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Abstract

Motivation: The rapid development of spatial transcriptomics (ST) approaches has provided new insights into
understanding tissue architecture and function. However, the gene expressions measured at a spot may contain
contributions from multiple cells due to the low-resolution of current ST technologies. Although many computation-
al methods have been developed to disentangle discrete cell types from spatial mixtures, the community lacks a
thorough evaluation of the performance of those deconvolution methods.

Results: Here, we present a comprehensive benchmarking of 14 deconvolution methods on four datasets.
Furthermore, we investigate the robustness of different methods to sequencing depth, spot size and the choice of
normalization. Moreover, we propose a new ensemble learning-based deconvolution method (EnDecon) by integrat-
ing multiple individual methods for more accurate deconvolution. The major new findings include: (i) cell2loction,
RCTD and spatialDWLS are more accurate than other ST deconvolution methods, based on the evaluation of three
metrics: RMSE, PCC and JSD; (ii) cell2location and spatialDWLS are more robust to the variation of sequencing
depth than RCTD; (iii) the accuracy of the existing methods tends to decrease as the spot size becomes smaller; (iv)
most deconvolution methods perform best when they normalize ST data using the method described in their origin-
al papers; and (v) the integrative method, EnDecon, could achieve more accurate ST deconvolution. Our study pro-
vides valuable information and guideline for practically applying ST deconvolution tools and developing new and
more effective methods.

Availability and implementation: The benchmarking pipeline is available at https://github.com/SunXQlab/ST-decon
voulution. An R package for EnDecon is available at https://github.com/SunXQlab/EnDecon.

Contact: sunxq6@mail.sysu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The emergence of spatial transcriptomics (ST) has brought new
opportunities for studying spatial heterogeneity of tissue architecture
(Rao et al., 2021) and cellular interaction (Larsson et al., 2021).
However, a major limitation of current ST technologies [e.g. Spatial
Transcriptomics (Patrik et al., 2016), 10� Visium (Genomics, 2019)
and Slide-seq (Stickels et al., 2021)] is that the measured gene expres-
sions at one capture location (i.e. spot or grid) are from a mixture of
multiple cells. This disadvantage hinders accurate quantification of
spatial cellular distribution and downstream analysis.

To address the above issues of ST data, various computational
methods have been developed to decompose spatial mixtures of each
ST spot into individual cell types with the aid of single-cell RNA-seq
(scRNA-seq) data (Longo et al., 2021). For example, enrichment-
based methods [e.g. Seurat (Stuart et al., 2019) and MIA (Moncada
et al., 2020)] calculate the importance score or probability of the

presence of different cell types in each spot. While other deconvolu-
tion methods aim to infer the proportion of cell types at each spatial
location by employing linear regression models [e.g. SPOTlight
(Elosua-Bayes et al., 2021), spatialDWLS (Dong and Yuan, 2021)],
probabilistic models [e.g. RCTD (Cable et al., 2022), cell2location
(Kleshchevnikov et al., 2020)] or deep learning methods [e.g. DSTG
(Song and Su, 2021)]. Additionally, a few reference-free methods
[e.g. STdeconvolve (Miller et al., 2022)] that deconvolve ST data
without the aid of scRNA-seq data, have also been proposed.

Given the rapid development of these computational methods
for ST deconvolution, it is important to quantitatively assess their
performance and robustness for better applications. Recently, Li
et al. (2022) evaluated the performance of several integration meth-
ods for predicting the spatial distribution of undetected transcripts
and deconvoluting cell types. However, they only evaluated the im-
pact of expression sparsity and normalization on the methods for
predicting transcript distribution, but did not assess the impact of
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these factors on cell type deconvolution methods. Moreover, their
study did not include all available state-of-the-art deconvolution
methods for benchmarking. Therefore, a thorough evaluation of
those deconvolution methods is still lacking.

Here, we present a comprehensive evaluation of the performance
of 14 deconvolution methods on four datasets, including three syn-
thetic ST datasets with known single-cell compositions and a human
heart ST dataset. We quantitatively evaluate the accuracy of these
methods by calculating the root-mean-square error (RMSE),
Pearson correlation coefficient (PCC) and Jensen-Shannon diver-
gence (JSD) between the predicted cell type compositions and the
known compositions. Furthermore, we assess the stability of these
deconvolution methods to the variation in sequencing depth, spot
size and normalization choice. We also compare the computational
resources consumed by different deconvolution methods. Moreover,
we propose an ensemble learning-based deconvolution method,
EnDecon, by aggregating different methods for more accurate de-
convolution of ST data.

