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Abstract

Motivation: The gut microbiome changes rapidly under the influence of different factors such as age, dietary
changes or medications to name just a few. To analyze and understand such changes, we present a Microbiome
Toolbox. We implemented several methods for analysis and exploration to provide interactive visualizations for
easy comprehension and reporting of longitudinal microbiome data.

Results: Based on the abundance of microbiome features such as taxa as well as functional capacity modules,
and with the corresponding metadata per sample, the Microbiome Toolbox includes methods for (i) data analysis
and exploration, (ii) data preparation including dataset-specific preprocessing and transformation, (iii) best feature
selection for log-ratio denominators, (iv) two-group analysis, (v) microbiome trajectory prediction with feature im-
portance over time, (vi) spline and linear regression statistical analysis for testing universality across different
groups and differentiation of two trajectories, (vii) longitudinal anomaly detection on the microbiome trajectory and
(viii) simulated intervention to return anomaly back to a reference trajectory.

Availability and implementation: The software tools are open source and implemented in Python. For developers
interested in additional functionality of the Microbiome Toolbox, it is modular allowing for further extension with
custom methods and analysis. The code, python package and the link to the interactive dashboard of Microbiome
Toolbox are available on GitHub https://github.com/JelenaBanjac/microbiome-toolbox

Contact: ShaillayKumar.Dogra@rd.nestle.com

Supplementary information: Supplementary data are available at Bioinformatics online.

as these relate to health conditions. In early life, an age-appropriate
microbiome is understood to be critically important for appropriate
immune competence development (Dogra et al., 2015). Equally,

1 Introduction

Microbiome as a concept usually refers to the composition and

function of myriads of bacteria in an ecosystem, such as the gut or
other body sites of humans or animals (Dogra et al., 2020). The gut
microbiome is particularly dynamic during early life development
yet is still susceptible to change and malleable and it reaches a stable
state at around 2-3 years of age (Cher and Yassour, 2020). Diet is a
major factor affecting the microbiome throughout life. For example,
the adult microbiome was shown to change in response to drastic
changes in diet such as a high-fat or ketogenic diet (David et al., 2014;
Mardinoglu et al., 2018). Not surprisingly, as a response to antibiot-
ics, the gut microbiome is also drastically impacted but recovers sub-
sequently to a large extent (Palleja er al., 2018).

Exploring and understanding changes in the microbiome in rela-
tion to different factors such as time or age, changes in the environ-
ment and diet, as well as medications, are of great interest especially
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numerous examples relate adult gut microbiome features to health
conditions (Dogra et al., 2020). Hence, the importance of a
Microbiome Toolbox that allows the identification of the key micro-
biome features that characterize an appropriate microbiome versus
one that deviates.

Here, we present a Microbiome Toolbox to facilitate such explo-
rations and understanding that can be employed as is for efficient
dataset analysis or customized for further data exploitation. Beyond
the customary data visualizations and explorations, we implement
some specific methods for exploring the microbiome trajectories.
Besides working with relative abundances, a key aspect of the calcu-
lations is using log ratios to integrate relevant algorithms. We take a
machine-learning-based approach to derive a microbiome trajectory.
We define on- and off- the trajectory based on various criteria, and
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Fig. 1. Microbiome Toolbox has multiple components for (a) exploration of microbiome data, (b) preparing data for subsequent analyses, (c) constructing microbiome trajec-
tories, (d) determining who is an outlier or within a trajectory and (e) identifying important features as possibilities to return an outlier sample back on to the trajectory. The
data used to illustrate the functionalities of this Microbiome Toolbox is from the R-package—metagenomeSeq (Paulson et al., 2013). Briefly, 12 germ-free mice fed a low-fat,
plant polysaccharide-rich diet, were inoculated with adult human fecal material by gavage. Mice remained on the same diet for 4 weeks before a subset of six mice were

switched to a high-fat, high-sugar diet for an additional 8 weeks

we identify key determining features that place a sample on- or off-
the trajectory. Furthermore, we suggest what changes can bring a
sample back onto the trajectory. An overview of the Microbiome
Toolbox is presented in Figure 1.

