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Abstract

Motivation: Whole-genome sequencing (WGS) is increasingly used to aid the understanding of Mycobacterium tu-
berculosis (MTB) transmission. The epidemiological analysis of tuberculosis based on the WGS technique requires
a diverse collection of bioinformatics tools. Effectively using these analysis tools in a scalable and reproducible way
can be challenging, especially for non-experts.

Results: Here, we present TransFlow (Transmission Workflow), a user-friendly, fast, efficient and comprehensive
WGS-based transmission analysis pipeline. TransFlow combines some state-of-the-art tools to take transmission
analysis from raw sequencing data, through quality control, sequence alignment and variant calling, into down-
stream transmission clustering, transmission network reconstruction and transmission risk factor inference, to-
gether with summary statistics and data visualization in a summary report. TransFlow relies on Snakemake and
Conda to resolve dependencies among consecutive processing steps and can be easily adapted to any computation
environment.

Availability and implementation: TransFlow is free available at https://github.com/cvn001/transflow.

Contact: zhwliu@cdc.zj.cn or xmwang@cdc.zj.cn or gjs_919@zuaa.zju.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis complex
(MTBC) bacteria, remains a globally severe public health threat, as
it causes high mortality induced by a single pathogen (World Health
Organization, 2021). Rapid detection of M.tuberculosis transmis-
sion can offer enhanced opportunities for TB control (Jensen et al.,
2005). Genotyping and sequencing methods have revolutionized in-
fectious disease surveillance (Tang et al., 2017). Molecular surveil-
lance combining molecular data with classical epidemiological data
allows the investigation of the transmission of disease within the
population and the sensitive detection of outbreaks (De Beer et al.,
2014; Gav�ın et al., 2012; Wyllie et al., 2018).

Molecular detection of TB outbreaks is shifted from fingerprint-
ing [mycobacterial interspersed repetitive-unit-variable-number

tandem-repeat (MIRU-VNTR)] methods, and sequence-based geno-
typing assays (multi-locus sequence typing) to next-generation
sequencing-based whole-genome sequencing (WGS) in recent years
(Struelens and Brisse, 2013). In a retrospective observational TB
study in the UK (referred to as UKTB), researchers measured genom-
ic diversity using WGS within community-based MIRU-
VNTR-defined clusters and proposed 5 and 12 single nucleotide
polymorphisms (SNPs) as potential cutoffs for epidemiological
relatedness (Walker et al., 2013). Another population-based, retro-
spective TB study in Shanghai, China (referred to as CTB), utilized
both VNTR and WGS strategies to detect the recent transmission of
324 multidrug-resistant (MDR) tuberculosis strains and demon-
strated WGS can measure the heterogeneity of drug-resistant muta-
tions within and between hosts and help to determine the
transmission patterns of MDR TB (Yang et al., 2017). Along with
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the UKTB and CTB studies, multiple studies from around the world
have pointed out that the resolution of WGS is superior to that of
MIRU-VNTR typing and that epidemiological links can be traced
more accurately (Bainomugisa et al., 2021; Bjorn-Mortensen et al.,
2016; Folkvardsen et al., 2017; Ford et al., 2012; Jiang et al., 2020).

In the above TB transmission studies based on WGS, the general
first step is to define ‘transmission clusters’, sets of cases that are po-
tentially linked by direct transmission (Hatherell et al., 2016). To
address this, the most common approach is to use an SNP cutoff-
based clustering method which places two cases in the same putative
transmission cluster if there are less than a threshold number of
SNPs between their sequenced TB genomes (Hatherell et al., 2016).
However, it is not yet clear if a single threshold could be used to de-
tect epidemiologically linked cases in all timeframes and contexts
(Menardo et al., 2019). Beyond SNP-based clustering, a novel prob-
abilistic approach named TransCluster has been developed (Stimson
et al., 2019). In contrast to the SNP cutoff-based clustering,
TransCluster clusters sample pairs together if it estimates that there
are fewer than a threshold number of transmission events between
them, with a given probability. This may outperform the SNP-based
method where clock rates are variable and sample collection times
are spread out (Stimson et al., 2019).