2 Materials and methods

2.1 Overview of ST deconvolution methods
The existing ST deconvolution methods are (in alphabetical
order) cell2location, DestVI, DSTG, Giotto/Hypergeometric,
Giotto/PAGE, Giotto/rank, MIA, RCTD, Seurat, spatialDecon,
spatialDWLS, SPOTlight, STdeconvolve, stereoscope, STRIDE and
Tangram. These methods can be mainly divided into four categories:
enrichment scoring method, regression model-based deconvolution,
probabilistic model-based deconvolution and deep learning model-
based deconvolution. Enrichment-based methods [e.g. Seurat (Stuart
et al., 2019), Giotto-PAGE/rank/Hypergeometirc (Dries et al., 2021;
Kim and Volsky, 2005) and MIA (Moncada et al., 2020)] usually
infer the probability of the presence of each cell type in the spot
based on an enrichment score of a gene set (e.g. cell-type-specific
marker genes identified from scRNA-seq data). The other three cate-
gories of methods directly infer the proportions of different cell
types within each spot. Toward that, regression model-based decon-
volution methods [e.g. SPOTlight (Elosua-Bayes et al., 2021),
spatialDWLS (Dong and Yuan, 2021; Tsoucas et al., 2019) and
spatialDecon (Danaher et al., 2022)] assume that a spot profile is a
linear combination of cell-type-specific expression profile and cell
type proportions. Alternatively, probabilistic model-based deconvo-
lution methods [e.g. RCTD (Cable et al., 2022), cell2location
(Kleshchevnikov et al., 2020), stereoscope (Andersson et al., 2020),
DestVI (Lopez et al., 2022) and STdeconvolve (Miller et al., 2022)]
are to fit a probability distribution based on a statistical model,
which assumes that the spatial gene expression follows a distribu-
tion, such as the Poisson distribution (Cable et al., 2022) or negative
binomial distribution (Andersson et al., 2020). In addition, deep
learning model-based methods [e.g. DSTG (Song and Su, 2021) and
Tangram (Biancalani et al., 2021)] deconvolute ST spots by borrow-
ing information from scRNA-seq data. The principles and character-
istics of these methods are described in Supplementary Text S1.

Notably, MIA does not release its code, and DSTG cannot out-
put cell type information for comparison with the ground truth, so
we benchmark the other 14 methods in this study.

2.2 Dataset collection and preprocessing
Mouse embryo ST data. It is a single-cell resolution ST data gener-
ated by sci-Space technology (Sanjay R. Srivatsan et al., 2021),
including 14 mouse embryo sections at different developmental
stages. In this study, we selected the ST data coming from the 14th
completely developed mouse embryo section for benchmarking,
which contains 18 cell types and 17 301 cells with 52 535 genes per
cell.

MPOA ST data. It is a single-cell resolution spatial expression
dataset generated by applying the multiplex error-robust fluores-
cence in situ hybridization (MERFISH) technology to the mouse
medial preoptic area (MPOA) (Moffitt et al., 2018). We referred to
the steps in STdeconvolve (Miller et al., 2022) for the processing

procedure of this dataset. The processed data consists of 9 cell types
and 59 651 cells with 135 genes per cell.

Mouse brain scRNA-seq and ST data. The scRNA-seq data were
sequenced by Smart-seq2 technology (Tasic et al., 2016), including
4785 cells with 34 617 genes per cell. All cells were annotated into
15 clusters. The ST data of the mouse brain were obtained from
10X Genomics (2019). In this study, we selected the frontal cortex
region for benchmarking, which consists of 1075 spots with each
spot containing 31 053 genes.

Human developing heart scRNA-seq and ST data. The ST data
of the human heart at three developmental stages [4.5–6, 6.5 and
9 post-conception weeks (PCW)] was obtained using Spatial
Transcriptomics technology (Asp et al., 2019). In this study, we
selected the ST data at 6.5 PCW for deconvolution, which contains
1515 spots with 38 855 genes per spot. A set of scRNA-seq data
generated in the same study was used as a reference for ST cell type
annotation. The scRNA-seq data contains 15 clusters and 3777 cells
in total, with 10 538 genes per cell.

