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Abstract

Motivation: This article presents libRoadRunner 2.0, an extensible, high-performance, cross-platform, open-source
software library for the simulation and analysis of models expressed using the systems biology markup language
(SBML).

Results: libRoadRunner is a self-contained library, able to run either as a component inside other tools via its Cþþ, C
and Python APIs, or interactively through its Python or Julia interface. libRoadRunner uses a custom just-in-time
(JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly
into native machine code for a large variety of processors, making it fast enough to simulate extremely large models
or repeated runs in reasonable timeframes. libRoadRunner is flexible, supporting the bulk of the SBML specification
(except for delay and non-linear algebraic equations) as well as several SBML extensions such as hierarchical com-
position and probability distributions. It offers multiple deterministic and stochastic integrators, as well as tools for
steady-state, sensitivity, stability and structural analyses.

Availability and implementation: libRoadRunner binary distributions for Windows, Mac OS and Linux, Julia and
Python bindings, source code and documentation are all available at https://github.com/sys-bio/roadrun
ner, and Python bindings are also available via pip. The source code can be compiled for the supported systems as
well as in principle any system supported by LLVM-13, such as ARM-based computers like the Raspberry Pi. The
library is licensed under the Apache License Version 2.0.

Contact: hsauro@uw.edu

1 Introduction

Dynamic network models (Sauro, 2014) of metabolic, gene regula-
tory, protein signaling and electrophysiological models require the
specification of components, interactions, compartments and kinetic
parameters. The systems biology markup language (SBML) (Hucka
et al., 2003; Keating et al., 2020) has become the de facto standard
for the declarative specification of these types of models (see
SBML.org).

Popular tools for the development, simulation and analysis of
models specified in SBML include COPASI (Hoops et al., 2006), the
systems biology workbench (SBW) (Bergmann and Sauro, 2006),
the systems biology simulation core library (Panchiwala et al.,
2022), libSBMLSim (Takizawa et al., 2013), iBioSim (Myers et al.,
2009), PySB (Lopez et al., 2013), PySCeS (Olivier et al., 2005) and
VirtualCell (Moraru et al., 2008), as well as many legacy tools that
have been superseded by more modern software. Some of these

applications are stand-alone packages designed for interactive use.
Very few are reusable libraries. Currently, none are fast enough to
support emerging applications that require large-scale simulation of
network dynamics (Maggioli et al., 2020). For example, multi-cell
virtual-tissue simulations (Hester et al., 2011) often require simul-
taneous simulation of tens of thousands of replicas of models resid-
ing in their cell objects and interacting between cells. In addition,
optimization methods require the generation of time series for tens
of thousands of replicas to explore the high-dimensional parameter
spaces typical of biochemical networks (Bouteiller et al., 2015).

Previously, we published libRoadRunner version 1, a cross-
platform, multi-language library for fast execution of SBML model
simulations. We designed libRoadRunner to provide: (i) Efficient
time-series generation and analysis of large or multiple SBML-based
models; (ii) A comprehensive and logical API; (iii) Interactive simu-
lations in the style of IPython and MATLAB; and (iv) Extensibility.
The library achieves its performance capabilities by compiling
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SBML directly into machine code ‘on-the-fly’ using LLVM as a
‘just-in-time’ (JIT) compiler (Lattner and Adve, 2004). The SBML
model description is lexed and parsed into an abstract syntax tree
using libSBML. Then libRoadRunner creates the necessary low-level
LLVM intermediate representation (IR) code for compiling the
SBML. Once compiled, the SBML representation of the model has
been converted into an in-memory dynamic library from which sym-
bols representing model functions can be exported and loaded into
other languages. libRoadRunner wraps this low-level interface in
user-friendly C and Cþþ APIs, which, in turn, provide the founda-
tion for critical systems modelling tasks, such as model integration,
steady-state analysis and metabolic control analysis (Somogyi et al.,
2015).libRoadRunner users usually fall into one of two categories:
modellers or tool developers. Modellers use the libRoadRunner tool
directly in their research for modelling dynamic systems (Karagöz
et al., 2021; Köller et al., 2021a, b) or for developing new computa-
tional approaches such as detecting bistable switches (Reyes et al.,
2022) or performing dynamic flux balance analysis (Watanabe
et al., 2018). Tool developers, on the other hand, use
libRoadRunner as a core SBML handling component in their modu-
lar software design, such as in Tellurium (Choi et al., 2018),
runBiosimulations (Shaikh et al., 2021), MASSPy (Haiman et al.,
2021), SBMLsim (https://github.com/matthiaskoenig/sbmlsim),
Compucell3D (Swat et al., 2012), PhysiCell (Ghaffarizadeh et al.,
2018), pyBioNetFit (Neumann et al., 2022), pyViPR (Ortega and
Lopez, 2020) and DIVIPAC (Nguyen et al., 2015).