The second step is inferring the transmission network (‘who
infected whom’) of TB from both genetic and epidemiological data
(Teunis et al., 2013). In recent years, statistical methods for recon-
structing potential transmission links have been rapidly developing,
such as SeqTrack, TransPhylo, Outbreaker2 and SCOTTI
(Campbell et al., 2018; Didelot et al., 2017; Jombart et al., 2011).
Two of them (SeqTrack and TransPhylo) were used to analyze MTB
outbreaks before (Ayabina et al., 2018; Didelot et al., 2017; Guerra-
Assunç~ao et al., 2015). These methods utilize genomic data, either
directly as a multiple sequence alignment (Outbreaker2 and
SeqTrack), or indirectly from a timed phylogenetic tree (TransPhylo
and SCOTTI), as well as sampling dates. SeqTrack is the fastest tool
due to the simplicity compared to other models which employ a
Bayesian framework that have to run over millions of Markov
Chain Monte Carlo iterations for chain convergence. Outbreak2
and TransPhylo have been developed to account for the complex
epidemiology, including handling within-host evolution and non-
complete outbreak sampling. Notably, SeqTrack and Outbreak2
can use spatial or contact-tracing data to improve the transmission
network reconstruction, respectively. Additionally, for a central
goal of TB control, it is of importance to figure out transmission risk
factors to identify highly contagious TB patients (Meehan et al.,
2019).

Despite decreasing costs to integrate sequencing technologies
into routine TB molecular surveillance, many laboratories still lack
the computational resources and specialized staff required for ana-
lyzing and managing sequencing data (Meehan et al., 2019). There
are several open-source or commercially available bioinformatics
pipelines and websites automating MTBC sequencing data manipu-
lation and analysis in a single step, such as TB-Profiler (Phelan et al.,
2019), Mykrobe (Hunt et al., 2019), MTBSeq (Kohl et al., 2018)
and SAM-TB (Yang et al., 2022). All of them provide the functions
of anti-TB drug-resistance prediction and MTB lineage classification
from sequencing reads. Besides, both MTBseq and SAM-TB provide
the analysis of genetic relationships, and SAM-TB further integrates
the identification of non-tuberculous mycobacteria species.
However, there remains a lack of a standardized and validated data
analysis workflow primarily for the identification of recent trans-
mission chains and their direction (Jajou et al., 2019; Meehan et al.,
2019).

In this article, we present a novel workflow named TransFlow
which uses a modern computational workflow management system,
Snakemake (Koster and Rahmann, 2012), to combine many of the
state-of-the-art tools currently employed in WGS-based MTBC
transmission analysis into a single, fast, easy-to-use pipeline.
TransFlow is scalable since it can be run on either computing servers
with many cores (which enable parallel computing) or on a personal
computer with limited computing resources. TransFlow is also flex-
ible and configurable: it adopts both SNP-based and transmission-

based methods for transmission clustering and can further incorpor-
ate other epidemiological data for molecular surveillance based on
the user’s settings and inputs. We apply this workflow to two real
WGS datasets from the CTB and UKTB studies to show its functions
and performance. Meanwhile, we provide documentation, example
data, outputs and a sample report on the official GitHub repository
to facilitate rapid evaluation and adoption of our workflow.

2 Implementation

The analysis steps of TransFlow are expressed in terms of ‘rules’
connecting input files to output files as part of the overall workflow
(Fig. 1). Upon execution, Snakemake infers the combination of rules
necessary to achieve a ‘target’ or specific output, in our case, the
final summary report (referred to as the report file). The necessary
steps will be run in an optimized manner depending on the computa-
tional environment.

TransFlow runs from a single configuration file (referred to as
the config file), where users list their pair-end sequences FASTQ files
and certain parameters about the analysis in human-readable
YAML format (Supplementary Section S1). It also takes a single
TSV format file (Supplementary Section S2) with metadata of sam-
ples including at least sample ids and collection dates (referred to as
the metadata file) as input. The overall TransFlow framework is
comprised of five distinct and coherent analysis modules: (i) quality
control, (ii) MTBC filtering, (iii) sequence alignment and variant
calling, (iv) transmission detection and (v) transmission risk
factor inference. For detailed information including software
requirements, default parameters, usages and descriptions, please
see Supplementary Section S3. A Shell script is provided to automat-
ically run a complete analysis with all modules combined. In add-
ition, each module can be run independently, so that users can
obtain satisfactory results by adjusting relevant parameters, such as
manually filtering out low-quality samples, trying different transmis-
sion detection methods or thresholds, etc. A significant and unique
advantage of TransFlow is that its underlying framework enables
easy and efficient rerunning of analyses. Unless the relevant input
files have been changed, upstream steps of the pipeline will not be

Fig. 1. Overview of the full workflow and tools performed by TransFlow

(Transmission Workflow). The different modules of the pipeline are broken down

by colors
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re-executed. Users can easily re-execute steps if errors occur, or the
data and parameters need to be adjusted.

