into a single composite that obscures 

the medical meaning of the individual measurements. We focus on establishing statistically 

rigorous methods to create a single, simultaneous measure from multiple QIBs that preserves 

the sensitivity of each univariate QIB while incorporating the correlation among QIBs. Details 

are provided for metrological methods to quantify the technical performance. Methods to reduce 

the set of QIBs, test the superiority of the mp-QIB model to any univariate QIB model, and 

design study strategies for generating precision and validity claims are also provided. QIBs of 

Alzheimer’s Disease from the ADNI merge data set are used as a case study to illustrate the 

methods described.

Keywords

Multiparametric quantitative imaging; multivariate biomarker; multidimensional vector; technical 
performance; precision; reproducibility; validation; Alzheimer’s Disease

1.0 INTRODUCTION

Quantitative imaging biomarkers (QIBs) are objectively measured, ratio or interval scale 

characteristics derived from one or more in vivo images that indicate a normal biological 

process, a pathogenic process, or a response to a therapeutic intervention.1. The Quantitative 

Imaging Biomarker Alliance (QIBA) initiates and leads efforts to improve the value and 

practicality of QIBs by developing biomarker profiles that clearly define the properties of 

the biomarkers as reliable and robust measures of the pathophysiology of disease2. QIBA 

published a series of papers in 2015 to specifically address the use of metrological standards 

to validate a single QIB, including a detailed review of methods to measure the technical 

performance1, 3–6. When combined, multiple QIBs form a multiparametric QIB (mp-QIB), 

which can provide additional clinical utility over each single QIB for characterizing 

tissue, detecting disease, identifying phenotypes, detecting longitudinal change, predicting 
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outcomes, among other potential intended uses. Recognizing the growing importance of 

multiple QIBs in complex diseases, QIBA leadership created a metrology group to discuss 

multiparametric imaging7. The result is a new series of papers that address establishing the 

profiles for mp-QIBs in four different use cases8–11.

In the introductory paper to the series, Obuchowski et al.10 describe four use cases for mp-

QIBs. This paper focuses on Use Case 1, wherein p QIBs, (X1, …, Xp), are treated as a p-

dimensional multivariate descriptor of a specified medical condition. In contrast, considering 

the QIBs separately as multiple endpoints does not consider their interrelationship within 

subjects and introduces multiplicity issues. However, combining them ad hoc could result 

in a composite that might obscure their medical meaning. Use Case 2 combines (X1, …, 

Xp) into a categorical model for classifying a patient-specific phenotype9. Use Case 3 

combines (X1, …, Xp) into a score for forecasting the risk of occurrence of a future event 

of interest such as death, disease progression, or recurrence8. Finally, Use Case 4 involves 

deriving data-driven imaging markers, which may or may not be biomarkers as defined 

by the Biomarkers Definitions Working Group11, 12 because they may lack a mechanistic 

association with a biological or pathogenic process, yet nonetheless may identify patterns 

that relate to clinical outcomes and therefore have potential clinical use.

In many, if not most, diseases, univariate measurements do not entirely address the need for 

an overall assessment of treatment efficacy13, leading the way to using multiple endpoints 

and multivariate models to evaluate efficacy. A simple PubMed search, conducted in June 

2022, using the terms (“Multiparametric” OR “Multivariate”) AND (Quantitative Imaging 

Biomarker) over the last ten years resulted in 767 published papers that span a broad range 

of diseases from kidney tissue characterization14 to glioma15. The search results show a 

sharp increase in multiparametric use from 2012, when 20 papers were published, to 2021, 

when 147 articles were published, clearly demonstrating the continuing and growing interest 

in developing a complete description of complex diseases.

Multiple endpoints are often used because there is little consensus in many diseases on 

which of the biomarkers represents the primary manifestation of the disease or even if there 

is a primary signal of disease response to treatment16. For example, progression in solid 

tumor cancers is primarily measured by estimated changes in whole-body tumor burden. 

However, fluorodeoxyglucose (FDG) PET imaging measurements of glycolytic activity, 

MRI measurements of necrosis, and Hounsfield units of density offer additional information 

on the status of the tumor burden. Furthermore, different disease manifestations add to the 

entire complexity of assessing changes in the disease due to treatments that, while targeting 

a specific component of the disease, can affect endpoints both upstream and downstream of 

the primary mechanism of action.

The use of imaging in the description of disease status has expanded beyond measuring 

size to the evaluation of morphological evolution, texture, and cellular function. One of 

the most commonly recognized QIBs is the use of tumor size to evaluate cancer response 

to treatment. However, oncology imaging is quickly moving toward a more complex 

description of tumors and their response to more complex treatments17–20. Bosca points 
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out that using multiple QIBs to determine treatment response is essential to capture the 

numerous dimensions of cancer progression21.

The evolution of cardiac imaging also shows the field’s growth from manual size 

estimates to tissue characterization and measures of cardiac function22–25. Additionally, 

cardiovascular plaque evolved from simple carotid intima-media thickness and luminal 

diameter measurements to a full tissue characterization of the arterial plaque26–28.

In central nervous system neurodegenerative disease research, objective measures of brain 

size or volume are now accompanied by measures of connectivity, functional activity, and 

perfusion29, 30. Other therapeutic areas have followed suit.

Combining these QIBs into a single determination of longitudinal change has been primarily 

limited to using multiple endpoints or as a composite endpoint for staging, disease 

categorization, or risk17, 31–38. The use of multiple endpoints in clinical trials is so common 

that the Food and Drug Administration (FDA) has issued guidance on their use39. Less 

common is the use of multiple QIBs as correlated descriptors of the disease to arrive at a 

single, simultaneous, quantitative assessment of longitudinal change.

The mp-QIB concept as a multidimensional vector of QIBs has much in common 

with artificial intelligence (AI) systems that use vector-based similarity to a training set 

of biomarkers to determine a disease state. The mp-QIB and AI-based bioinformatics 

approaches both consider a pool of candidate QIBs from which a final set is selected 

that, together, associate more highly with or better predict treatment effect on the clinical 

outcome than any single QIB. While the multidimensional mp-QIB descriptor explicitly 

measures the disease by a vector function, an AI approach considers the QIBs as inputs into 

a model that produces an output that measures similarity to a known disease state or a future 

treatment effect, usually as a diagnostic. Different or additional training sets could modify 

the AI function even for a specified intended use, while the component QIBs explicitly 

define the mp-QIB.

This manuscript establishes statistically rigorous methods to mathematically create and 

evaluate a single, subject-specific, simultaneous assessment of multiple QIBs as a 

multidimensional descriptor. The mp-QIB can be used at a single time point to measure 

disease severity or longitudinally to measure change, for example. The mp-QIB is 

contrasted to other types of multivariate methods, such as multivariate analysis of variance 

(MANOVA), repeated measures, and composite biomarkers.

2.0 THE CASE FOR A MULTIPARAMETRIC BIOMARKER

Complex decisions on treatment efficacy are increasing as drug development focuses 

on mechanistically confounding causal pathways40. Capturing information about multiple 

pathological processes potentially increases both sensitivity and specificity to longitudinal 

changes from therapeutic combinations41. Recognizing the case for using multiple endpoints 

in treatment effect evaluation, the Multiple Endpoints Expert Team in 200742 focused 

on multiple univariate disease descriptors (co-primary endpoints), the reverse multiplicity 
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problem of requiring statistical significance for all univariate analyses, and the resulting 

corrections that preserved study wise Type 1 (i.e., false positive) error rate.

Alternatively, consistent with AI, multiple QIBs can be regarded as a set of independent and 

correlated descriptors to express a multivariate magnitude and direction of change. Each of 

the p QIBs acquired on each subject is a vector in a p-dimensional space. Each QIB can 

change on its own or be accompanied by changes in other, possibly correlated, QIBs to 

fully describe the state of the disease and better measure longitudinal changes which may 

result from a therapeutic intervention. To illustrate, Figure 1 is a multivariate depiction of 

the distribution of two QIBs. Figure 2 is a 3D depiction of the change in three QIBs across 

baseline (mp-QIB0) and follow-up (mp-QIB1).

We present a method to mathematically combine two or more QIBs in a manner that 

does not degrade the performance of any single QIB while considering the complementary 

information from all QIBs that measure different, medically meaningful constructs of 

the disease. These constructs are disease characteristics that are not measured directly 

(otherwise known as latent) but are described by one or more QIBs. Examples of latent 

constructs of disease are metabolic activity measured by FDG-PET and cell death measured 

by volume or size. These constructs and the validity of the QIB to measure these constructs, 

otherwise referred to as construct validity, should be established with a validated QIB 

profile43 before the development of the mp-QIB.

A well-defined and statistically rigorous multivariate function can combine the QIBs into a 

single mp-QIB that meets the definition of a QIB provided by Kessler et al.1, which has the 

same metrological properties as a univariate QIB as outlined in Raunig et al.3.