2 Materials and methods

2.1 Data analysis and exploration

To get an overview and understanding of the data, Microbiome
Toolbox has the plot to visualize the sampling statistics (Fig. 1a).
The example data used here, briefly described in the legend of
Figure 1, is from the R-package—metagenomeSeq (Paulson et al.,
2013), and its source is pointed to in Supplementary Table S1 under
‘mouseData’. We can visualize the microbiome data in an ultra-

dense manner. Feature abundances, such as taxa, can be visualized
over time as a heatmap or as a median or mean with error bars.
Diversity indices such as Shannon or Simpson can be calculated.
Embedding plots can be used to visualize the multi-dimensional data
in a low-dimensional latent space. Outlier clusters can be identified
and further analyzed to identify discriminating features distinguish-
ing these outliers from the rest of the group.

2.2 Data preparation

Besides having feature abundances, one can perform a log-ratio
transformation (Fig. 1b). For the purpose of calculating this log-
ratio, we can identify a suitable bacterium to go in the denominator
by using methods such as the least number of crossings, bacteria
with very low or very high differential rankings, or choosing the
bacteria with the best model performance when used as a
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denominator. We can also make a ‘hybrid model’ by applying the
domain knowledge to incorporate features in addition to the ones
identified as important by the model. Next, we can define a refer-
ence or control group to be used as a basis for setting the trajectory.
We can then classify all other samples into a non-reference group or
use an unsupervised novelty detection algorithm to decide whether
the observed sample belongs to the reference. Before deriving micro-
biome trajectories, we first need to prepare the data by removing
correlated or low-variance features. We can also choose the subset
of taxa the model will be trained on and still achieve an optimal
performance.

2.3 Microbiome trajectory

Using machine-learning algorithms, we predict a Microbiome
Maturation Index (MMI) as a function of time (Fig. 1¢). A smooth
fit is then used to obtain the trajectory. To interpret the predictions
of the model we use SHapley Additive exPlanation (SHAP) values
analysis (Lundberg et al., 2020). A confidence interval or prediction
interval can be utilized to check the nature of the spread of points
on the trajectory. Comparison between groups or references can be
made by fitting lines specific to each group and then running statis-
tical tests to determine if these are significantly different.
Additionally, we can evaluate trajectory performance using more
than 40 different models including a custom-made deep learning
model for the dataset—also, different models can be chosen indi-
vidually for different datasets.

2.4 Outlier discovery

Outliers can be identified by various methods such as being outside
the prediction interval or by longitudinal anomaly detection algo-
rithms such as a low-pass filter or Isolation Forest (Liu et al. 2008)
implemented using a rolling average window. We can then use a
machine-learning ensemble model, discriminating between the out-
liers and the (subsampled) rest of the dataset, to classify these out-
liers. We can interpret the predictions using SHAP analysis to
identify the bacteria or metadata factors that differentiate the out-
liers from the (subsampled) rest.

2.5 Important features and intervention simulation

Lastly, we can identify the key bacteria that are important per the
user-defined time window in the trajectory (Fig. le). For outliers,
some of these key features are out of the normal range causing the
deviation from the trajectory. In a simulation setting, by restoring
these numbers to be the same as for the key features in the reference
group, we can make the outliers move closer to the trajectory.
Additionally, we can see what features are shared between the
detected outlier samples and compare whether they can be differen-
tiated from the non-outlier samples. This then provides insights into

how external factors affect our samples and what could be possible
key interventions in real life, such as nutrition-based inteventions, to
reposition these outliers back to normal.

3 Conclusions

We present here a Microbiome Toolbox to depict microbiome
change as trajectories under different conditions such as time, diet
changes or perturbations. While the Microbiome Toolbox has
implemented intricate methods and complex algorithms, it also pro-
vides a rich variety of plots for easy visual comprehension and
reporting. We hope that microbiome researchers will find this
Microbiome Toolbox particularly useful for the examination of
their data and for deriving meaningful insights.
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