TransFlow is fully open source and implemented in both Python
and R programming languages. It uses the Conda environment man-
ager (Anaconda,Inc., 2020) for extensive control of external tools,
including versioning of configurations and environments, proven-
ance capabilities and scalability on high-performance computing
clusters. The common parameter settings for different modules were
predefined, and some can be straightforwardly customized to meet
users’ specific needs. Complete usage and user options are outlined
in the TransFlow repository. In addition, we provide a toy example
dataset including FASTQ and metadata files for processing the
whole workflow. For this purpose, short reads were simulated with
NEAT (see Supplementary Section S3 for all simulation details)
(Stephens et al., 2016).

3 Results

To illustrate the utility of TransFlow, we applied it to a real dataset
from the CTB study (SRA accession: SRP058221) (Yang et al.,
2017). This study collected a total of 324 MTB isolates from MDR
TB patients. The authors first screened 125 samples by VNTR geno-
typing then successfully performed WGS in 122 of them. The epi-
demiological data were obtained from the authors (Supplementary
Table S1).

3.1 MTBC filtering
It is important to filter out samples that may have been significantly
contaminated by foreign DNA during sample preparation. The
paired-end reads of each sample are classified through Kraken
(Wood and Salzberg, 2014) against a pre-built database
(MiniKraken DB_8GB, October 18, 2017: https://ccb.jhu.edu/soft
ware/kraken/) containing all of the complete genomes of bacteria,
archaea, virus, protozoa, plasmids and fungi in RefSeq (Haft et al.,
2018). A custom Python script is used to calculate the proportion of
reads that are taxonomically classified under the MTBC for each
sample and implement a defined threshold (default 90%) (Ezewudo
et al., 2018; Vargas et al., 2021). A sample will be dropped if it has
less than this threshold of reads aligned to the MTBC
(Supplementary Table S2). Besides, TransFlow provides an option
that allows users to lower the MTBC screening threshold and filter
out non-MTBC reads with Kraken in the meantime so that contami-
nated samples can still be reliably processed.

3.2 Quality control of raw reads and alignments
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) is adopted to check the quality of the sequencing reads and
produces a report for each FASTQ file. TransFlow uses MultiQC
(Ewels, 2016) to summarize all the reports and merge them into an
integrated report, as shown in Figure 2A and B. Users can then
check the report and set up the parameters for Trimmomatic (Bolger
et al., 2014), such as ILLUMINACLIP, SLIDINGWINDOW and
MINLEN. The raw reads quality of the CTB dataset is not good
enough since there is a large number of adapter sequences present in
some FASTQ files, and adapter trimming is therefore performed.

After the step of alignment to the reference genome, the inter-
mediate output BAM files will be provided to Qualimap2
(Okonechnikov et al., 2015) to evaluate the alignment quality.
Figure 2C shows an example plot from Qualimap2. MultiQC is
then used to generate a statistics figure on the GC content using the
output of feature counting (Fig. 2D).

3.3 Pan-genome-based pairwise SNP distances
To overcome the bias of the lineage-specific reference genomes,
TransFlow adopts the PANPASCO pipeline (Jandrasits et al., 2019)
to perform pairwise SNP distance calculation, which uses a compu-
tational pan-genome incorporating 146 MTBC complete genomes
representing the main lineages 1–4. Furthermore, BWA (Li and
Durbin, 2009), SAMTools (Li et al., 2009) and GATK (DePristo

et al., 2011) are utilized in TransFlow for sequence alignment and
variant detection, separately. Additionally, SNPs annotated in
regions difficult to map such as repetitive sequences and PPE/PE-
PGRS genes of the reference pan-genome are excluded (Meehan
et al., 2019). PANPASCO generates a TSV file containing a symmet-
ric matrix of pairwise SNP distances among all samples. After that,
TransFlow first outputs a clustered heatmap to display this matrix
(Fig. 3A). Secondly, TransFlow draws a histogram to display the dis-
tribution of all genetic distances in which the distances ranging from
0 to 12 are highlighted. Both figures show primary evidence of puta-
tive recent transmissions (Fig. 3B).