2.1 Limitations of Current Multiple Biomarkers Solutions

Currently, the solutions to multiple quantitative measurements of disease most commonly 

use multiple endpoints (e.g., co-primary endpoints) or composites that use logic operators 

(i.e., AND and OR) to determine an event based on thresholds. These methods are described 

briefly and contrasted with the mp-QIB.

2.1.1 Multiple Co-Primary Endpoints—When using multiple co-primary endpoints 

univariately to evaluate treatment effects in a clinical trial, a common success criterion 

is that they all must be statistically significant to declare treatment efficacy39, 44–47. The 

statistical implications are that for all of the co-primary endpoints, the treatment is expected 

to have an effect in the same direction, although each may evaluate a different disease 

construct at the same or different stages of disease progression. The directional hypotheses 

tested for the co-primary endpoints are

H0: Δi = 0 for at least one of tℎe I biomakers,

H1: Δi > 0 for all of tℎe I biomakers,
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Where i = {1, 2, … I} indicates the ith endpoint in the set of I endpoints, and Δi is the 

treatment versus placebo difference of the ith endpoint. The null hypothesis H0 can be 

rejected in favor of H1 if each component null hypothesis H0i: |Δi| = 0 is rejected in favor of 

H1i: |Δi| > 0. However, unless the endpoints are highly correlated, this procedure can have 

very little power, known as the reverse multiplicity problem43. To avoid lack of power, it is 

sometimes clinically acceptable to identify the most important of the co-primary endpoints 

as the single primary endpoint on which trial success is based, with all others considered as 

secondary and evaluated only if the primary endpoint is statistically significant based on a 

gatekeeping procedure47, 48

The above hypotheses are contrasted to the classical hypothesis test of H0: |Δi| = 0 for all I 
biomarkers vs. H1: |Δi| ≥ 0 with strict inequality for at least one i. For this hypothesis test, 

O’Brien proposed a global test statistic (GTS) which, under H0, is standard normal (mean 0, 

variance 1) when the endpoints are multivariate normal13. Pocock et al. extended O’Brien’s 

GTS to binary and survival data49.

2.1.2 Composite Endpoints and Their Limitations—Cordoba defines a composite 

endpoint as “… two or more component outcomes” and “patients who have experienced 

any one of the events specified by the components are considered to have experienced 

the composite outcome.”50. A composite endpoint can be attractive clinically since each 

endpoint describes the disease burden within each subject. Typically, composite endpoint 

decision rules are designed from the medical perspective and determine a binary outcome 

or event from a priori-defined thresholds applied to continuous QIBs and any hierarchical 

relationships. Continuous composite endpoints are also increasingly used as clinical trial 

endpoints51–53. Examples of composite endpoints that use thresholds to define events are 

shown in Table 1.

The most common criticisms of composite endpoints are an implied assumption of uniform 

directionality of the components and component weights that are not clearly defined and 

often ad hoc54. Another common critique of composite endpoints is that they obscure 

the relative clinical importance of the component endpoints. Hierarchical composites of 

prioritized endpoints have been proposed to emphasize composite components that may 

be medically more meaningful55–62. However, these methods may not be appropriate 

when there are imbalances between treatment arms, the interpretation of the results is not 

completely clear, or the null hypothesis tests for non-inferiority rather than superiority63, 64.

2.1.3 Multivariate techniques—Several multivariate methods exist that simultaneously 

provide a multivariate analysis of disease. Each method listed in Table 2 uses multiple 

endpoints to arrive at a simultaneous inference of the effects of the covariate(s). In Section 

7.2 we will address the last listed test, the use of a single, vector-based metric derived 

by a pre-defined distance function that considers the correlation between endpoints in the 

derivation. A full description of the use of p-multiple vectors in statistical inference is 

beyond the scope of this paper and is detailed in Johnson and Wichern65.
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3.0 QIB COMPONENT PROPERTIES

Each QIB should be validated univariately as a reliable measure of its associated disease 

construct. Selection of each component QIB should consider the following:

• Medical importance, including disease construct being measured,

• Image acquisition,

• QIB measurement,

• QIB normality assumptions, and

• QIB technical performance characteristics (bias, precision, linearity, limit of 

quantitation, potential for cross-reaction, etc1).

3.1 Medical importance

An initial pool of QIBs widely considered medically important in measuring disease 

progression should be compiled. These QIBs may include one or more data-derived 

radiomic QIBs addressed in Use Case 411. Examples of radiomics markers that may be 

associated with disease severity are surface texture, or “spicularity,” for solid tumors66, and 

gray-level variance of the left hippocampus and gray-level cooccurrence matrix correlation 

of the right precuneus for Alzheimer’s Disease67.

3.2 Image acquisition

Importantly, QIB candidate selection should also consider scanner availability, scanner 

settings, standard operating procedures, subject preparation, subject positioning, scanner 

settings, and other conditions for image acquisition. The ease of image acquisition needed 

to extract a complete set of component QIBs impacts the ability to limit missing QIBs. 

Methods to impute one or more missing QIBs are discussed later in Section 3.4. Still, 

imputed data, even when using the widely recommended method of multiple imputation, are 

uncertain and thus do not completely reduce the impact of missing data, especially at the 

patient level68.

3.3 QIB Measurements

A QIB measurement is a quantitative variable with a meaningful zero (i.e., a ratio variable) 

or one that can be used to measure change (i.e., an interval variable). Each QIB may be 

continuous or discretized but cannot be ordinal. For example, researchers may wish to group 

QIB measurements into categories defined by empirical quantiles, e.g., quartiles. However, 

the categorical scores of a Likert scale (e.g., 0-None /1-Mild /2-Moderate /3-Severe) are 

ordinal and thus do not meet the definition of a QIB.

Very often, rounded or truncated data often occur when the image data output is taken from 

a user display system where the displayed value is primarily for clinical use. When possible, 

it is best to use unrounded or untruncated data when available to avoid bias or inaccurate 

variance estimations69
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For the development of the mp-QIB, the set of QIBs must be multivariate normal, in 

which case each QIB component must be normally distributed or transformable to a normal 

distribution. Normality transforms may be defined canonically (e.g., log transform) or by 

using a power transform method70.

3.4 Missing Data and Data Below the Limit of Quantification

It’s possible and even likely that there will be missing QIB data among the multiple 

QIB components of the mp-QIB. A QIB component may be missing for several reasons, 

including a missing or unacceptably poor quality scan, a calculated value beyond what 

is physically possible, scanner availability, or measurements outside the QIB profiled 

measurement interval. Most often, this last reason is due to a QIB value below the lower 

limit of quantification (BLOQ)71, which the scanner manufacturer usually defines as a 

quality control measure.

For novel or specialized imaging modalities, widespread unavailability for the context of 

use may preclude the use of that QIB for the mp-QIB model development. Missing QIB 

values due to a more random occurrence can be addressed by either casewise deletion of the 

multivariate observation or imputation of the missing values72. In general, casewise deletion 

is discouraged unless missing values are rare or the unlikely assumption holds that the data 

are missing completely at random (MCAR), that is, the probability of missing data does not 

depend on any data73, 74. Any mp-QIB profile should address missing data with a sensitivity 

analysis of different missing data scenarios.

Data are missing at random (MAR) when the probability of missing values depends 

on the observed data. When data are MAR, casewise deletion introduces bias into the 

statistical analysis. Under MAR, multiple imputation, among other imputation techniques, is 

a quickly implemented alternative to casewise deletion that accounts for missing data and 

their uncertainty. An abbreviated list of the imputation methods and their advantages and 

disadvantages are shown in Table 3. Deep learning imputation models75, not shown in Table 

3, are promising but are not commonly used and are not discussed further.

Some multivariate methods for multiple imputation rely on multivariate normality; therefore, 

imputation for calculating the mp-QIB should be conducted using the normal transformed 

QIBs when appropriate. Importantly, imputations for missing QIBs should be checked for 

reasonableness at the subject and cohort levels.

When QIB values are below the manufacturer-specified quality control (QC) lower limit, 

the value recorded by the scanner is “BLOQ” or “<LOQ” or simply as missing. Some 

examples are lower limits of iodine and iron content for dual-energy computed tomography 

(DECT)76 and the wall filter settings for Doppler ultrasound frequencies77, 78. Consequently, 

calculating the mp-QIB must consider the existence of BLOQ values. Therefore, when 

BLOQs occur often, some consideration should be given to removing that QIB from the 

choice of QIB components, at least for the intended subject population..

These values are very often actually measured by the scanner and only output as “BLOQ” 

or “<LOQ.” It is recommended that the actual measured values be used if it is possible to 
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recover these from the scanner output.79, 80. If they cannot be recovered, the BLOQ values 

can be imputed using multiple imputation or Bayesian methods81–85. Often, LOQ/2 is used 

to impute BLOQ values for ease of implementation. However, Harel et al. and others have 

demonstrated that this method can result in a significant bias for even modest incidences 

of BLOQ values81, 85–87. In addition to imputation schemes, maximum likelihood models 

assuming a truncated normal distribution are also good at reducing bias in mean and 

variance estimation87.