In this work, we present libRoadRunner version 2. We have
improved performance both for single-model and multi-model simu-
lations. We have expanded the range of available features to include
additional steady-state solvers, as well as time-dependent sensitivity
analysis (see example in Fig. 1).

2 Major changes to 2.0

2.1 Performance improvements
In previous versions of libRoadRunner, loading many RoadRunner
instances was slow because each model must JIT compile SBML to
binary code. We have addressed this problem in several ways (i) by
increasing the speed of compilation of a single model; (ii) by making it
easy to compile multiple models simultaneously and (iii) by providing
a ‘direct’ API for access to the model topology outside of modifying
the SBML directly (reducing the amount of re-compilations).

2.1.1 LLJit: a new JIT compiler

To increase the speed of compiling SBML to machine code, we have
built a new JIT compiler called LLJit to replace the previous
MCJit. LLJit uses LLVM version 13’s ‘ORC JIT v2’ API which

provides an out-of-the-box but modular and customizable tool for
JIT compiling LLVM IR code to machine code. It was not necessary
to modify the LLVM IR generation stage of the compilation process,
but a new strategy was designed to perform the compilation step.
Our implementation of LLJit uses the standard object linking layer
but a customized compile layer that automatically caches model ob-
ject files in memory for fast reloading. The process of switching to
the LLJit compiler is shown in Listing 1.

2.1.2 RoadRunnerMap: a parallel RoadRunner container

Because RoadRunner models are computationally expensive to com-
pile, we have made it easy for users to make use of their multi-core
system for compiling multiple models in parallel. libRoadRunner uses
a lightweight abstraction around the standard Cþþ17 threading li-
brary called thread_pool (Shoshany, 2021) for queuing build jobs
and then storing references to compiled RoadRunner models in a
thread-safe hash map structure called RoadRunnerMap. To construct
a RoadRunnerMap, a collection of SBML files or strings are passed
to the RoadRunnerMap constructor, along with an integer specifying
the number of threads to use (Listing 2).To demonstrate the capabil-
ities of libRoadRunner v2, we have measured the time it takes for the
MCJit and LLJit compilers to load and simulate over 1100 models
from the curated section of the BioModels database (Malik-Sheriff
et al., 2020) using either the native-Python concurrent package, or
using the RoadRunnerMap construct, both with different numbers of
threads. As can be seen in Figure 2, the new LLJit compiler is more
than three times faster than the previous MCJit compiler in both con-
texts, making it the fastest compiler we have built to date. Increasing
the number of threads decreases runtime but with diminishing returns.
The RoadRunnerMap construct was seen to be faster than the native
Python ‘concurrent’ multithreading approach at lower numbers of
threads, but slower than the native at higher numbers of threads. We
hypothesize this is due to the RoadRunnerMap controlling thread tak-
ing up a significant portion of the clock time: because the paralleliza-
tion occurs entirely in Cþþ, the Python thread itself remains
unoptimized. When using the native-Python concurrent package,
that control is better managed by Python itself.