We summarized the information of the above datasets in
Table 1. The following steps were performed for pre-processing
these datasets: (i) removing genes (rows) with row sum 0; (ii) filter-
ing genes expressed in less than 5% of the cells or spots; (iii) retain-
ing the cell types with at least 25 cells. Of note, since the MPOA ST
dataset only has 135 genes, the step (i) was not performed for this
dataset.

2.3 Generation of synthetic ST datasets for

benchmarking
To benchmark different deconvolution methods, we employed
different strategies for single-cell ST data and scRNA-seq data to
synthesize multi-cells-per-spot datasets with known cell type
compositions.

The mouse embryo ST dataset sequenced by sci-Space technol-
ogy is at single-cell resolution for gene expression. However, the
sci-Space technology uses spatially gridded barcodes to sequence
tissue, so multiple cells within the same space grid are labeled with
the same coordinate. Therefore, we treated a space grid as a simu-
lated spot and aggregated the expression profiles of all cells in the
grid to represent the expression profile of a simulated spot. The final
synthetic ST dataset included 1393 spots with 52 535 genes per spot.
We used the resulting cell type propositions of each spot as the
ground truth.

For the MPOA ST data, we defined a square with a size 100�
100 (�100mm in diameter), which was viewed as a spot-like region.
The transcriptome profile of each simulated spot was simulated as
the sum of expression profiles of all cells located in the region, and
the coordinate of the simulated spot was set as the location of the
starting cell (i.e. the upper left cell) in a square region. The final
simulated spatial dataset contained 3072 regular spots with 135
genes per spot. The percentage of cell types in each spot was calcu-
lated as the ground truth.

For the mouse brain tissue, we first mapped the scRNA-seq data-
set to the spatial locations of the paired ST dataset using the
CellTrek tool (Wei et al., 2022), resulting in a simulated single-cell
resolution ST data. The synthetic spatial data had not only the
scRNA-seq-like gene expression but also spatial location informa-
tion. We then defined a square with a size of 150� 150 (�100mm
in diameter) and treated it as a simulated spot. The gene expressions
of multiple cells in a square were aggregated to represent the spot-
level expression profiles, and the location of the starting cell in the
square was defined as the coordinate of the spot. Finally, the syn-
thetic ST dataset contained 739 spots in total and each spot had
34 617 genes. We used the original cell-type label of each cell to cal-
culate the percentage of cell types in each spot and viewed it as the
ground truth.

The resulting three synthetic ST datasets are referred to as the
embryo (sci-Space) dataset, MPOA (MERFISH) dataset and mouse
brain (mapped sc-ST) dataset, respectively, in the following text,
and Table 2 summarizes important statistics of these three datasets.
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Furthermore, to investigate the impact of different sequencing

depths, spot sizes and data normalization choices on the perform-
ance of deconvolution methods, we synthesize datasets with differ-

ent sequencing depths or different spot sizes and processed the
above three ST datasets using different data normalization methods.
See details in Supplementary Texts S2–S4.

2.4 Implementation of deconvolution methods
We followed the instructions provided on the website of each tool to

implement deconvolution. The details of the implementation of the
existing 14 deconvolution methods are described in Supplementary

Text S5.

2.5 Evaluation metrics
We used RMSE, PCC and JSD (see details in Supplementary Text
S6) to evaluate the performance of different deconvolution methods

by using the known cell type proportions in the three synthetic ST
datasets as the ground truth.

2.6 Integrating deconvolution methods
After benchmarking different deconvolution methods, we developed
an ensemble learning-based deconvolution method (EnDecon) for

ST data by drawing on strengths from existing methods. Notably, to
ensure the efficiency of EnDecon, we integrated three top-

performing methods into a linear weighted model as follows,

y ¼ w1x1 þw2x2 þw3x3 (1)

where x1, x2 and x3 represent the cell type proportions derived from
the top three individual methods, respectively, and w1, w2 and w3

are the corresponding weights.
The weights in the above model were trained using 10-fold

cross-validation method. Specifically, we divided the embryo (sci-
Space) dataset and mouse brain (mapped sc-ST) dataset into 10-
folds, respectively. For each dataset, we took turns choosing 9-folds

out of 10-folds as the training set to estimate the coefficients (i.e.
w1, w2 and w3) and using the remaining 1-fold of the two datasets

as the testing sets for calculating RMSE, PCC and JSD. We con-
ducted the above 10-fold cross-validation 10 times and took the
average of the estimated values of each coefficient as the final weight

for each of the three individual methods in the EnDecon.
Furthermore, we validated the performance of the trained EnDecon

model on the independent MOPA (MERFISH) dataset.

