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Abstract

Motivation: Protein essentiality is usually accepted to be a conditional trait and strongly affected by cellular environ-
ments. However, existing computational methods often do not take such characteristics into account, preferring to
incorporate all available data and train a general model for all cell lines. In addition, the lack of model interpretability
limits further exploration and analysis of essential protein predictions.

Results: In this study, we proposed DeepCellEss, a sequence-based interpretable deep learning framework for cell
line-specific essential protein predictions. DeepCellEss utilizes a convolutional neural network and bidirectional long
short-term memory to learn short- and long-range latent information from protein sequences. Further, a multi-head
self-attention mechanism is used to provide residue-level model interpretability. For model construction, we col-
lected extremely large-scale benchmark datasets across 323 cell lines. Extensive computational experiments dem-
onstrate that DeepCellEss yields effective prediction performance for different cell lines and outperforms existing
sequence-based methods as well as network-based centrality measures. Finally, we conducted some case studies to
illustrate the necessity of considering specific cell lines and the superiority of DeepCellEss. We believe that
DeepCellEss can serve as a useful tool for predicting essential proteins across different cell lines.

Availability and implementation: The DeepCellEss web server is available at http://csuligroup.com:8000/
DeepCellEss. The source code and data underlying this study can be obtained from https:/github.com/
CSUBioGroup/DeepCellEss.

Contact: limin@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

The computational methods can be roughly divided into two cate-
gories: network-based centrality measures and machine learning-based
methods. Network-based centrality measures usually rely on a con-

1 Introduction

Essential genes are indispensable for the survival of a single-celled

organism, a cell line or a multicellular organism (Bartha et al.,
2018). Essential proteins are products of essential genes, which per-
form the basic functions in the biological processes, and can be used
to facilitate drug discovery and disease treatment (Ji et al., 2019).
The traditional biological experiments of essential protein identifica-
tion include transposon mutagenesis, single-gene knockout, RNA
interference and recent CRISPR gene-editing technology (Peters
et al., 2016; Rancati et al., 2018). However, these wet-lab experi-
ments are expensive, time-consuming and labor-intensive. Thus, it is
urgent to develop effective and accurate computational methods to
predict essential proteins.

©The Author(s) 2022. Published by Oxford University Press.

structed biological network and design a scoring function to assign es-
sential scores for each node in the constructed biological network. The
Centrality-Lethality Rule was first proposed by Jeong et al. (2001),
which points out highly connected proteins in a protein—protein net-
work are more likely to be essential proteins. After that, a lot of
network-based centrality measures such as betweenness centrality
(BC), closeness centrality (CC), eigenvector centrality (EC), local aver-
age centrality (LAC) and maximum neighborhood component (MNC)
were proposed to identify essential proteins (Li et al., 2016; Lin et al.,
2008). Considering that some biological information is very important
for protein essentiality, researchers incorporated various biological
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information sources in their scoring functions, including protein subcel-
lular localization information, gene expression profiles, orthologous in-
formation and RNA-Seq data (Lei et al., 2018; Li et al., 2014, 2016;
Tang et al., 2014).

With the rapid development of high-throughput sequencing tech-
nology, more and more essential protein data are accumulated, which
provide a data foundation of machine learning-based methods. Deng
et al. (2011) proposed a machine learning-based integrative model
that uses Naive Bayes, logistical regression, C4.5 decision tree and
CN2 rule to estimate essentiality. Guo et al. (2017) adopted a support
vector machine (SVM) to construct a prediction model from nucleo-
tide composition and association information. Kuang ez al. (2021)
developed a machine learning model which combines gradient-
boosted tree, SVM and multi-layer perceptron (MLP) to predict essen-
tial genes. Zeng et al. (2021) developed an ensemble deep learning
model by integrating multiple gradient boosting decision tree (GBDT)
base classifiers for accurate prediction. Recently, deep learning techni-
ques have achieved great success in the bioinformatics field (Eraslan
et al., 2019). Inspired by their success, some researchers designed
deep-learning models to predict essential proteins. For instance, Zeng
et al. (2019) applied deep learning techniques to predict essential pro-
teins by integrating protein—protein interaction (PPI) networks, gene
expression profiles and subcellular localization data. Hasan and
Lonardi (2020) utilized a MLP to develop a deep learning model for
essentiality prediction from sequence-derived features. Zhang et al.
(2020) proposed DeepHE, a deep learning model to predict human es-
sential genes by integrating features derived from PPI networks and
sequences. Li et al. (2021) developed an ensemble deep learning
model, EP-EDL, which applied convolutional neural networks (CNN)
to predict human essential proteins from evolutionary information.