3.4 Transmission detection
After pairwise SNP distance calculation is completed, TransFlow
makes use of the R package TransCluster (Stimson et al., 2019) to
perform transmission clustering. TransCluster provides two differ-
ent clustering methods, SNP-based and transmission-based methods
to infer the samples potentially linked by recent transmission. For
the SNP-based method, two samples are in the same transmission
cluster if their SNP distance is less than or equal to a fixed cutoff.
The SNP-based method only considers the SNP distances, while the
transmission-based method further takes into account the priors of
sampling dates, clock rate and transmission processes. The
transmission-based method is to cluster sample pairs together if the
number of estimated transmission events between them is lower
than a threshold number, at a given probability of 80%. The trans-
mission rate is the rate at which intermediate cases occur in the total
time elapsed between the most recent common ancestor of two
sampled hosts and sampling events. The molecular clock rate of
MTB is estimated from 0.04 to 2.2 SNPs/genome/year, with sub-
stantial differences between lineages (Menardo et al., 2019). The

Fig. 2. Quality control of raw reads and alignment. (A) Mean quality value across

each base position in the read. (B) Cumulative percentage count of the proportion

of adapter sequences. (C) Alignment coverage and GC content across reference gen-

ome. (D) Distribution of GC content of mapped reads of all samples

Fig. 3. Pan-genome-based pairwise SNP distances between samples. (A) Heatmap

representation of the pairwise SNP distances shows genetic similarities and differen-

ces among all samples. (B) Histogram represents the distribution of all pairwise SNP

distances. The peaks represent the genetic differences between major lineages. The

dashed line denotes a cutoff of 12 SNPs. Rug lines representing individual pairs are

shown at the bottom
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transmission clusters were to portray not only recent direct trans-
mission events within the study population but also earlier transmis-
sion events that were connected by unsampled contacts (Stimson
et al., 2019). This step outputs a TSV file containing both the clus-
tering results of all samples and the cluster ids of the clustered sam-
ples (Supplementary Table S3). The clusters are sorted by the
number of their members. Furthermore, TransFlow generates visual-
izations including two pie charts to show the statistics of clustered
samples (Fig. 4A) and the members of all clusters (Fig. 4B),
separately.

Next, the transmission network reconstruction is performed
using the SeqTrack algorithm (Jombart et al., 2011) from R package
Adegenet (Jombart, 2008) on the clusters including at least three
samples for ensuing analyses. Besides the SNP distances and sam-
pling dates, users can further input the geographic coordinates of
samples to represent their spatial connectivity and improve the local
transmission inference. These inputs are then handled by the ggnet2
function from the R package GGally (Shannon et al., 2003) to gen-
erate network visualizations and corresponding nodes and link files
(Fig. 4C). It is worth noting that these files can be directly imported
into Cytoscape (Shannon et al., 2003) to manually modify the trans-
mission network.

3.5 Transmission risk factor inference
TransFlow further provides a function for inferring epidemiological
risk factors related to transmission. Users are required to provide all
epidemiological characteristics data to be detected in the metadata
file, such as age, gender, place of residence, previous TB treatment
history and status of Diabetes or HIV infection. TransFlow uses the
R package gtsummary to perform univariate regression analysis on
the epidemiological characteristics specified in the config file with
transmission clustering (Sjoberg et al., 2021). It automatically
detects continuous, categorical and dichotomous variables in the
data set, performs appropriate descriptive statistics and also includes
the amount of missingness in each variable (details are in
Supplementary Section S3). Finally, it generates a publication-ready
analytical and summary table (Fig. 5).

3.6 Creation of summary reports
The results of the TransFlow are presented in a user-friendly inter-
active HTML report which is generated using a custom R mark-
down script and rendered with the R package knitr (Xie, 2018). The
report contains summary statistics, visualization plots and descrip-
tions of the pairwise SNP distances, transmission clusters, transmis-
sion networks and risk factor inference (Supplementary Section S4).

3.7 Real datasets results
For the CTB dataset, we test the transmission-based method with a
clock rate of 1.5 SNPs/genome/year, a transmission rate of 2.0 and a
transmission threshold of 19. In consideration of the reports of
higher mutation rates of MDR strains (Borrell and Gagneux, 2009;
de Steenwinkel et al., 2012), the clock rate selected is larger than the
typical rate for TB but within the range of recently reported muta-
tion rates of Beijing-family strains (Menardo et al., 2019). The trans-
mission rate is also within the range of potential transmission rates
from the original TransCluster paper (Stimson et al., 2019).
According to a recent TB research in Malaysia, we also selected the
transmission threshold of 19 (Bainomugisa et al., 2021). A total of
103 (84%) of 122 sequenced strains (Fig. 4A) in 36 putative trans-
mission clusters are identified (Fig. 4B), which is almost the same as
the results in the original study of the CTB dataset (103 [84%] in 38
clusters).