3 Results

3.1 Benchmarking framework
To test the performance of 14 deconvolution methods, we designed
a benchmarking workflow as shown in Figure 1. Briefly, we first col-
lected both single-cell resolution ST data and scRNA-seq data to
synthesize the low-resolution ST datasets with known cell type com-
positions (see details in Section 2.3). We then assessed the accuracy
of each method by calculating RMSE, PCC and JSD between the
predicted cell type compositions and the ground truth based on the
above synthetic ST datasets. We next examined the impact of
sequencing depth, spot size and normalization choice on the decon-
volution results and assessed the time and space complexities of dif-
ferent methods. Furthermore, we developed an ensemble model by
integrating the top three deconvolution methods ranked according
to the benchmarking results with a linear weighted model. We
adopted the k-fold cross-validation method to train the weights in
the ensemble model and further tested and compared its perform-
ance using independent validation dataset.

3.2 Performance evaluation of 14 deconvolution

methods
Based on the three synthetic datasets, we evaluated the performance
of each method in the following three aspects: (i) prediction accur-
acy in terms of cell type proportion deconvolution, evaluated using
the metrics including RMSE, PCC and JSD; (ii) stability of the
method with respect to the sequencing depth, spot size and normal-
ization choice of the ST data; (iii) usability of the tool in terms of
running time and memory. Overall, we found that cell2location has
the best performance, followed by RCTD and spatialDWLS (Fig. 2a
and b). Below we described the benchmarking results in more detail.

Accuracy. We compared the accuracy of different deconvolution
methods across metrics and datasets. We found that the accuracy of
each of the 14 methods was generally quite stable across the three
metrics, but the accuracy of some methods (i.e. stereoscope,
STdeconvolve and Giotto/rank) varied depending on datasets
(Fig. 2c).

Specifically, we compared the values of RMSE, PCC and JSD of
14 methods across the three synthetic datasets (Supplementary Fig.
S1). We found that cell2location, RCTD and spatialDWLS outper-
formed the other methods. For instance, on the mouse brain
(mapped sc-ST) dataset, the RMSE values of cell2location (0.0373),
RCTD (0.0407) and spatialDWLS (0.0461) were lower than those
of other methods (Supplementary Fig. S1a). Consistently, the PCC
values of cell2location (0.9837), RCTD (0.9807) and spatialDWLS
(0.9748) were higher than those of other methods (Supplementary
Fig. S2b). Moreover, the median JSD values of cell2location, RCTD
and spatialDWLS were 0.0143, 0.0120 and 0.0188, respectively,
which were lower than the median JSD values of other methods
(Supplementary Fig. S2c). In addition, comparing RMSE or PCC per
cell type on the three synthetic ST datasets (Supplementary Fig. S2)
consistently demonstrated that cell2location, RCTD and
spatialDWLS have smaller RMSE or PCC values for individual cell
types.

To evaluate the performance of the deconvolution methods more
intuitively, we reconstructed the spatial cell type distribution maps
for the synthetic ST datasets of the mouse embryo, MPOA (one cer-
tain section) and mouse brain tissues according to the deconvolution