It is recommended that if single imputation by LOQ/2 is used for convenience, as a first 

step in developing an mp-QIB, additional analyses should be conducted using the methods 

included in Table 3 to verify or confirm the results.

3.5 QIB Technical Performance

The technical performance of the mp-QIB will follow that of a single QIB with differences 

due to the multivariate distribution of the component QIBs, the requirement of the 

covariance of the QIBs to be positive definite, and the robustness of the mp-QIB to missing 

QIB components. Additionally, newly finalized FDA guidance for industry and FDA staff 

on quantitative imaging in radiological devices offers guidance for metrological performance 

metrics88.

The technical performance of each component QIB should be profiled before the selection 

of the QIB from the pool of QIB candidates. Each component QIB should meet the 

following conditions:

• Normally distributed or transformable to a normal distribution

• Linear relationship to the measurand (linearity)

• Linear measurement interval; and

• Longitudinal change is observed or known for the intended disease.

The linear relationship to the measurand is critical to demonstrate mp-QIB linearity in 

the absence of a multiparametric measurand. The linearity of each QIB to its respective 

measurand should have a slope of 1 to avoid the interpretability of non-constant bias. A non-

zero intercept for the individual QIB will be canceled when mean-centering or evaluating 

differences occur. See Supplemental Material 1 for proof of the use of QIB linearity to 

define mp-QIB linearity.

4.0 THE MP-QIB MODEL

4.1 Concept

For QIBs that describe a set of n constructs of overall health, Ψ, the set of QIBs, can be 

represented as

Ψ = ψ11, ψ12, …, ψ1k(1), … ψn1, ψn2, … ψnk(n),
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where there are k(n) variables per construct and k>0 for all n constructs (see Figure 3). 

In this example, different imaging modalities provide quantitative biomarkers for different 

constructs of chronic liver disease89.

In contrast to a multiparametric risk model8, the mp-QIB descriptor described here provides 

a measure of the state of the disease rather than acting as a predictor of risk or phenotype. 

The multivariate variable for the ith subject with p QIBs is

Xi = Xi, 1, …, Xi, p . Equation 1

Harrell recommends the number of subjects during the model development phase of the 

mp-QIB to be n≥15p, which is feasible in most cases due to the limited number of available 

QIBs90.

As shown in Figure 3, the latent state of the patient, Ψ, is measured as a function of the set 

of the multivariate QIBs

Ψ(X) = g(X) + v Equation 2

where g mathematically combines the n × p array of QIBs and v is measurement error. For 

clarity, in the sections to follow,

mp‐QIB =def Ψ(X) Equation 3

In its simplest form, g is defined as the vector sum of X for a set of orthonormal vectors, X, 

with magnitude ‖X‖ and direction Φ where

Xi = Xi, 1
2 + … + Xi,p

2 Equation 4

Φ = arccosine X1
∥ X ∥, …, Xp

∥ X ∥ Equation 5

In reality, the vector components of X are likely and even expected to be at least moderately 

correlated. A Euclidean distance function must also consider the degrees of similarity (i.e., 

correlations) between the multivariate set of vectors. This similarity takes the form of the 

correlation matrix, which can be easily shown to be equal to cosine similarity, defined as

cos(α) = Xi ⋅ Xj
Xi Xj

, Equation 6

often used in multivariate neural networks for similar feature selection91, 92.

The mathematical function, g, maps each multivariate vector, Xi, to a unique mp-QIBi. 

However, a unique mapping is not guaranteed for all distance functions. For example, 

Kullback-Leibler divergence often used in AI models is intrinsically asymmetric, does not 
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have a unique mapping, and does not satisfy triangle inequality93. Details of the function 

g(X) are described in Section 4.2.

4.2 The mp-QIB model function

For the simplest example of two independent and uncorrelated QIBs, each is distributed 

marginally as standard normal or symbolically as ~N(0,1). The Euclidean distance of a 

multivariate vector from a multivariate reference vector defines the function, g as

g Xi = Xi, 1 − Xi, r1
2 + Xi, 2 − Xi, r2

2 Equation 7

Where Xi,j is the jth QIB of the ith subject, and Xirj is the jth QIB reference vector

The covariance-normalized Euclidean distance between two multivariate vectors is referred 

to as the Mahalanobis Distance (DM)94. Alternately, the squared Mahalanobis Distance 

(DM2) is commonly used in multivariate pattern recognition and clustering95.

DM2 can be used to describe the disease states of subjects sampled from a population. For 

example, QIBs X, Y, and Z can be used to characterize subjects as cognitively normal (CN), 

having mild cognitive impairment (MCI), or having Alzheimer’s Disease (AD). For DM2, 

the reference vector is the zero vector 0 . DM2 is understood to be the squared distance from 

0 and is defined as

DM2 = XTΣ−1X, Equation 8

where,

Σ = E [X − E[X]][X − E[X]]T
Equation 9

is the population covariance matrix of the QIBs, and E[X] = (μ1, μ2, …, μp) is the array 

of QIB population means. Since the population variance is not typically known, the sample 

covariance matrix, S, is used instead and defined as,

S = 1
n − 1 ∑i = 1

n Xi − X Xi − X T , Equation 10

where X = 1
n ∑i = 1

n Xi = X1, X2, …, Xp  is the array of QIB sample means. Therefore, the 

DM2 statistic will be hereafter defined as DM2 = XTS−1X. Since DM2 is only defined for a 

multivariate normal set of QIBs, (n − p)DM2/p(n − 1) follows a non-central F distribution. 

In large sample sizes, this distribution can be closely approximated as non-central χdf=p
2  with 

non-centrality parameter λ2 = ∑i = 1
p μi296. Sufficient numbers for large sample sizes depend 

on both p and n and will be discussed further in Section 7.4.

To reduce the need to consider the non-centrality parameter in the development of the 

mp-QIB model, X is centralized as
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X X − E[X] Equation 11

to simplify the calculation of the sample means and variances97 (see Section 8.3.1). The 

difference between two subject-paired mp-QIB endpoints is defined as the DM2 of the 

differences between vectors (i.e., ‖X2 − X1‖) and not as DM2 − DM1 since two identical 

values for DM can be defined by two entirely different sets of QIB vectors. Thus

DM2 − 1 = X2 − X1
TS2 − 1−1 X2 − X1 , Equation 12

where

S = 1
n − 1 ∑i = 1

n X2 − X1 X2 − X1
T , Equation 13

If change over time is the interest, for example, treatment effects, Equation 11 is modified 

slightly to measure the average vector distance between two populations as follows:

DM(trt effect )2 − 1 = ntrtnpbo
ntrt + npbo

(DX)TSpooled 
−1(DX) Equation 14

where

Spooled = ntrt − 1 S2 − 1, trt + npbo − 1 S2 − 1, pbo
ntrt + npbo − 2 . Equation 15

and

DX = X(t = T)trt − X(t = 0)trt − X(t = T)pbo − X(t = 0)pbo Equation 16

5.0 CHOOSING THE QIB COMPONENTS OF THE MP-QIB

The initial candidate pool of QIBs should be chosen based on medical relevance and 

intended use. Once the candidate pool is selected, it should then be reduced to a more 

parsimonious set based on medical, imaging, and technical performance. Reasons to 

exclude a QIB include but are not limited to scanner availability, inability to transform to 

normality, poor reliability for measuring change, missingness, difficult or uncommon image 

acquisition, and frequent outliers.

Many commonly used methods for multiple feature reduction treat the QIBs as multiple 

variables used to explain or predict a dependent variable. Here, the dependent or descriptor 

variable is the mp-QIB; therefore, multivariate methods such as principle components better 

serve the development of the mp-QIB. The steps shown in the following section describe the 

selection of QIBs when the true state of the disease is unknown or unavailable.
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5.1 Steps for Multiple QIB Selection

5.1.1 Step 1: Build an mp-QIB candidate pool.

• Build a candidate QIB pool based on expert opinions without necessarily relying 

on a consensus opinion

• Example: Tumor progression98

– Tumor burden: Objective measure of size (CT/MRI)

– Tumor viability: Temporal perfusion (MRI)

– Tumor metabolism: FDG-PET

– Dynamic susceptibility: DCE-MRI and DSC

– Diffusion characteristics: MRI-DTI

5.1.2 Step 2: Review the QIB pool by all experts: The Delphi or a Delphi-like 

method can help arrive at a medical consensus for a reduced QIB candidate pool99–101.

5.1.3 Step 3: Evaluate QIB pool variables for selection and dimension 
reduction: Once the medically relevant candidate QIBs are collected, this pool can be 

further reduced based on the mathematical and practical concerns that include the following.

• QIB profile: The QIBs should have use profiles that reliably measure changes in 

the intended subject population.

• QIB distribution properties: Each candidate QIB should be a ratio variable 

with a meaningful zero or interval variable when only the difference vector is 

used.

• QIB measurement interval: The dynamic range or measurement interval should 

be sufficient for the intended use.