2.1.3 Pickled (serialized) RoadRunner

Once loaded, users can save a model’s state either to a binary string
for in-memory storage or to a disk for persistent storage. The result
is a platform-specific binary snapshot of a RoadRunner object
which can be reloaded with significant performance improvements

Fig. 1. Time-dependent sensitivities for a simple linear chain model: X0 -> S1;

k1*S1; S1 -> S2; k2*S2; S2 ->; k3*S2; k1¼0.1; k2¼0.3; k3¼0.14;
Xo¼10. Here, all possible combinations of the species (S1 and S2) and parameters

(k1, k2 and k3) are shown. However, the interface allows us to be more selective if

needed. The plots were generated by helper functions in libRoadRunner

Listing 1 Python example of how to turn on the LLJit

compiler. Variables: sbmlFile (str) is absolute path to sbml

file on the disk.

from roadrunner import RoadRunner, Config

Config.setValue(

Config.LLVM_BACKEND, Config.LLJIT)

rr ¼ RoadRunner(sbmlFile)

Listing 2 Python example of loading a list of SBML models

in parallel using three threads. Variables: listOfSBML

(List[str]) is a list of full paths to SBML files on the disk

or strings in memory (or a mix thereof).

from roadrunner import RoadRunnerMap

rrm ¼ RoadRunnerMap(listOfSBML, 3)
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compared to recompiling the model. Listing 3 demonstrates this
functionality.In Python, a prerequisite for using RoadRunner with
various parallel or multithreading toolboxes is the ability to serialize
an instance of a RoadRunner object using Python’s standardized
‘pickle’ protocol. We have built an adaptor between our in-house
RoadRunner serialization strategy and Python’s pickle protocol so
that our users can now build their own parallel applications on top
of libRoadRunner. We anticipate that this will be valuable to the
systems biology community, particularly for problems involving
repeated time-series simulations such as optimization or stochastic
simulations. An example of the latter is shown in Listing 4.

2.2 Direct API
In libRoadRunner version 1, any changes to the model structure
required the modification, re-parsing and re-compiling of the SBML.
Since these operations are computationally expensive and potentially
convoluted, we have implemented an API for interacting directly with
the internal object model. This ‘direct’ API allows users to add and re-
move SBML components such as compartments, species, reactions
and events programmatically, without the need to re-parse the model
after each change. Since these changes require model recompilation
before use, we provide an argument called forceRegenerate to all
direct API functions which give users the ability to control when the
model is recompiled—i.e. only after all model changes are complete.
Listing 5 provides an example using this API.

2.3 Julia language bindings
The Julia programming language has gained traction with the sys-

tems biology community in recent years. We have therefore imple-
mented language bindings to connect Julia users to libRoadRunner.
While our Python bindings are implemented using SWIG (Beazley

et al., 1996), there is no Julia interface for SWIG, so our Julia bind-
ings use ccall internally to expose symbols from the
libRoadRunner shared library to a Julia API. Listing 6 demonstrates

the use of this API in Julia.

2.4 Plugin system
We have developed a flexible and robust plugin system that tightly

integrates extensions to the libRoadRunner with various functional-
ities. Anyone can incorporate a computational routine based on an

instance of libRoadRunner which can greatly increase the perform-
ance, with the only requirement being the plugin code to be written
in Cþþ and available at the compile time. Several examples such as

parameter estimation algorithms that use libRoadRunner solvers
and an interface to AUTO (Doedel, 1981) for bifurcation analysis

are available in the documentation. Listing 7 illustrates a simple ex-
ample of using the AUTO plugin for bifurcation analysis.