Although a lot of computational methods have been proposed,
they still suffer from some limitations. First, accumulated evidence
reveals that the protein essentialities are highly related to cellular
environments, which means proteins show different essentiality in
different cell lines (Behan ez al., 2019). Most of the existing compu-
tational methods do not take cell line-specificity into account. They
often merge essential protein data from multiple cell lines with dif-
ferent labels into a single unified dataset to conduct model training,
which fails to accurately identify essential proteins in diverse cell
lines. Second, most of the existing machine/deep learning-based
methods only focus on improving the prediction performance but
fail to give an interpretation for their prediction results. The lack of
interpretability makes their models become black boxes, which lim-
its the understanding of their models for biologists. Therefore, devel-
oping an interpretable model is very important for the practical
applications of computational methods.

To address the above limitations, we proposed DeepCellEss, a cell
line-specific deep learning-based essential protein predictor with the at-
tention mechanism. To create a cell line-specific model, we collected
extremely large-scale datasets including 16 408 proteins across 323 dif-
ferent cell lines to train and test DeepCellEss. DeepCellEss uses CNN
to extract local features from protein sequences, and then applies the
multi-head self-attention mechanism to enhance weights from CNN
and provide model interpretation. Then, these enhanced signals are fed
into a bidirectional long short-term memory (bi-LSTM) to capture
long-range dependencies between residues. Finally, a fully connected
layer with a sigmoid function performs the classification task.

We conducted extensive experiments to evaluate the performance
of DeepCellEss. In comparison, DeepCellEss shows greater effective-
ness in predicting essential proteins than existing sequence-based
methods. Compared to network-based centrality measures under cell
line-specific networks, the results demonstrate that DeepCellEss ef-
fectively compensates for the limitations of network-based centrality
measures. Furthermore, we performed some case studies which show
the advantages of taking cell line-specificity into consideration. In
addition, we carried out ablation studies to demonstrate the benefits
of our proposed network architecture. Finally, we built a user-friendly
webserver to expand our tool’s accessibility.
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Fig. 1. Data collection process of large-scale cell line-specific protein essentiality
datasets

2 Materials and methods

2.1 Data collection

To construct a practical cell line-specific prediction model, we col-
lected protein essentiality data in extremely large-scale cell lines.
Figure 1 shows the collection process of our cell line-specific bench-
mark datasets, which can be described as follows:

1. We downloaded the essentiality data generated by the Wellcome
Sanger Institutes (Release 1) from the Project Score database
(Dwane et al., 2021). The data were identified from a large num-
ber of systematic genome-scale CRISPR-Cas9 drop-out screens,
including varying binary essential scores for 17 485 human
protein-coding genes in 323 different human cell lines. The score
of 1 refers to essential and 0 refers to non-essential.

2. We collected sequence information from the Consensus CoDing
Sequence (CCDS) database (Release 22) (Pruitt et al., 2009) by
mapping with unique gene symbols. In previous sequence-based
methods, nucleotide-level and protein-level sequences have been
used in essentiality prediction task, thus we collected both of
them for further comparison and analysis. If one gene could
match more than one protein sequence, we chose the sequence
of the first annotated protein isoform produced by this gene as
its corresponding protein sequence.

3. We used CD-HIT and CD-HIT-EST (Li and Godzik, 2006) to re-
move the redundant sequences at the protein-level and
nucleotide-level datasets, respectively. The sequence identity cut-
off is set to 0.8, which means the remaining samples have se-
quence similarity less than 80% in both nucleotide-level and
protein-level sequences.