Table 1. The information of the collected datasets

Tissue Technology Resolution Spot/cell number Gene number

Mouse embryo sci-Space Single cell 17 301 52 535

MPOA MERFISH Single cell 59 651 135

Mouse brain Smart-seq2 Single cell 4785 34 617

10X Genomics Spot 1075 31 053

Human GemCode Single cell 3777 10 538

developing heart ST Spot 1515 38 855

Table 2. The information of the synthetic datasets

Dataset Spot number Gene number Cluster number

embryo (sci-Space) 1393 52 535 18

MPOA (MERFISH) 3072 135 9

mouse brain (mapped sc-ST) 739 34 617 15
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proportions and compared them with the gold standard. For the em-
bryo (sci-Space) dataset, cell2location, RCTD and spatialDWLS
well reconstructed the layered structure and accurately deconvoluted
ST spots (Supplementary Fig. S3). Specifically, these three methods
correctly mapped the main cell type in the cortex region, neuron, to
the top and right limbic layers, and mapped the Erythroid Lineage
and Hepatocytes cell types mainly to the middle layer, i.e. the liver
area in the mouse embryo (Supplementary Fig. S3a). The spatial pat-
terns of these cell types were consistent with those in the gold stand-
ard (Supplementary Fig. S3b). In contrast, the cell types predicted by
SPOTlight in the overall embryo region were mostly Schwann cells
or Radial glia cells, which was not comparable to the gold standard.
Besides, the spatial deconvolution of DestVI and Giotto/rank failed
to reveal spatial heterogeneity of the tissue. For the MPOA
(MERFISH) dataset, the spatial locations of the Ependymal cells
predicted by cell2location, RCTD and spatialDWLS were in the
middle of this section, highly consistent with those of the gold stand-
ard (Supplementary Fig. S4).

Furthermore, to assess the predicted spatial cell type distribution
of all methods within the mouse brain cortex structure, we used the
expression pattern of the known cell-type marker gene in the ISH
image data from the Allen Mouse Brain Atlas as the gold standard.
In this study, we used Rasgrf2, Plcxd2 and Cplx3 as the marker
genes for three cortex cell types, L2/3, L4 and L6b, respectively, as
reported by Zeisel et al. (Amit Zeisel et al., 2015) (Supplementary
Figs S5–S7). The proportions of these three cell types estimated by
cell2location, RCTD and spatialDWLS were highly consistent with
the corresponding marker gene expressions in the ISH images
(Supplementary Figs S5–S7). Specifically, the L2/3 subcluster was
mapped to the lateral border of the cortex at larger proportions, and
L4–L6b subclusters were predicted to line up along the stretched
area descending toward the center. The spatial organization of these
cell types agreed with the strictly layered structure of the cortex.
However, the spatial locations of L2/3 and L4 predicted by
spatialDecon and SPOTlight were distributed throughout the cortex
region.

Stability. To test the stability of each method, we investigated
the impact of different sequencing depths, spot sizes and normaliza-
tions on the deconvolution results of each method (Fig. 2d).

Firstly, most methods were rather robust to the variation of sequenc-
ing depth, while RCTD, spatialDecon and stereoscope were more sensi-
tive to changes in sequencing depth (Fig. 2d). Specifically, on the mouse
brain (mapped sc-ST) dataset, RCTD and stereoscope only performed
well when the sequencing depth was low, while spatialDecon became
gradually worse when the sequencing depth decreased (Supplementary
Fig. S8). In general, cell2location and spatialDWLS had the best per-
formance under different sequencing depths.

Secondly, the performance of all methods except Tangram and
Seurat tended to become worse when the spot size decreased from
150 to 25mm (Fig. 2d). Of note, Seurat outperformed all the other
methods on the MPOA (MERFISH) dataset at spot size¼25mm, and
was no longer the best at larger spot sizes. Furthermore, the perform-
ance of STdeconvolve was better than that of DestVI on the mouse
brain (mapped sc-ST) dataset with spot size¼25mm, whereas this ob-
servation no longer held when spot size became larger (Supplementary
Fig. S9). Overall, cell2location, RCTD and spatialDWLS still main-
tained good performance when spot sizes varied.

Thirdly, the performance of deconvolution methods varied widely
concerning different normalization methods, suggesting that there
was no ‘one size fits all’ normalization approach that works for all de-
convolution methods (Fig. 2b). Particularly, Giotto/Hypergeometric,
Giotto/PAGE, Giotto/rank and spatialDWLS performed best on the
embryo (sci-Space) and mouse brain (mapped sc-ST) datasets when
employing the ‘normalizeGiotto’ method described in their respective
original publications. SPOTlight, STRIDE and Tangram showed the
best performance when using ‘unit variance’ to normalize the spatial
gene expression matrix (Supplementary Fig. S10).

Usability. We tested the running time and memory usage of the
14 deconvolution methods on the same platform (2.7 GHz, 39 424
KB L3 Cache, 112 CPU cores).