For example, Figure 4C shows the reconstructed transmission
network of Cluster 2, which is the same as Cluster 9 in the original
CTB study and supplements the putative transmission traces as well.
We can further manually integrate the inferred transmission net-
work and epidemiological links from the original paper to recover a
putative transmission scenario as shown in Figure 4D. The putative
index case was a husband (12_1614) who then transmitted MTB to
his wife (12_0659). Afterward, transmission events occurred in the
game room of a residential complex which resulted in infection to
other three patients (10_0183, 10_2010 and 12_1050). Besides, we
can identify two patients without any epidemiological link to the
game room (10_1007 and 11_0426) who are linked to patients
10_0183 and 10_2010, separately in a transmission chain.

To identify risk factors associated with the transmission, 177
cases identified as unique by the VNTR genotyping in the previous
CTB study population are also incorporated (Supplementary Table
S1). Differences in six epidemiological characteristics (age, sex,
treatment history, sputum smear result, treatment outcome and
Beijing lineage) between clustered and unique cases are assessed
among a total of 299 cases with available epidemiological investiga-
tion results. Consistent with the original paper, the results indicated
that age is a putative risk factor for the transmission of multidrug-
resistant TB (Fig. 5), which means a patient being 45 years or older

Fig. 4. Transmission clustering and network reconstruction. (A) Statistics of clus-

tered and unique samples. (B) Statistics of members of all transmission clusters. (C)

Inferred transmission network of Cluster 2 based on pairwise SNP distances, sam-

pling dates and geographic coordinates. Each node represents a clustered strain. The

number of SNPs that separate the different strains within and between clusters is

specified. Arrows indicate the potential direction of transmission within clusters.

The detailed information is shown in the right table. (D) Putative transmission scen-

ario inferred from both the inferred transmission network and epidemiological links

[based on Yang and colleagues’ study (Yang et al., 2017)]

Fig. 5. Univariable analysis of risk factors for TB transmission. Bold values denote

statistical significance at the P-value < 0.05 level
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is more likely to be in a transmission cluster of MDR tuberculosis
than other patients.

We also evaluated TransFlow for the second dataset, UKTB and
focused on a transmission cluster described in detail (Supplementary
Table S4). This community cluster (Cluster 7, original paper) was
initially defined by the shared MIRU-VNTR profile of the samples
and includes 17 sequenced isolates of ten TB patients with one cen-
tral, treatment non-compliant individual (Walker et al., 2013).
Through epidemiological investigation, the authors found that the
SNP differences between all strains with known or possible epi-
demiological links in this cluster did not exceed 12 SNPs.
Accordingly, using TransFlow with the same cutoff of 12 SNPs, we
identified the same transmission cluster and reconstructed the trans-
mission network (Fig. 6). The transmission direction speculated by
TransFlow shows the putative index case was a super-spreader in
this transmission cluster. P076 transmitted MTB to nearly all other
patients including one family member (P334). Transmission events
might occur in a pub which resulted in infection to two other
patients (P037 and P026) and then P026 transmitted MTB to family
member P027 at home. Also, we can identify that P066 was infected
by P076 through a household epidemiological link. There was an-
other household epidemiological link from P076 to four other
patients (P174, P175, P211, and P335), among whom P174 and
P175 were from the same family.

3.8 Performance testing
To demonstrate TransFlow’s performance, we first measured the
run time and maximum memory usage via the Linux time command
for a subset of 50 samples from the CTB dataset when invoked with
a certain thread count, in the range from 8 to 56, respectively.
Supplementary Figure S1A shows that an improved performance is
observed with 32 threads but beyond that point the performance
improvements diminish greatly. The memory usage is consistent
with increasing threads at about 6 Gb (Supplementary Fig. S1B). In
addition, Supplementary Figure S1C shows that the run time is pro-
portional to the increase in sample size from the CTB dataset. The
memory usage only increased from 30 to 60 samples and eventually
stabilize at about 7 Gb (Supplementary Fig. S1D). All tests were per-
formed in a server with double Xeon Platinum 8268 2.90 GHz CPU
(total 48 cores and total 96 threads) and 1Tb shared RAM
2133 MHz.

4 Discussion

TransFlow is designed following three core concepts that permeate
throughout the design of the pipeline. First, it is designed with visu-
alization of results as a key principle to generate output encapsulat-
ing important analysis results in informative, publication-quality
figures. Secondly, TransFlow is developed based on Snakemake to
acquire both efficiency and customizability. Lastly, we aim to ensure
that TransFlow could be installed and used by anyone, even those
with limited bioinformatics experience. Accordingly, the installation
of TransFlow requires minimal user input, and the operation can be
launched by a single terminal command with inputs generated by
any text or table editor.

