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Abstract

Summary: Recently, an increasing number of methodological approaches have been proposed to tackle the
complexity of metagenomics and microbiome data. In this scenario, reproducibility and replicability have become
two critical issues, and the development of computational frameworks for the comparative evaluations of such
methods is of utmost importance. Here, we present benchdamic, a Bioconductor package to benchmark methods
for the identification of differentially abundant taxa.

Availability and implementation: benchdamic is available as an open-source R package through the Bioconductor
project at https://bioconductor.org/packages/benchdamic/.

Contact: davide.risso@unipd.it or nicola.vitulo@univr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Differential abundance (DA) analysis identifies significant differen-
ces in the microbial community composition between groups of
samples, providing new insights into the composition of microbial
communities and on their associations with the environment.
Although many approaches have been proposed for DA analysis, it
is widely recognized that the best method (i.e. a method with per-
formances uniformly better than all the others) does not exist and
that a careful exploratory data analysis is necessary to address
methodological choices (Calgaro et al., 2020; Hawinkel et al.,
2019; Nearing et al., 2022; Thorsen et al., 2016; Weiss et al.,
2017).

Building on our previous work (Calgaro et al., 2020), we present
the benchdamic R/Bioconductor package, which provides a com-
putational framework to guide researchers in the selection of the
method that best fits their data.

The structure of benchdamic can be summarized into four
main parts (Fig. 1). Each section is developed to answer specific
questions when comparing samples from different experimental
groups, namely (i) the ability for a given statistical distribution to
successfully fit the input data, with particular focus on sparsity and
their count nature; (ii) the ability of the DA methods to control the
type I error; (iii) the concordance among methods; and (iv) the ac-
curacy of the findings based on a priori biological knowledge.
Altogether, benchdamic is a flexible and customizable framework
that can be used for the benchmarking of new and existing DA
methods.

2 Implementation

benchdamic builds on existing R/Bioconductor infrastructure
packages: the primary input of benchdamic’s main functions is a
phyloseq or a TreeSummarizedExperiment object (Huang
et al., 2021; McMurdie and Holmes, 2013). Ready-to-use normal-
ization and DA methods included in benchdamic are based on the
edgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014),
limma-voom (Law et al., 2014; Phipson et al., 2016; Ritchie et al.,
2015), metagenomeSeq (Paulson et al., 2013), ALDEx2 (Fernandes
et al., 2014, 2013), corncob (Martin et al., 2020), MAST (Finak
et al., 2015), Seurat (Butler et al., 2018), dearseq (Gauthier
et al., 2020), NOISeq (Tarazona et al., 2015), ANCOMBC (Lin and
Peddada, 2020; Mandal et al., 2015) and zinbwave (Risso et al.,
2018; Van den Berge et al., 2018) packages. Combinations of
parameters are possible as well as the inclusion of custom methods
(see Supplementary material Section S3).

In the following sections, we briefly outline the main functional-
ity of the package. See Calgaro et al. (2020) for technical details on
how these metrics are computed.

2.1 Goodness of fit
DA statistical models are based on different statistical distributions.
Five different distributions are available in benchdamic for testing
the goodness of fit on user-provided data: negative binomial, zero-
inflated negative binomial, zero-inflated Gaussian, truncated
Gaussian and Dirichlet-multinomial (see Supplementary material

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btac778

https://doi.org/10.1093/bioinformatics/btac778

Advance Access Publication Date: 7 December 2022

Applications Note

https://orcid.org/0000-0002-3056-518X
https://orcid.org/0000-0003-4792-9047
https://orcid.org/0000-0001-8508-5012
https://orcid.org/0000-0002-9571-0747
https://bioconductor.org/packages/benchdamic/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac778#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac778#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac778#supplementary-data
https://academic.oup.com/


Section S2). Goodness of fit is measured by the ability of each
method to correctly estimate the average counts and the probability

of observing a zero.

2.2 Type I error control
To investigate the Type I error rate control of each DA method (i.e.
the probability of the statistical test to call a feature DA when it is

not) mock datasets with no true DA are generated starting from the
user-provided data (see Supplementary material Section S4).

Briefly, the dataset is split into two random subsets and DA ana-
lysis, based on a chosen list of methods, is performed. The process is
repeated N times (N�1000 suggested). The performances of each

method are then summarized and graphically represented consider-
ing the false positive rate, false discovery rate, and departure from

uniformity for the P-values distribution.

2.3 Concordance
benchdamic can be used to measure the between-method concord-
ance (BMC), in which a DA method is compared to other methods
in the same dataset, and the within-method concordance (WMC), in

which a method is compared to itself in two random subsets of the
same dataset (Supplementary material Section S5). Firstly, the data-

set is randomly divided in half to obtain two subsets (Subset1 and
Subset2) with samples from two or more biological groups, then DA
analysis is performed between two groups, independently on each

subset. The process is repeated N times (N�100 suggested) and
average WMC and BMC metrics are computed and summarized

using a heatmap representation.

2.4 Enrichment
Enrichment analysis can provide an alternative way of ranking
methods in terms of their ability to identify, as significantly differ-
ent, taxa that are known to be differentially abundant between two

groups. DA analysis needs to be performed on a dataset where some
a priori knowledge is available (Supplementary material Section S6).

Given the direction of the DA features (over- or under-abundant)
and the expected group in which the features should be differentially
abundant according to the prior knowledge, several contingency

tables are created for each DA method. A Fisher exact test is then
performed to test the enrichment and the DA features identified by

more than one method are highlighted. Additionally, the users will
be able to rank the methods based on the difference between the
total number of true positives and false positives for several thresh-

olds (based on P-values, adjusted P-values or other statistics). The
same approach can also be used to perform power analysis using
simulated data (Supplementary material Section S6.8).

3 Conclusions

The benchdamic R/Bioconductor package aims to be a support
tool for the identification of DA microbial taxa and the benchmark-
ing of new methods. We envision two main uses of our package: (i)
for practitioners interested in performing DA analysis on a new
dataset, benchdamic can be used to identify the best DA methods
among those already in the literature; (ii) for method developers
interested in benchmarking their new approach, benchdamic can
be used as an impartial tool to evaluate the relative merits of the
new method compared to what is already available.

benchdamic is available as an open-source package through
the Bioconductor project. The package includes a vignette with a
detailed tutorial.

The future of benchdamic is oriented to the addition of new
aspects of analysis e.g. new normalization methods and new DA
approaches.
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