Regarding running time, we observed that Tangram had the
shortest running time on three datasets, and Giotto/Hypergeometric,

Fig. 1. Schematic diagram of the benchmarking workflow to compare the performance of the 14 methods for deconvoluting ST data. Firstly, we adopted two strategies to build

benchmark datasets based on single-cell resolution ST and scRNA-seq datasets. Next, we evaluated the prediction accuracy of the 14 deconvolution methods using three met-

rics (RMSE, PCC and JSD) and assessed the impact of different factors (sequencing depth, spot size and ST normalization choice) on deconvolution results. Furthermore, we

developed an ensemble method by weighting and integrating the top 3 individual methods. Lastly, we adopted ISS data and ISH data to further evaluate the performance of all

methods
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Giotto/PAGE, Giotto/rank, RCTD, Seurat and spatialDWLS ran
less than six minutes, while stereoscope ran more than two hours.
Notably, for the three methods (i.e. cell2location, RCTD and
spatialDWLS) with better performance, the running time of cell2lo-
cation was nearly 100 times that of RCTD or spatialDWLS
(Fig. 2e).

Regarding memory usage, we found that stereoscope had the
highest RAM requirement, while Tangram had the lowest RAM re-
quirement (Fig. 2e). Giotto/Hypergeometric, Giotto/PAGE, Giotto/
rank and spatialDWLS had the same memory usage since the func-
tions used by these four methods belong to the same package.
Particularly, RCTD had the least memory usage among the top-
ranked three methods (i.e. cell2location, RCTD and spatialDWLS).

In short, Tangram was the most efficient, while stereoscope was
the least efficient. RCTD not only performed well among the 14
methods in terms of inferring cell type proportions for a given spot
but also had higher efficiency.

3.3 Integration for an ensemble model
To test whether an ensemble of the existing methods could improve
the accuracy of the ST deconvolution, we compared the perform-
ance of EnDecon with cell2location, RCTD and spatialDWLS on
testing and validation sets. The cross-validation results (Fig. 3)
showed that the ensemble model achieved significant performance
improvement on testing sets of the embryo (sci-Space) and mouse
brain (mapped sc-ST) datasets in terms of RMSE, PCC and JSD.

Fig. 2. Summary of benchmarking results for the 14 deconvolution methods. (a) The names of two types of methods (i.e. enrichment-based methods and deconvolution-based

methods) are respectively ordered by their performances. (b) The overall ranking of the 14 methods. (c) Accuracy of different methods across three metrics and three synthetic

datasets. (d) Stability of each deconvolution method with respect to sequencing depth, spot size and normalization. To evaluate the robustness of different methods to sequenc-

ing depth, for each method, we calculated the variance of the aggregated score at different sequencing depths (Supplementary Text S6). ‘Not applicable’ indicates that certain

deconvolution method does not support performing normalization of ST data. (e) Usability assessment in terms of running time and memory

Fig. 3. The performance of the EnDecon model on testing sets of the embryo (sci-

Space) dataset (a) and mouse brain (mapped sc-ST) dataset (b). Ten times 10-fold

cross-validation was performed. Accuracy metrics (i.e. RMSE, PCC and JSD) of

EnDecon were compared to the other three individual methods (i.e. cell2location,

RCTD and spatialDWLS). Wilcoxon rank sum test (one-tailed) P-value was calcu-

lated to assess the statistical significance of the difference
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Moreover, EnDecon outperformed the three individual methods on
the independent validation set [i.e. MOPA (MERFISH) dataset]
(Table 3) concerning all three metrics.

Furthermore, we depicted the spatial distributions on the three
synthetic datasets using the cell type proportions predicted by
EnDecon and compared them with the corresponding gold standard
(Supplementary Fig. S11). We found a high degree of consistency be-
tween EnDecon’s predicted spatial distributions of cell type abun-
dance and the gold standard on both the embryo (sci-Space) dataset
(Supplementary Fig. S11a) and the MPOA (MERFISH) dataset
(Supplementary Fig. S11b). For the mouse brain (mapped sc-ST)
dataset, it was clear that the estimated cell type proportions by
EnDecon agree with the corresponding marker gene expression in
the ISH images (Supplementary Fig. S11c).

Finally, we compared the computational resources consumed by
EnDecon and 14 other individual methods (Supplementary Fig.
S12). We observed that the computational efficiency of EnDeon was
comparable to that of cell2location and better than that of stereo-
scope. Taking the mouse brain (mapped sc-ST) dataset as an ex-
ample, EnDecon ran a little bit slower than cell2location (i.e. nearly
eight minutes slower) and EnDecon required less memory than
spatialDWLS.