• Medical confidence: Changes in the QIB correspond to a change in the disease 

severity, and conversely, changes in the disease are reflected in changes in the 

QIB.

• Image acquisition: Calibrated scanners and imaging availability reduce the need 

for missing data imputation.

• Image Quantitation: Quantitation algorithms should be validated and 

equivalent5.

• Missingness: Missing QIB components should be MAR or MCAR.

Each QIB should measure a construct or specific disease feature (see Figure 3). The 

following are high-level functional considerations for QIB selection from the initial 

candidate QIB pool:

• Highly correlated QIBs: Highly correlated QIBs indicate that they essentially 

measure the same thing and may result in problems when inverting the 
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covariance, S (see Equation 10). As a general rule, correlations between two 

QIBs that exceed 0.8 should choose one QIB over the other

• Disease construct measurement: Each disease construct should be measured by 

at least one QIB and, ideally, more than three QIBs. The maximum number of 

QIBs per construct greatly depends on the complexity of a particular construct. 

Therefore, the limitation of QIBs is a more practical concern.

• Cross-construct QIBs: As a general rule, a QIB that covers multiple disease 

constructs should be avoided, though there will be exceptions when the 

constructs describe a higher-level latent construct.

• Repeatable: Each candidate QIB should demonstrate the ability to obtain 

the same measurement under identical (or near identical) conditions. The 

repeatability variance should be small enough to determine a clinically 

meaningful minimum detectable difference.

• Reproducible: Each candidate QIB should demonstrate the ability to obtain 

the same measurement under different imaging conditions, such as different 

scanners, sites, or readers.

• Ability to measure change: Each candidate QIB should be expected to change 

with changes in the disease severity.

5.1.4 Step 4: Exploratory Factor Analysis (EFA) and dimension 
reduction: This step is primarily meant to reduce the set of QIBs to those that measure 

the originally-intended disease constructs. The multiple QIBs are not used to predict or 

describe a clinical outcome; instead, they are evaluated in this step as latent construct 

descriptors. Each QIB loads primarily to only one construct or factor. Highly correlated 

QIBs that describe the same construct should be reviewed for possibly excluding one of 

them65, 102–104.

The result of an EFA should determine

• Whether the factors match the a priori determination of the constructs;

• That the QIBs are primarily associated with only one factor;

• That the factors and associated QIBs minimize the correlation between latent 

constructs; and

• That the interpretation of the factors is medically consistent.

A complete set of steps and instructions for using SAS/PROC FACTOR is provided by 

O’Rourke and Hatcher104, which can also be used to guide the user in R/factanal.

5.1.5 Step 5: Confirmatory Factor Analysis (CFA)—A confirmatory factor analysis 

(CFA) uses the estimated structure from EFA to test the hypothesis that the relationship 

between QIBs and the factors or constructs exists. CFA differs from EFA since the variables 

and number of factors are known10593. Confirmatory factor analysis will be discussed in 

more detail in the next section as a method for model validation.
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6.0 MODEL EVALUATION

Evaluation for the mp-QIB model will primarily demonstrate the mp-QIB model’s 

superiority to any univariate QIBs to lower or minimum detectable effect size. Cross-

validation helps to ensure against overfitting when finalizing the component QIBs. Typically, 

model cross-validation is conducted using a known clinical outcome or state as the 

dependent variable, such as survival in a risk model or a known phenotype in a classification 

model8, 9. Profiling the mp-QIB will have no comparable clinical reference to evaluate 

performance. In addition, multiple QIB change scenarios and QIB covariance can make 

the option of a multivariate phantom unlikely. Therefore, mp-QIB validation should be 

conducted in three phases:

1. Internal cross-validation of the constructs/factors and QIBs for each factor;

2. Internal confirmation of the QIB component selection using CFA; and

3. External validation of the superior ability of the mp-QIB to detect change.

6.1 QIB Selection Cross-Validation

Cross-validation of the QIB selection results from the EFA should be conducted to 

help ensure that the results can be generalized for the intended use. For example, a 

k-fold cross-validation method is best when datasets are moderate to small and hold-out 

datasets can be considered when the dataset is large. Additionally, bootstrap methods for 

factor identification and QIB selection allow for ensemble-averaging for loading factor 

determination.

6.2 mp-QIB Model QIB Component Confirmation

The CFA acts to confirm and test that the QIBs load onto the now-defined constructs, that 

the model meets parsimony requirements based on the covariance structure of the QIBs, and 

that the QIBs actually measure the constructs of interest. The CFA analysis solves the linear 

equation

y = Λη + ε

where y is a vector of observed indicators, Λ is the common standardized loading factor 

matrix, η is a vector of latent factor scores that are normally distributed and uncorrelated, 

and ε is a vector of unique QIB errors. CFA allows the latent factors to covary, whereas the 

EFA assumes that the latent factors were not correlated.

A general rule for conducting CFA is at least three variables per factor. However, in reality, 

the number of QIBs will be limited by technology, cost, and patient burden, and it may not 

be possible to meet this criterion. Therefore, while the overall results may be consistent with 

EFA, the fit statistics in these cases should consider this limitation and any impact of small 

sample sizes on the asymptotic test statistics106, 107.

CFA is traditionally used for multivariate psychometric instrument development when 

multiple manifest variables, such as scale items, are used to provide measures of a specific 

Raunig et al. Page 15

Acad Radiol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



latent disease construct. Similarly, the mp-QIB component QIBs are measured quantitative 

variables determined by the latent disease constructs. Since the CFA assumptions include 

multivariate normality of the variables and covariance between the factors, CFA may also 

prove helpful in developing the mp-QIB. Confirmatory factor analysis may be conducted 

using either PROC CALIS with SAS® or with R using the “lavaan.r” package. The 

procedures for the conduct of CFA are provided in detail by O’Rourke and Hatcher104 

and will not be detailed further.

6.2.1 Known Groups Analysis—The use of groups in which the disease is known to 

affect a specific disease construct may be used to validate the mp-QIB by detecting known 

or predictable changes. Examples may include a known genetic mutation or known changes 

due to age. Modeling disease progression may be best measured by multiple QIBs that 

could be followed through the different states of the disease by the progressive inclusion of 

different constructs. Conversely, a therapeutic response may be defined by the resolution of 

the progression in reverse. Importantly, a known-groups analysis must not define the groups 

using any component QIBs.

7.0 STUDY DESIGN

7.1 Study Design

The study designs for mp-QIB development will be similar to those provided in Raunig 

et al.3. They should follow the same considerations for longitudinal data and repeatability/

reproducibility estimates precision. Due to the increased likelihood of missing data from 

multiple imaging modalities, study designs should also consider sample sizes under the 

expectation of increased missingness.

7.2 Tests of Hypotheses

The goal of the mp-QIB is to be more sensitive to changes in the disease than any single 

QIB. Achieving this goal can best be demonstrated by requiring that any test for superiority 

compare standardized differences, such as that between two longitudinal visits, shown below 

as Cohen’s d

d = X − X1
σ Equation 17

where σ is the population standard deviation of the error. More commonly, the sample 

standard deviation is used instead (Hedge’s g) as

g = 2 X2 − X1
s2 − 1

Equation 18

where s2−1 is the standard deviation of the difference of the repeated measurements X1 and 

X2 under no-change conditions. If explanatory covariates are used, the repeated measures 

within-subject variance can be determined as a maximum-likelihood estimate from a mixed 

model with repeated measures.
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When used for measuring longitudinal change, the mp-QIB may test the null hypothesis 

that the mp-QIB is not better than any component QIB, stated as the following null and 

alternative hypotheses

H0:δmp − QIB ≤ δQIBi,  for any i = 1, …, p

HA:δmp − QIB > δQIBi,  for all i = 1, …, p

where δ is the mean effect size. The challenge of demonstrating the superiority of the 

mp-QIB is known as “reverse multiplicity,” or that the mp-QIB must be better than all QIBs 

to reject the null hypothesis.

In terms of sub-hypotheses for each QIB,

H0: ⋃
i = 1

p
H0i, H0i:δmp − QIB ≤ δQIBi

HA: ⋂
i = 1

p
HAi, HAi:δmp − QIB > δQIBi

The intersection-union test (IUT) of H0 is carried out by testing each H0i at the nominal 

significance level (e.g., 2.5%). If all are rejected, then H0 is rejected. Though there is no 

inflation of the Type 1 error rate under the IUT, the procedure is conservative, resulting in 

low power (inflated Type II error)44.

Since each candidate QIB should be fully profiled, a hierarchically clinical or medical level 

of importance may provide an alternative set of hypotheses to demonstrate that the mp-QIB 

is more sensitive than the clinically most important QIB.

If the QIBs are ranked in a predetermined order of importance such that d1 > d2 > … > dp, 

then the null and alternative hypotheses used to demonstrate mp-QIB superiority become the 

following:

H0:dmp − QIB ≤ d1,  and 

HA:dmp − QIB > dQIBi,  for all i = 1, …, p .