4.1 Utilization of state-of-the-art tools
Bioinformatics technologies for WGS-based tuberculosis molecular
epidemiology are still in fast development. However, their applica-
tions are debated regarding both the selection of reference genome

and the threshold of recent transmission. To overcome these chal-
lenges, TransFlow adopts two state-of-the-art tools, PANPASCO

and TransCluster. PANPASCO utilizes a pan-genome with the rep-
resentation of the four main lineages 1–4 and a pairwise distance
method to avoid the genetic distance calculation bias (Jandrasits

et al., 2019). TransCluster is a novel transmission cluster identifica-
tion tool, which brings sampling time, SNP distance, transmission

rate, and molecular clock rate into its transmission probability
model to improve the recognition rate of transmission clusters and
the flexibility of samples (Stimson et al., 2019). By taking advantage

of both tools, TransFlow identifies two credible clusters (Clusters 1
and 4) which modifies three clusters in the original CTB study

(details are described in Supplementary Section S5).

4.2 Visualization of analyses results
TransFlow outputs figures or tables for all analyses that allow users
to rapidly understand and utilize the analysis results. The most im-
portant visualizations are all compiled into a single summary report

file, which highlights the main features of the analysis while explain-
ing each of the individual processes needed to create the figure. All

the figures are output in both PDF and PNG format to facilitate the
publication.

4.3 Snakemake as a framework
TransFlow is built upon Snakemake (Koster and Rahmann, 2012), a
scalable workflow engine that helps to manage workflows easily. It

divides the whole workflow into rules with each rule accomplishing
one step of the workflow. The input of one rule is the output from

the rule corresponding to the previous step, making the data flow
easy to track. TransFlow organizes the rules carrying out a big step
of the workflow together in one snakefile. All the modules share a

common config file and are then integrated into the main Shell
script. Users can call this script to perform an end-to-end analysis or
run each module step by step. It is particularly useful when users

want to try different parameters, e.g. different clustering methods.
Additionally, Snakemake infers which rules are independent of each

other and can be run in parallel, thus reducing idle CPU time to
speed up workflow completions.

TransFlow is highly modular and open source, thus it allows
users to switch tools utilized in the workflow. Following steps
should be performed, for example, to switch the sequencing reads

alignment program from the default BWA to Bowtie2. First, add
Bowtie2 information to the YAML file of Conda environment.

Next, modify some contents of the Snakemake rule which uses BWA
for reads mapping, including the format of output files and shell
commands, to meet the requirements of Bowtie2. Also, modifica-

tions are needed correspondingly in other rules where these output
files exist as input files.

4.4 Ease of use
The documentation for installing, deploying and using TransFlow is

provided online. It is worth noting that TransFlow is designed to use
the package manager Conda (Anaconda,Inc., 2020) and the
Bioconda (The Bioconda Team et al., 2018) channel. This allows

users to download and install the dozens of bioinformatics tools and
packages that go into TransFlow with a single command. All appli-

cations and algorithms incorporated into TransFlow can be fine-
tuned in the accompanying configuration file, with each option hav-
ing a detailed description and recommend default setting. Setting up

a metadata file for TransFlow requires basic usage of the terminal
and software such as Excel to edit a TSV file, both of which involve
very simple commands.

Fig. 6. Transmission network (A) reconstructed with TransFlow between samples of

the UKTB dataset. (B) Putative transmission scenario inferred from both the inferred

transmission network and epidemiological links based on the original UKTB study

(Walker et al., 2013)
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5 Conclusions

We present a new WGS-based TB transmission analysis pipeline
TransFlow, which is fast, efficient, customizable and easy-to-use,
enabling it to be an effective and modern tool for researchers. The
complete workflow starts with quality control of the raw reads and
MTBC filtering. It goes through several steps including optional
trimming, pan-genome reference alignment, variant calling, pairwise
SNP distances calculation, transmission clustering, transmission net-
work reconstruction and risk factor inference. A detailed summary
report is generated in the end to incorporate all results from previous
analysis steps.

We will regularly add more novel workflows which consist of
newly developed tools as anything new emerges. We welcome all the
feedback from users regarding our pipeline and are always waiting
at some point to improve and update the modules to meet the specif-
ic demands from them and hope to assist in making full use of the
merit of WGS technology as it goes.
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