3.4 Application of different methods on real ST datasets
To verify the performance of different deconvolution methods on
real ST data, we applied them to study the spatial organization of
the human developing heart ST dataset. A recent study provides a
spatiotemporal atlas of the human developing heart (4.5–5, 6.5 and
9 PCW) by integrating scRNA-seq, ST and ISS data (Asp et al.,
2019). We performed cell type deconvolution on the ST data of sam-
ples at 6.5 PCW using 15 deconvolution methods (Fig. 4a) and used
the ISS cell type map in the original study (Asp et al., 2019) as the
gold standard (Fig. 4b).

Using sample 4 at 6.5 PCW as an example, it is shown that the
spatial locations of all cell types inferred by cell2location, RCTD,
spatialDWLS, stereoscope and EnDecon well reconstructed the hier-
archical structure of the human heart (Fig. 4a). Specifically, as
expected, these methods mapped Ventricular and Atrial cardiomyo-
cytes to the lower and upper ventricles. Also, Smooth muscle cells
were correctly predicted to localize in the outflow tract, consistent
with the spatial location of the corresponding cell types in the ISS
cell type map (Fig. 4b). Of note, although Seurat estimated the clear-
est cell-type spatial structure, only a partial domain of cell types
could be enriched. In fact, the ISS cell type map showed that the
lower ventricle was mainly composed of Ventricular cardiomyocytes
and Myoa2-enriched cardiomyocytes cell types, whereas Seurat
inferred only the former in the lower ventricle. As such, the cell type
deconvolution inferred by Seurat seems less favorable than that of
cell2location, RCTD, spatialDWLS, EnDecon or even stereoscope.

4 Discussion

The emerging ST technologies provide new insights into spatial het-
erogeneity in cellular abundance and gene expression. However, the
resolutions of most of the current ST data are not guaranteed to be
single-cell. Therefore, it is necessary to quantify cell type abundance

for individual spots in the ST data. Although many computational
methods have been developed to address this challenge, their per-
formances have not been comprehensively evaluated. In this study,
we benchmarked 14 state-of-the-art methods for ST deconvolution
in terms of accuracy, stability and usability. We further developed
an ensemble model that significantly improved the deconvolution
accuracy.

Based on the benchmarking results, we provide a practical guide-
line for researchers to choose suitable tools to analyze their ST data-
sets (Fig. 5). The performance of a deconvolution method heavily
depends on whether it requires reference data, its deconvolution
strategy (e.g. enrichment or deconvolution), and its modeling ap-
proach (e.g. linear regression model, probabilistic model).
Therefore, we categorize them according to the above three factors,
and for each category, our evaluation suggests an optimal choice, as
shown in Figure 5.

Among all the 14 deconvolution methods, only STdeconvolve is
reference-free while it performed not well. The other methods
requiring scRNA-seq data as a reference can be categorized into
enrichment-based methods and deconvolution-based methods.
Among the enrichment-based methods, Seurat had the best perform-
ance, followed by Giotto/Hypergeometric, Giotto/PAGE and
Giotto/rank. Of note, we did not evaluate MIA because the authors
did not disclose executable code in the original publication
(Moncada et al., 2020). Particularly, the enrichment results of
Seurat can be directly used as cell type proportions for subsequent
analysis. In contrast, the enrichment scores estimated by the three
methods included in the Giotto package (i.e. Hypergeometric,
PAGE and rank) represent the importance of different cell types at
each spot, which are required to be normalized to get ultimate cell
type proportions.

Regarding the deconvolution-based methods, cell2location and
RCTD performed best among all probabilistic model-based decon-
volution methods. However, the usability of cell2location was worse
than that of RCTD. Among regression model-based deconvolution
methods, spatialDWLS was superior to spatialDecon and SPOTlight
in terms of accuracy, stability and usability. Technically,
spatialDWLS first uses enrichment analysis to identify the cell type
at each spot and then applies a regression model to infer the propor-
tion of the selected cell type, and these steps are performed on sub-
clusters of ST data. This might explain why spatialDWLS
outperforms other methods. Regarding deep learning model-based
methods, Tangram had high efficiency and acceptable accuracy.
Moreover, Tangram can predict the spatial distribution of undetect-
ed transcripts. Besides, DSTG was omitted for benchmarking since
its deconvoluted result had no annotation information and could
not be compared with the ground truth. Currently, only a few deep
learning model-based deconvolution tools have been developed. We
anticipate that deep learning methods have the potential to further
improve the accuracy and stability of ST deconvolution with high
computational efficiency.