In fixed sequence multiple endpoint hypothesis tests, such as that described above, the 

fallback method provides an opportunity to test endpoints later to de-risk misspecification of 

the QIB order when there is no clear number one108, 109.
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Because dmp − QIB and dQIBi are correlated and likely and non-normal, tests of H0i may 

need to use non-parametric paired tests such as the Wilcoxon Sign Test110.

7.3 Retrospective versus Prospective Data

Data to develop, test, and validate an mp-QIB biomarker can be acquired in a prospectively 

designed study or, often more likely, using previously acquired epidemiological natural 

history data. The advantages of retrospective data include cost, time, and number and 

breadth of subjects, while the major disadvantage is the lack of control over the subject 

population. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a well-known 

example of a source of multiple neuroimaging modalities111. A list of the advantages and 

disadvantages of each type of study is shown in Table 4.

7.4 Sample Size

The samples should span the measurement range of each QIB. Also, the size should be large 

enough to provide sufficient degrees of freedom to estimate repeatability and reproducibility 

variances. Also, sample sizes should provide adequate power to detect superiority to the 

component QIBs for differences.

In addition to sample size for precision, the number of QIBs should also consider the 

following items.

• Exploratory Factor Analysis should ideally have more than 3 QIBs per 

construct104 but may need to be relaxed due to limitations of available QIBs.

• Sample size estimates for EFA and CFA can be calculated based on the bounds 

of the root mean square error of approximation (RMSEA) of the resulting 

model112. Typical values for factor analysis sample sizes are approximately 200, 

though smaller sample sizes may be adequate for typical numbers of QIBs. For 

comparison, multiple co-primary endpoints sample size determination methods 

described by Kolampally and Kohl113 and Yang et al.114, provide a general 

approach for multiple correlated endpoints (See Supplement 4).

• Sample sizes needed to treat the mean-centered DM2 as a central χ2 distribution 

with p degrees of freedom depend on both p and n. Results shown by Rencher 

provide approximate asymptotic sample sizes for different p115. For a feasible 

p=5 QIBs, Rencher shows, with some caution, that a large sample size is n=100.

7.5 Inclusion / Exclusion criteria

The criteria for subject inclusion should identically reflect the claim and context of intended 

use as well as the impact of missing data.

8.0 TECHNICAL PERFORMANCE

The technical performance metrics of the mp-QIB closely follow those for univariate QIBs3 

with differences due to the distribution properties.
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8.1 Estimation of the multivariate sample variance, S

The QIB covariance matrix, S, must be positive definite to be inverted when calculating 

DM2. When including two or more QIBs that are highly correlated, inverting S may fail due 

to the inclusion of near-collinear QIBs. Highly unbalanced scaling of the variables can also 

result in an unstable inverse covariance matrix that cannot be directly inverted. Covariance 

matrices that cannot be directly inverted may be regularized using the Hubert method of 

singular value decomposition, which sets problematic eigenvalues to a small number and 

then reconstructs S116. More commonly, the generalized inverse or pseudo-inverse of square 

matrices are used to avoid singularity problems117, 118.

Extensive data sets may require large amounts of computational time to calculate S. 

Methods to overcome long computation times include Cholesky (LU) decomposition and 

the minimum covariance determinant (MCD) method using the FAST-MCD algorithm 

of Rousseeuw and VanDriessen116, 119. The FAST-MCD algorithm can be found in 

R (rrcov, robust and robustbase), S-PLUS (cov.mcd), and SAS (Proc RobustReg). The 

MCD algorithm is a robust estimator resistant to outliers that can significantly affect the 

variance and covariance estimations. Additionally, caution should be exercised when using 

LU decomposition due to limitations associated with numerical integration, and double 

formatted numbers are preferred to floating point number format.

8.2 Linearity/Bias Monotonicity of the model function g

The model function, g, must meet the requirement that for two vectors, X1 and X2, the 

distance to the sum of the vectors from the origin is less than or equal to the sum of the 

magnitudes of the vectors, known as the triangle inequality theorem. For two QIBs, defined 

as vectors from the origin (re the requirement to be a ratio variable),

Xi, 1 + Xi, 2 ≤ Xi, 1 + Xi, 2 Equation 19

Satisfaction of triangle inequality will be the basis for establishing linearity to a virtual 

mp-QIB measurand.

Since there is no measurand for the mp-QIB to be compared against for linearity and bias, 

the functional requirements to meet the triangle inequality will be met when each of the 

QIBs has a linear relationship to its respective measurand (See Supplement 1). A non-zero 

intercept will be canceled for mean-centered DM or when difference vectors are used. When 

a single time point measures a disease status, a QIB constant bias will be included in the 

noncentrality parameter. Slopes not equal to 1 translate to a QIB-dependent non-constant 

noncentrality parameter.

8.3 Repeatability / Reproducibility

The following sections describe estimation for S under repeatable and reproducible 

conditions.
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8.3.1 Repeatability

8.3.1.1 Univariate Repeatability Coefficient-RC: The univariate repeatability coefficient 

(RC) is the least significant difference, at the 5% significance level, between two repeated 

measurements of a QIB taken under identical conditions3, 5.

RC = 1.96 2σW = 2.77σW Equation 20

where σw is the within-subject standard deviation of the repeated QIB measurements. The 

formula for RC above is valid when the degrees of freedom, v, is large for estimating σw. 

However, when v is not large, σw is estimated as sw with error and the more general formula

RC = 2t0.975(v)sW Equation 21

applies, where tq(v) is the qth quantile of a Student’s t distribution with v degrees of 

freedom.

RC is a special case of the total deviation index TDIq, which is a quantile q in the 

distribution of absolute differences between a measurement and another measurement 

obtained by a different measurement procedure120.

8.3.1.2 Multivariate Repeatability Coefficient-RCmp: The multiparametric repeatability 

coefficient (RCmp) can be defined analogously by considering the multivariate 

generalization of the t-statistic, the Hotelling T2 statistic where

T 2 = DM2 − 1
2 Equation 22

and DM2−1 is defined as in Equation 12. Under the null hypothesis that E(DX) = 0,

T 2

v
v − p + 1

2p F(p, v − p + 1), Equation 23

where v is the degrees of freedom for estimating the covariance matrix as S and F(v1, v2) is 

the F distribution with v1 and v2 degrees of freedom. For example, in test-retest studies of n 

subjects with two repeated measures per subject, v = 2n − n = n. Therefore, at significance 

level α = 0.05, the multiparametric repeatability coefficient for DM2−1 is

RCmp DM2 − 1 = 2pv
v − p + 1F0.95(p, v − p + 1) Equation 24

If v is very large compared with p, then, approximately, T2~2χ2(p), where χ2(p) is the 

chi-square distribution with p degrees of freedom, and

RCmp DM2 − 1 = 2χ0.95
2 (p) Equation 25

The multiparametric limits of agreement (mp-LOA) are then defined as
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LOAmp(repeatability) = 0, RCmp . Equation 26

which can be interpreted as the 95% prediction region for the true differences of DM2–1 

under identical image acquisition conditions.

A complete description of the derivation of RCmp for any number of repeated measures per 

subject and any significance level is shown in Supplements 2 and 3.

The agreement between two repeated measures of mp-QIBs can be measured in the 

aggregate using the multivariate concordance correlation coefficient (MCCC), extending 

Lin’s CCC beyond the agreement of univariate QIBs.

MCCC = 1 − trace((I − M)(I − M))
trace(I)

Where I is the identity matrix and M is the multivariate ratio of variances121. Details for the 

calculation of MCCC are found in Supplement 5

When combining repeatability from different groups, e.g., different sites, if a common 

covariance is assumed, the pooled covariance will define Sw for repeatability as follows:

Sw, p = ∑i = 1
k vi − 1 Sw, i/∑i = 1

k vi − 1 Equation 27

Test-retest repeatability may be tested for homogeneous covariance between test and retest 

scans. A modification to Levene’s test by Browne and Forsythe is driven by the data and has 

desirable operating characteristics for both size and power122. Also, procedures developed 

by O’Brien and by Tiku and Balakrishnan are robust to possible small departures from 

normality and may provide more reliable results123, 124.

8.3.2 Reproducibility—In metrology, Reproducibility is the closeness of agreement 

among replicate measurements on the same or similar objects under specified conditions125. 

Thus, The question is again whether a realization d = x2 – x1 of DX is significantly different 

from the expected difference E(D) = 0 = (0,0, … 0)1×p, where x1 and x2 are QIB vector 

observations for reproducibility factors 1 and 2, respectively. Therefore, Under the null 

hypothesis that E(DX) ≡ E(Xfactor1 − Xfactor2) = 0, Equations 23 through 25 can be used to 

similarly for two replicates per subject and define reproducibility as

RDCmp DM2 − 1 = 2p(v)
v − p + 1F0.95(p, v − p + 1) Equation 28

If v is very large compared with p, then, approximately, T2~2χ2(p), where χ2(p) is the 

chi-square distribution with p degrees of freedom, and

RDCmp DM2 − 1 = 2χ0.95
2 (p) Equation 29
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The multiparametric limits of agreement (mp-LOA) are then defined as

LOAmp(reproducibility) = 0, RDCmp . Equation 30

For test-retest.