Fig. 2. Time to load over 1100 models from the BioModels database with

libRoadRunner. Data are included for the two different JIT backends (MCJit and

LLJit), using the RoadRunnerMap construct or not, and using the given number of

threads. Shown is the average of 10 replicates with their standard deviations. Not

shown: when increasing the number of threads to 23, the total times were only

reduced by a maximum of an additional 2%

Listing 3 Example of saving a RoadRunner object’s state to

a file and then loading it again. Variables: sbmlFile (str)

is a full path to a valid SBML file on the disk; fileName

(str) is a full path to where to save the model state on the

disk.

from roadrunner import RoadRunner

rr ¼ RoadRunner(sbmlFile)

# save state to string

rr.saveState(fileName)

# load state

rrReloaded ¼ RoadRunner()

rrReloaded.loadState(fileName)

Listing 4 Example of using RoadRunner object with

Python’s multiprocessing library to stochastically simulate a

model hundred thousand times.

from multiprocessing import Pool

from roadrunner import RoadRunner

def simulate_worker(rr: RoadRunner):

rr.resetAll()

return rr.simulate(0, 10, 11)

rr ¼ RoadRunner(sbmlFile)

rr.setIntegrator(’gillespie’)

if __name__=¼’__main__’:
p ¼ Pool(processes¼8)
results ¼ p.map(

simulate_worker,

[rr for i in range(100000)])

Listing 5 Example of adding a simple first-order mass action

degradation reaction to a loaded SBML model. The code

assumes that a compartment called “cell” was loaded in

the initial sbmlFile. Variables: sbmlFile (str) is a full

path to a valid SBML file on the disk.

from roadrunner import RoadRunner

rr ¼ RoadRunner(sbmlFile)

rr.addSpecies(“A”, “cell”,

initConcentration¼5.0,
forceRegenerate¼False

)

rr.addReaction(“ADeg”, [“A”], [], 0.5*A, True)

libRoadRunner 3



2.5 Miscellaneous new functionality
In 2019, a new SBML specification was released [level 3 version 2
(Hucka et al., 2019)]. We now support the features of the new speci-
fication, including additional MathML functions, cases with ‘miss-
ing’ elements that are now valid in SBML, and the presence of
Boolean values where numeric values are expected, and vice versa.
In addition, we now fully support the ‘Distributions’ SBML package
(Smith et al., 2020), which defines new functions that stochastically
draw values from known distributions, even in otherwise determin-
istic conditions (such as initial species levels).

Version 2 of libRoadRunner also includes a number of other
miscellaneous changes. These include additions to numerical rou-
tines used to solve differential equations for the time course and for
computing the steady state. In particular, we have implemented a
basic Euler integration method which has been used for certain
time-critical applications and the RK45 solver which can be used to
double-check the accuracy of the time course solution generated by
the default CVODE implementation. We have also included support
for variable stoichiometries in reactions. The Antimony language
(Smith et al., 2009) has been updated to reflect this change.

Like our CVODE implementation, our time series sensitivity im-
plementation uses the popular Sundials package (Hindmarsh et al.,

2005). Specifically, we have two strategies for solving the sensitivity
equations. They can either be solved simultaneously with the system
equations (Maly and Petzold, 1996) or solved using a staggered ap-

proach (Caracotsios and Stewart, 1995).libRoadRunner version 2
also makes use of the Sundials ‘kinsol’ library for new steady-state

solvers. Specifically, we support the Inexact Newton approach
(Brown, 1987). As a result, version 2 now gives the user access to
two nonlinear solvers.

For Windows users, we also provided an updated installer that
will install an independent but complete working environment for

biochemical modelling. The installer distributes the latest Spyder
IDE (https://www.spyder-ide.org/) as well as the Jupyter

notebook interface (Kluyver et al., 2016). Note that libRoadRunner
and associated tools can be easily installed on open platforms such
as Colaboratory (Carneiro et al., 2018) using pip.