To improve the deconvolution accuracy, we proposed an ensem-
ble learning-based method to estimate cell type proportions for ST
spots. By integrating the top three deconvolution methods using a
linear weighted model, EnDecon achieved a significant improvement
in deconvolution accuracy. Notably, EnDecon assigns a larger
weight to a better method and meanwhile combines strengths from
the three individual methods. Thus, EnDecon can naturally maintain
a good performance under different settings (e.g. sequencing depth,
spot size and normalization) and thus has better stability than the
other individual methods. Therefore, EnDecon provides an alterna-
tive and more effective method for ST deconvolution.

In future studies, new methods could be developed for ST decon-
volution by considering the constraint of adjacent spots. More specif-
ically, for the ST data, we can consider synthesizing the adjacent spots
into new spots containing more cells, which satisfies the linear con-
straint that the proportion of cell types in the simulated big spot is
equal to the weighted sum of the proportion of cell types in the re-
spective small spots. This constraint can increase the number of sam-
ples for deconvolution inference and achieve self-supervised learning.
Currently, existing deconvolution methods do not consider this

Table 3. Comparing the performance of the EnDecon model with

each of the top three methods on the independent validation

dataset

Dataset Method RMSE PCC JSD

MPOA cell2location 0.0682 0.9346 0.0631

RCTD 0.0740 0.9149 0.0562

(MERFISH) spatialDWLS 0.0718 0.9289 0.0569

EnDecon 0.0544 0.9515 0.0484

The boldface values indicate that the proposed method, EnDecon, outper-

formed other methods.
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Fig. 4. Application of different deconvolution methods on the human developing heart dataset. (a) The spatial distributions of cell type proportion predicted by 15 deconvolu-

tion methods in sample 4 at 6.5 PCW. Each pie represents the cell type proportions in each spot in the ST slide, and colors represent different cell types. (b) The spatial cell

type map generated by integrating ISS and scRNA-seq data in the original study

Fig. 5. Practical guidelines for method users. As the performance of a method mainly depends on whether a reference is needed, the strategy is adopted and the mathematical

model used, we, therefore, provide a set of practical guidelines combining the accuracy, stability and user-friendliness of the method. The methods on the right are ranked

according to their performance on a specific (set of) deconvolution method. Further to the right, the accuracy, stability, usability scores (þ: �0.9; 6: �0.6; –: <0.6) and operat-

ing platform are displayed in order. The grey square denotes that the corresponding method fails to evaluate
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constraint, which may explain the observation that smaller spot sizes
tend to have larger RMSE values in our study. New deconvolution
methods incorporating this constraint may address the issue and are
anticipated to improve deconvolution performance.

Another limitation of the current existing ST deconvolution meth-
ods is that most of them only infer cell type proportions but do not es-
timate cell-type-specific (CTS) gene expression at each spot, which is
equally important for ST data analysis. For bulk RNA-seq data, many
methods have been developed for CTS genes expression inference,
such as TCA (Rahmani et al., 2019), CIBERSORTx (Newman et al.,
2019), bMIND (Wang et al., 2021) and swCAM (Chen et al., 2022).
However, for the ST data, only RCTD can infer the CTS gene expres-
sion at each spot. RCTD calculates CTS gene expression under the as-
sumption that random effects of gene expression are shared across all
cell types, which may lead to inaccurate estimation. Therefore, new
methods are necessary and valuable to be developed for inferring CTS
gene expression from ST data in the future.

In conclusion, this study performs a comprehensive comparison
of available ST deconvolution methods for decomposing the cell
type composition of spatial mixtures. The major new findings in this
study are as follows: (i) cell2loction, RCTD and spatialDWLS are
more accurate than other ST deconvolution methods, based on the
evaluation of RMSE, PCC and JSD; (ii) cell2location and
spatialDWLS are more robust to the variation of sequencing depth
than RCTD; (iii) the accuracy of the existing methods tends to de-
crease as the spot size becomes smaller; (iv) most deconvolution
methods only perform well when they normalize ST data using the
method described in their original publications; and (v) the ensemble
learning-based deconvolution method, EnDecon, achieves more ac-
curate deconvolution of the ST data. The results provide valuable in-
formation and guideline for analyzing spatial transcriptome data
and developing new deconvolution methods.
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