In practice, though, different subjects from the same population are more likely due to the 

logistics and cost-wise difficulties of scanning subjects at different facilities and possible 

issues with ionizing radiation. Therefore, when repeated measurements are not possible, 

DM2–1 no longer applies to measure reproducibility. Instead, to demonstrate reproducibility, 

we must use the definition of DM as defined in Equation 12, and “trt” and “pbo” exchanged 

for “factor1” and “factor2” and DX = Xfactor1 − Xfactor2  is defined for the difference 

between the reproducibility factor means. Therefore, when different subjects are used in 

a reproducibility study, the null hypothesis tests that E Xfactor1 − Xfactor2 = 0, and the 

appropriate test statistic is the two sample T2 statistic defined by Johnson and Wichern65 as

T 2

n1 + n2 − 2
n1 + n2 − 1 − p

p F p, n1 + n2 − 1 − p , Equation 31

Since the same subjects will not be measured by both factor1 and factor2, it is critical for 

this scenario to define the inclusion criteria such that the subjects are from the population 

for the intended use of the mp-QIB and that the criteria are stringent enough to ensure 

homogeneity among subjects as much as practical.

Additionally, a test for equal covariance matrices should be included as measure of 

reproducibility. Several methods for testing for equality of covariance matrices are available, 

including the Wald statistic, the likelihood ratio test, and other normal-theory tests. However, 

these tests can be sensitive to even minor departures from the normality assumption of 

appropriately powered tests124. Schott provides a generalized Wald statistic for elliptical 

multivariate distributions, the assumed QIB distribution126. Robust and powerful methods 

proposed by both O’Brien123 and by Schott126 are also recommended as well as an 

eigenvalue-based comparison method by Garcia that is well-powered to detect modest 

differences in small sample sizes but avoids the sensitivity to differences due only to sample 

sizes123, 126, 127.

8.3.3 Variance estimate confidence bounds—While the sample variance of a 

normally distributed random variable follows a central χ2 distribution, the sample variance 

of the χ2 distributed random variable, DM2, will be calculated from the moments 

and adjusted for population and sample size. The sample DM2 variance estimate for 

repeatability or reproducibility is derived in detail for finite and infinite populations by 

Cho and Cho128 as

V ar(S) = μ4(n − 1) − μ2
2(n − 3) /[n(n − 1)], Equation 32
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where μ4 and μ2 are the fourth and second moments of a central χ2 distribution. From the 

definitions of the moments, this reduces to

V ar(S) = [8p(np + 6n − 6)]/[n(n − 1)] . Equation 33

The sample variance for small p is not χ2 distributed, and the degrees of freedom must be 

corrected for kurtosis of the mp-QIB distribution129. O’Neill129 shows that

Sn
χ2(DFn)

DFn σ2 Equation 34

where σ2 = 2p is the population variance and DFn is the degrees of freedom corrected for 

kurtosis, k, of the sample DM2 distribution, as follows:

DFn = 2n
κ − (n − 3)/(n − 1) Equation 35

and

κ = 3 + 12/p . Equation 36

The 95% coverage for S is

CI(α = 0.05) = 2p *
χ21 − α 2, DFn, χ2α 2, DFn

DFn
Equation 37

Alternately, for small sample sizes where n<20, Sn~F(DFn, ∞)σ2 and

CI(α = 0.05) = 2p * (F(.025, DFn, ∞), F(.975, DFn, ∞)) Equation 38

The results of a simulation for p=(2, 4, 6, 8) and n = (20, 100, 200) are shown in Figure 

4. The coverage for the confidence intervals for both the χ2 and F distributions are shown 

in Supplement 6. When n<100, the confidence limits for S are recommended to use the 

F-statistic.

9.0 ESSENTIAL CLAIM COMPONENTS FOR A MP-QIB

The claim components that are essential to the entire mp-QIB profile are provided in detail 

in Supplement 7.

10.0 CASE STUDY

10.1 Background

Alzheimer’s Disease (AD) is characterized by amyloid plaque deposition on several 

different brain regions as well as neuronal loss resulting in loss of metabolic activity and 

structural loss of regional and whole brain volume. Guerrero-Gonzalez et al. used the 
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Mahalanobis Distance to classify subjects to a known multivariate distribution130 and several 

authors used multiple imaging QIBs to predict time-to-event131, 132. Sur et al.133 evaluated 

the change over time due to a BACE inhibitor from six different brain volumes univariately 

and Schwarz et al. evaluated annualized univariate changes in five regional brain volumes 

as well as conducting an exploratory analysis of individual structures in four major brain 

regions134. However, to our knowledge, a vector-based estimation of longitudinal change has 

not been conducted.

One continuing issue for clinical trials is that enrollment has to tread a fine line between 

enrolling subjects who are actively progressing for the endpoint(s) being evaluated. 

Enrolling subjects too early in the disease may not progress or see changes in the endpoints 

during the study duration (placebo), and subjects too late in the disease may not be able 

to respond to any therapeutic intervention. Additionally, disease progression in AD is noted 

for several stages that correspond to different endpoints135, and uncertainty of the stage 

upon enrollment makes it difficult to rely on a single QIB. Therefore, using a mp-QIB for a 

multivariate assessment of AD may overcome the limitations of univariate QIBs.

10.2 Case study data

ADNI includes subjects between the ages of 55 to 90 from institutions in the US and 

Canada. The ADNI data consists of imaging from multiple modalities as well as other 

measures of neurodegeneration. This case study used the multiple QIB imaging data from 

the ADNIADNIMERGE dataset consisting of data from ADNI1, ADNI2, and ADNI GO 

databases136 to extract data from eight QIBs for assessing the effect of AD on the brain. 

No treatment information is available, and no analysis of treatment effect is conducted. 

Therefore, the hypotheses to test for the superiority of the mp-QIB, described in Section 

7.2, are to measure change in AD over time due to neurodegeneration. No consideration was 

made for the use of different therapeutic interventions.

As explained in Section 8, there is no mp-QIB measurand; therefore, the mp-QIB will be 

evaluated for superior sensitivity to measure change over time by comparing the mp-QIB to 

the univariate QIBs for change from baseline of the Month 24 results. No perceived medical 

order of importance was assumed for a multiple endpoints assessment, and rejecting the 

null hypothesis will require significant superiority over all of the QIBs included in the final 

model.

To download the data and the SAS/R/SPSS code necessary to create the ADNIMERGE data 

set, the following steps should be taken:

1. Register or log into the IDA.LONI.USC.EDU website;

2. Go to the “Download Study Data” tab;

3. Choose “Study Info” on the menu and choose “Data & Database;”

4. Choose the appropriate method, SAS/R/SPSS/Stata, for downloading the data 

and the code for merging the data sets; and

5. Run the code to create the ADNIMERGE dataset.
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10.3 Subject Selection

The inclusion criteria consisted of all ADNIMERGE subjects with any diagnosis who had 

Baseline and Month 24 scans for both PET and MRI. Subjects with no MRI scans data 

were not included. Missing QIBs for either visit were imputed using multiple imputation 

procedures in SAS Ver. 9.4. The following four diagnostic subgroups were used in the 

mp-QIB development:

• Cognitively Normal (CN);

• Early Mild Cognitive Impairment (EMCI);

• Late Mild Cognitive Impairment (LMCI); and

• Alzheimer’s Disease (AD).

The QIB initial candidate pool consisted of all QIBs within the data set except for 

intracranial volume (ICV), which is not expected to change. The QIBs included the 

following: FDG-PET, Amyloid PET (AV45), and structural MRI volumes for the entorhinal 

cortex, fusiform gyrus, middle temporal, ventricles, hippocampus, and whole brain. 

Covariables such as age, race, gender, ICV, and ApoE4 status were not considered in this 

analysis, but if included in a linear model, the QIB covariance for each subgroup would be 

estimated from a mixed effects model with repeated measures. Each QIB was determined 

to have a right-skewed distribution, and the log transform was used for multiple imputation, 

EFA and CFA, and mp-QIB calculation. A summary depiction of the workflow followed in 

this case study is found in Figure 5.

The EFA was conducted for each of the seven imputation runs. The mean factor loadings 

used to reduce the QIB candidate set to four QIBs as component QIBs and two factors 

as latent constructs of neurodegeneration. The baseline diagnoses were used to identify 

different stages of the disease; however, if the intended population for the mp-QIB extends 

from CN to AD, then the mp-QIB workflow should also consider using all subjects as one 

group. The EFA used the Procrustes method of rotation. Other methods, such as Varimax, 

had similar results.

10.4 Results

Using all subjects and diagnoses, the EFA identified two factors that explained almost all of 

the total variance (See Figure 6). The loading threshold of 0.4 was used in this illustrative 

example to allow for at least two QIBs per factor. However, there is no universal rule for 

an appropriate threshold, and one should be chosen based on the QIBs being evaluated, the 

number of latent disease constructs expected, and the intended use of the mp-QIB.