User control over roadrunner functionality has also been
improved. Time-series simulations, steady-state calculations and ap-

proximation routines, among others, now have more options for the
user and can be used on a wider variety of models. Other changes in
libRoadRunner version 2 include improved compliance with the

SBML Test Suite (Smith, 2022), and a new automatic build and test
system using updated dependencies, which allows us to release more

frequently, with fewer bugs. Overall, we have resolved over 250
issues since 2018, filed by 23 different people.

3 Discussion

libRoadRunner is a fast and convenient tool for both individuals

who are investigating the dynamics of a biological system and tool
developers who are building new methods for solving and analysing
such systems. In version 2, we have built a variety of new tools for

the construction, compilation, analysis and solving of dynamical
systems described in SBML.

libRoadRunner version 1 was highly optimized for the simula-
tion of dynamical systems thanks to our JIT compilation strategy.
As a result, libRoadRunner was the fastest available SBML dedi-

cated simulator (Maggioli et al., 2020; Panchiwala et al., 2022;
Somogyi et al., 2015). However, one of the disadvantages of our

strategy is that when the need arises for the simulation of many
SBML models together, the run time is dominated by the compile
time. Examples of such a need include ensemble modelling, where

many instances of SBML with varying parameters or typologies
need to be simulated simultaneously. With the new changes we de-

scribe in this article, our performance metrics have increased even
further.

To alleviate this bottleneck, we have prioritized new features
that enhance the speed with which a model can be compiled. One
such feature is an entirely new compiler called LLJit which sits

side-by-side with the older MCJit. We have demonstrated that
LLJit is significantly faster than earlier libRoadRunner implemen-
tations (Fig. 2) at compiling the same code. Similarly, once loaded, a

model may be modified (even to the extent of adding or removing
model elements) more rapidly than loading a new model from

scratch, and new functions have been added to allow this, as well.
While decreasing the compile time is a worthy goal, there is a

natural limit to the speed with which a single model can be com-
piled. An alternative mechanism for enhancing performance in
multi-model problems is to make better use of the available resour-

ces that exist in most modern computer systems using parallelism.
We have introduced parallelism in two ways. First, we have built a

RoadRunner container called RoadRunnerMap which is capable
of orchestrating parallel compiles. Secondly, we have implemented
support for Python’s pickle protocol. While the former enables us to

abstract parallelism away from the user completely, the latter allows
our more experienced users to devise their own parallel
computation.

Listing 6 An example showing how to load an SBML model

and perform a simulation in Julia. The first two lines install

the libRoadRunner language bindings and the rest of the

code compiles an SBML model sbmlString and runs a

simulation using the simulateEx method.

# get julia bindings

import Pkg

Pkg.add(“RoadRunner”)

# simulate a model

using RoadRunner

rr ¼ RoadRunner.createRRInstance()

RoadRunner.loadSBML(rr, sbmlString)

S ¼ RoadRunner.getFloatingSpeciesIds(rr)

data ¼ RoadRunner.simulateEx(rr, 0, 40, 500)

Listing 7 An example showing how to load a model into

AUTO plugin, set parameters, run bifurcation analysis, and

plot the bifurcation diagram.

from rrplugins import *

auto ¼ Plugin(“tel_auto2000”)

# Set parameters

auto.setProperty(“SBML”, sbmlString)

auto.setProperty(“NMX”, 5000)

auto.setProperty(“ScanDirection”, “Positive”)

# Execute the plugin

auto.execute()

# Plot bifurcation diagram

pts ¼ auto. BifurcationPoints

lbls ¼ auto. BifurcationLabels

biData ¼ auto. BifurcationData

biData.plotBifurcationDiagram(pts, lbls)

4 C.Welsh et al.
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4 Conclusion

With the advent of the changes introduced into libRoadRunner ver-

sion 2, the library is now more efficient in running, loading and
changing models at runtime. These features were added to support a

number of specific use cases. These include two main applications:
parameter optimization on large compute clusters, and using
libRoadRunner to create large model ensembles that include vari-

ation in parameters as well as rate laws and network topology.
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