The final path diagram is shown in Figure 7. Ventricle and Whole Brain volumes were 

chosen to define Factor 1 and Entorhinal and Fusiform volumes to define Factor 2. There 

is also a considerable correlation between factors (ρ(F1,F2) = 0.7) which is consistent with 

the progression stages of dementia related to AD135. The comparison of the mp-QIB to the 

standardized differences, also known as the effect sizes, for each QIB is shown in Figure 8 

and also in Supplement 8 for paired QIB-to-mp-QIB comparisons. SAS® and MATLAB™ 

code used in this case study are provided in Supplements 9 and 10.
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The model fit statistics reviewed in this case study were goodness of fit index (GFI), 

absolute root mean square error (RMSEA), and Standardized residual root mean square 

(SRMR) since they provide more accurate information on goodness-of-fit104. The results 

indicate that the overall goodness of fit is good (GFI = 0.9), and the RMSEA estimate is 

larger than 0.05, possibly due to the imbalance of subjects between CN/EMCI/LMCI and 

AD and to transformed QIB distributions that are not quite normal, which would also affect 

the imputed variables.

The paired comparisons, however, are all highly significant (p<0.001), even when adjusting 

for multiple QIB comparisons. In addition, all subjects for all QIBs had mp-QIB effect size 

values larger than the univariate QIB effect sizes.

10.5 Case Study Conclusion

The mp-QIB absolute effect sizes are significantly larger than all univariate QIB effect sizes 

for each baseline diagnosis provided in the ADNIMERGE data set. In addition, multiple 

imputation allowed for all subjects who had a scan at both baseline and Month 24 but had 

a missing QIB to be included in the evaluation of the model as well as the estimation of the 

mp-QIB without the default casewise deletion that can occur in multivariate modeling.

11.0 DISCUSSION

In many if not most diseases, univariate measurements do not entirely describe the disease 

or overall assessment of efficacy13, leading the way to the using multiple endpoints and 

multivariate models. Multiple endpoints are often used because there is little consensus in 

many diseases on which of the biomarkers is most important, or even if there is a primary 

signal of disease response to treatment16. Furthermore, different disease manifestations add 

to the entire complexity of assessing changes in the disease due to treatments that can affect 

endpoints upstream and downstream of the primary mechanism of action.

The use of imaging in the description of many diseases has expanded beyond measuring 

size to evaluating morphological evolution, texture, and cellular function. For example, 

oncology imaging now includes both function and texture in response to more complex 

treatments17–20. The evolution of cardiac imaging also now includes multiple estimates of 

size, tissue characterization, and cardiac function22–25. Additionally, cardiovascular plaque 

evolved from simple measures of carotid intima-media thickness and luminal diameter to a 

full tissue characterization of the arterial plaque26–28.

Though all well-designed studies attempt to enroll a homogeneous subject population., 

inclusion criteria are very often necessarily broad for practical reasons. They often rely 

on imprecise criteria to accommodate enrollment. Therefore, different disease constructs 

may be involved at different times within the same clinical trial. A multivariate measure of 

disease could better accommodate the necessities of a less-than-homogeneous enrollment 

population.

Combining QIBs into a single determination of longitudinal change has been primarily 

limited to using multiple endpoints evaluated or as a composite endpoint for staging, 
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disease categorization, or risk17, 31–38. The mp-QIB concept as a vector of QIBs has 

much in common with AI systems. The mp-QIB and an AI-based bioinformatics model 

both use a pool of QIBs to develop a final set of univariate QIBs that, together, better 

predict treatment effect on the clinical outcome than any single QIB. However, the mp-QIB 

explicitly measures the disease by the defining vector function, while the AI model uses 

the QIBs to define a model that measures similarity to a known disease state. Even for a 

specified intended use, the AI function could be modified by different or additional training 

sets, while the component QIBs explicitly define the mp-QIB.

12.0 CONCLUSIONS

mp-QIBs overcome some intractable limitations of univariate QIBs and are better suited to 

evaluating complex diseases more comprehensively. As the ADNI collection of imaging data 

for AD research importantly includes objective measures of brain size as well as measures of 

connectivity, functional activity, and perfusion it was ideal in our use case for representing 

neurodegeneration more globally in AD. In clinical trials, the particular state of AD at 

any one time is not known with any precision due to the overlapping pathophysiologies of 

dementia133, which further exacerbates the problem of assessing neurodegeneration. This 

ambiguity in longitudinal disease progression seen in AD is arguably true for many other 

diseases. Fortunately, the impact of using mp-QIBs, particularly in complex disease, is that 

not only can an inference be made on the sample but also that each subject can be evaluated 

simultaneously for all of the biomarkers at a point in time, overcoming the severe and 

intractable limitations of several single QIBs, that are inadequately modelled.

The mp-QIB represents a vector-based method of simultaneously evaluating multiple 

constructs that form the overall etiology of a disease. Development of the mp-QIB, 

except for dimension reduction, follows the same concepts of technical performance for 

univariate disease for repeatability and reproducibility. While the steps to quantify technical 

performance require some additional considerations beyond those for univariate QIBs, the 

use of validly profiled QIBs as components offers the opportunity to reduce reliance on 

multiple comparisons adjustment decisions, hierarchical ordering of QIB importance, or ad 

hoc composite endpoint creation. It also provides an all-inclusive biomarker value for each 

subject.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of Abbreviations

AD Alzheimer’s disease

ADNI Alzheimer’s Disease Neuroimaging Initiative

AI Artificial intelligence

BLOQ Below the lower limit of quantification

CCC Concordance correlation coefficient

CFA Confirmatory factor analysis

CN Cognitively normal

CT Computed tomography

DCE-MRI Dynamic contrast enhanced MRI

DECT Dual energy computed tomography

DFn Kurtosis corrected degrees of freedom

DM Mahalanobis distance

DM2 Mahalanobis distance squared

DSC Dynamic susceptibility contrast imaging

DTI Diffusion tensor imaging

DX X2-X1

E[X] The expected value of X

EFA Exploratory factor analysis

EMCI Early mild cognitive impairment

FDA Food and Drug Administration

FDG Flurodeoxyglucose

GFI Goodness of fit index

LLOQ Lower limit of quantification

LMCI Late cognitive impairment
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LOA Limits of Agreement

LOQ Limit of quantification

MANOVA Multivariate analysis of variance

MANOVA-RM MANOVA Repeated measures

MAR Missing at random

MCAR Missing completely at random

MCCC Multivariate CCC

MCD Minimum covariance determinant

MCI Mild cognitive impairment

mp-QIB Multiparametric QIB

MRI Magnetic resonance imaging

PET Positron emission tomography

QIB Quantitative Imaging Biomarker

QIBA Quantitative Imaging Biomarker Alliance

RC Repeatability coefficient

RCmp Multiparametric RC

RDCmp Multiparametric reproducibility coefficient

RMSEA Root mean square error of approximation

S Sample variance estimate

SAS® Statistical analysis software
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Figure 1. 
Multivariate distribution of two QIBs, Middle Temporal Volume and Entorhinal Cortex 

volume with multivariate (black ellipse) and univariate (red dotted lines) 95% confidence 

bounds. A second set of confidence bound (blue dashed lines) show a Bonferroni-corrected 

set of univariate confidence bounds.
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Figure 2. 
Vector depiction of the multivariate change in QIB orthogonal vectors over two time points 

and the difference vector
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Figure 3. 
Depiction of the variables that describe the different constructs that define the total disease 

pathophysiology (ψ). The imaging examples shown provide biomarkers of liver disease

Raunig et al. Page 39

Acad Radiol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Simulated sample distributions of the mp-QIB variance estimates for different numbers of 

QIBs (p) and for different sample sizes (N).
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Figure 5. 
Case Study Workflow to develop a mp-QIB
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Figure 6. 
Scree plot for the multivariate Exploratory Factor Analysis identifying 2 major factors

Raunig et al. Page 42

Acad Radiol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Path analysis for the final mp-QIB model

Raunig et al. Page 43

Acad Radiol. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Box plots of DM effect size and individual QIB effect sizes for (a) Cognitively Normal, (b) 

Mild Cognitive Impairment and (c) Alzheimer’s Disease subjects.
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Table 1.

Imaging techniques where use multiple QIBs are used as a composite to assess longitudinal change or 

response of a disease to treatment. The biomarkers are combined using rule-based combinations or as 

descriptor variables in a model of risk and are not considered as a multi-dimensional descriptor of disease 

change over time.

Reference QIBs / Modality Disease Response Comments

Choi13
CT
Tumor size & Tumor 
density

Gastrointestinal 
stromal tumors 
(GIST)

Progression : size increase > 10% & 
change in density > - 15%
Partial response

Rule based decision with 
multiple throesholds for 
response

Cheson14 PET
CT Lymphoma CT: RECIST

PET: 5-Point Scale
Rule based response without 
fully combining CT and PET

PI-RADS15
MRI
PET
Ultrasound

Prostate Cancer T2, DWI, DCE, H-MRSI (PI-RADS)
PET and ultrasound (aspirational)

Selmeryd16 Echocardiograph Cardiac health
Multiple region velocities Mitral 
valve, early inflow, late inflow, mitral 
annular diastolic tissue velocity

Multiple endpoint 
determination of response

PI-RADS V 
2.117,18

Multiparametric MRI 
(mpMRI) Prostate Cancer T2 and DCE Volume and Apparent 

Diffusion Coefficient

Multiple univariate MRI 
endpoints Volumes from 
multiple image types (T2, 
DCE-subtraction and ADC 
volume)

Eskildsen19 MRI

Alzheimer’s disease 
discrimination 
between MCI 
converters

Hippocampal grading Cortical 
Thickness of precuneus, superior 
temporal sulcas, parahippocampal 
gyrus

Linear Discriminant Classifier

Dennis20 MRI NASH cTAG (cT1-
AST-Glucose

Composite biomarker for detection 
compared to NAS Ordinal scores 
(ballooning, etc.)

Not a true composite. 
Biomarkers included as 
explanatory variables in a 
logistic regression model to 
derive a risk score.

Acad Radiol. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Raunig et al. Page 46

Table 2.

Multivariate methods for simultaneous inferential determination of longitudinal change

Test Description Advantages Disadvantages

O’Brien’s OLS33 Ordinary Least 
Squares test for 
m=2 multiple 
endpoints

• Simultaneous inference;

• controls false positive rate

• More difficult to interpret than 
univariate;

• Requires knowledge of different 
test statistic

• Requires homoscedasticity

O’Brien’s GLS33 Generalized Least 
Squares test for 
m>2 multiple 
endpoints

• Simultaneous inference;

• controls false positive rate;

• Correlated response variables 
accounted for

• Difficult to interpret

• Loss of degrees of freedom;

• May still need to run univariate 
model

Joint Mixed 
Models34

Mixed models 
joint modeling 
using maximum 
likelihood 
estimation or 
related techniques

• Includes variable correlation;

• Can use standard SAS or R 
procedures;

• Less computational problems for 
high dimensional data;

• Linear and non-linear models

• Calculation of standard 
errors requires careful data 
manipulation

Traditional 
MANOVA / 
MANOVA-
RM35

Test of m>=2 
independent 
variables that are 
normally 
distributed

• Allows for heteroscedasticity;

• Equivalent inference as 
Mahalanobis Distance for 
differences

• Sensitive to collinearity and 
scaling;

• No single, intuitive measure of 
the disease outside of the test 
F-statistic or linearly averaged 
differences

Multiple Co-
primary 
endpoints5,36

Test of m>=2 
endpoints

• Control of Type I error is well-
studied and common;

• Medically determined endpoints;

• No explicit consideration of 
endpoint correlation (typically);

• Reverse multiplicity and control 
of Type 2 error;

• Requires either that all endpoints 
are interchangeable or that there 
is a well-defined and prespecified 
hierarchy;

Hierachical 
composites of 
prioritized 
endpoints25–28

Within subject 
hierarchical 
assessment of 
endpoints in order 
of their priority

• Non-parametric hypothesis test; 
Relatively powerful, especially 
in lieu of showing superiority 
in some endpoints and non-
inferiority (NI) in others, because 
in general showing NI requires a 
large sample size.

• Composite less interpretable 
clinically than individual 
endpoints; counter-examples exist 
in which a difference between 
groups in a hierarchical 
composite is driven by lower 
priority endpoints32

Mahalanobis 
Distance 
(Euclidean 
Distance)37

Test of m>=2 
variables between 
2 groups/
treatments

• Multivariate test of significance 
between treatments;

• Well established;

• Intuitive as an overall disease 
distance from 0, i.e., no disease;

• Simultaneous multivariate 
inference of all QIBs

• Requires normal distribution with 
common covariance matrix;

• Can be sensitive to near-
collinearity and QIB scaling
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Table 3.

Multivariate imputation methods and their advantages and disadvantages for Use Case 1, the multivariate 

descriptor of health.

Method Description Advantages Disadvantages

Multivariate 
Imputation by 
Chained 
Equations 
(MICE)43

A multiple imputation 
method using a set of 
iterative regression models.

• Continuous data handling

• Regressors can also be 
incomplete

• Widely used and accepted

• Longitudinal data can be 
a problem

• Specification of 
conditional models which 
may be difficult to know 
a priori

Nearest Neighbor 
(NN) estimation

A supervised pattern 
recognition method based 
on the distance to each 
pair of observations based 
on non-missing variables 
and imputing based on a 
weighted mean

• Continuous data handling

• May outperform MICE when 
transformed data are slightly 
skewed

• Consistent with Euclidean 
distance mp-QIB function

• Requires only one non-missing 
value

• Several modifications and 
versions to accommodate 
missingness patterns

• Requires specification of 
a tuning parameter that 
can have a large effect on 
the results

Random Forest 
(RF)44

A sequential, machine 
learning imputation process 
that predicts missing data 
from a training set 
consisting of observed data

• Robust / Non-parametric

• Good performance in high 
dimensional QIBs

• Handles non-linear 
relationships

• Training on observed data

• Can be severely biased44

Multivariate 
Normal 
Imputation 
(MVNI)45,46

An iterative process that 
imputes missing data 
from multivariate normal 
distribution parameters 
using an expectation-
maximization algorithm.

• Performance equal to MICE 
when data are multivariate 
normal and no missing patterns

• Assumption of multivariate 
normal is given for this Use 
Case

• Robust to distribution 
misspecification

• Performance may 
be degraded for 
misspecification of 
multivariate normal data

Selection Model: Joint distribution of data Y 
and missingness indicator 
M is partititioned into 
f(M,Y|θ, ψ) = f(Y|θ)f(M|Y, 
ψ).

• Under MAR, inference can 
be based on the likelihood 
ignoring the missing data 
mechanism, that is, on f(Yobs|
θ) where Yobs are the observed 
data.

• May not be clinically 
as easily understood as 
a pattern mixture model 
because distribution of 
data not stratified by 
whether it is missing or 
not.

Pattern Mixture 
Model:.

Joint distribution of data Y 
and missingness indicator 
M is partititioned into 
f(M,Y|ξ,ω) = f(Y|M,ξ)f(M|
ω)

• PMM can be useful for 
modeling the distribution of 
data missing not at random 
(MNAR).

• Not as well understood as 
selection models.

Bayesian 
inference:

Likelihood given observed 
data is augmented 
with draws of missing 
data from their full 
conditional posterior 
predictive distribution 
given observed data and 
a sample of the parameter 

• Data augmentation simplifies 
the likelihood and thus the 
Gibbs sampler or other Monte 
Carlo Markov Chain algorithm 
for computing the joint 
posterior distribution.

• Unfamiliarity of Bayesian 
inference; modeling is 
required, in particular 
specification of the prior 
distribution.
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Method Description Advantages Disadvantages

values from their full 
conditional distribution

Bootstrap 
imputation47–49

Methods for bootstrapping 
after multiple imputation 
or imputation following 
bootstrap.

• Principled, non-parametric 
approach for incorporating 
missing observation uncertainty 
into analysis.

• Implementation varies
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Table 4.

Advantages and disadvantages of the use of retrospective and prospective data in mp QIB development.

Type of Study Advantages Disadvantages

Retrospective • Large databases that include patients over a broad 
range of disease severity and patient demographics

• Existence of healthy normal controls in a known-
groups proof-of-concept analysis

• Data collection already done

• Ability to use other analyses to inform on the 
desired objectives

• Can sometimes use patient data to match the 
desired intended use patient profile

• Cost may be less than the cost of a prospectively 
designed study.

• May be only method of acquiring sufficient data 
on rare disease populations

• Databases may be private with restricted 
access and restrictions on use

• Subjects are not typically randomized 
and control of biases not guaranteed or 
may not even be possible

• Healthy controls not always available 
requiring a prospective collection that 
would match the database

• Influenced by other analyses

• Patient population may not be 
equivalent for the intended use of the 
mp-QIB

• May not be able to conduct an external 
cross-validation requiring prospectively 
acquired data with different patient 
population

Prospective • Can specify the subject population(s)

• Greater control of bias if the sample size is 
sufficiently large

• Greater trust in the results

• Piggyback on current therapeutic intervention 
study can provide data for known-groups validity 
on measuring disease progression versus known or 
standard of care intervention (SOC)

• Does not require external organizational 
approval with restricted use.

• Expensive and requires all of the costs 
with study start-up and recruiting that 
can be

• Slow recruitment when there is no 
therapeutic benefit can stop a study

Combination 
Retrospective-
then-
Prospective85

• Uses available data for mp-QIB development and 
prospectively acquired data for validation

• Retrospective data analysis can provide 
information on the optimal patient inclusion/
exclusion criteria in the prospective study

• Prospective numbers and data costs minimized 
when used as validation compared to use as both 
development, testing and validation

• Requires that both types of data be 
available
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