Based on the above processes, the resulting benchmark dataset
comprises the binary essentiality labels and the sequence informa-
tion of 16 408 proteins across 323 cell lines, which is the foundation
of our sequence-based cell line-specific prediction models.
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two cell lines have more common essential proteins. From it, we can
see that although these 31 cell lines belong to the same cancer (colorec-
tal carcinoma), the essential proteins of them are quite different. The
differences in essential proteins in different cell lines shown in Figure 2
drove our work on the construction of cell line-specific models.

2.3 Model architecture

DeepCellEss is a sequence-based end-to-end deep learning prediction
model. The overview of DeepCellEss is presented in Figure 3, which
consists of five modules i.e. sequence representation, CNN, multi-
head self-attention, bi-LSTM and prediction. The detailed descrip-
tions of the five modules are as follows.

2.3.1 Sequence representation

The sequence representation module converts the raw protein
sequences of variant lengths into fixed-size numeric feature matrices
through one-hot encoding method. Formally, given a protein se-
quence S = {a1,a3,4a3,...,ar}, where L means the length of the se-
quence, a; represents the residue at position i. There are 21 possible
a; in a protein sequence i.e. 20 types of standard protein residues
and others. By using one-hot encoding, each type of residue is
encoded into a 21D binary vector X . Hence, each protein sequence
can be represented numerically as X = {%'1,%,..., %} and fed
into the next model module.

2.3.2 Convolutional neural networks

We applied a CNN module to extract latent local knowledge from
the raw protein sequences. CNN is a very popular class of neural
networks in the fields of computer vision and natural language proc-
essing, and have been successfully applied to many bioinformatics
prediction problems (Kim, 2014; Zeng et al., 2020). Because of par-
ameter sharing and local connectivity, CNN is able to learn depend-
encies between adjacent residues effectively. Numerous convolution
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Fig. 3. DeepCellEss framework. DeepCellEss accepts a protein sequence as input
and converts it into a numerical matrix using one-hot encoding. After that, a CNN
module is employed to effectively capture sequence local information. The multi-
head self-attention is used to produce residue-level attention scores for model inter-
pretability. Additionally, two skip-connection operations are implemented around
CNN and the multi-head self-attention to avoid the model degradation problem.
After multi-head self-attention, a bi-LSTM module is applied to model sequential
data by learning long-range dependencies. Finally, the prediction task is performed
after a max-pooling and fully connected layer
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kernels slide along the sequential features and capture important
patterns thus delivering features enriched with local knowledge. In
DeepCellEss, we employed a 1D-convolution layer after sequence
representation and then followed by a rectified linear unit (ReLU)
activation function. Thus, we can obtain an output representation
with local information.

2.3.3 Multi-head self-attention

After CNN, a multi-head self-attention module is utilized in
DeepCellEss (Vaswani et al., 2017). This module has two primary
functions. On the one hand, it can enhance the functionality of
CNN module by compensating for its limitation of locality. Instead
of using a pure CNN module, the combination of CNN and self-
attention helps the model to focus on important sequence regions
within a larger scope. Specifically, the output of a single-head self-
attention is computed as

SA(Q, K, V) = softmax( \Q/;i:) \% (1)

where O, K and V represent the query, key and value, respectively.

\/Ld_ are the scaling factor of the dot-product attention. The
k

softmax(-) stands for the softmax operation.

Additionally, because it is hard to learn the representation from
various perspectives by using self-attention with a single head, we
introduced the self-attention with multiple heads to capture more in-
formative features. Thus, the output of the multi-head self-attention
module is

MA = norm(concat(SA1,S8A,,...,8A,)WO) (2)

where h is the number of heads, W© is a learnable parameter ma-
trix, concat(-) stands for the concatenation operation, norm(-)
stands for the layer normalization operation to maintain the stability
of data distribution and better model training.

On the other hand, the self-attention mechanism enables our
model to explain prediction results from interpretable attention
score distributions. The details of model interpretability can be
found in Section 2.4. Through the multi-head self-attention followed
by the CNN module, our module has the ability to learn more infor-
mation for feature extraction and achieve model interpretability.

2.3.4 Bidirectional long short-term memory

To model sequential data and learn long-range dependencies from
protein sequences, we applied a bi-LSTM module in DeepCellEss.
LSTM is a type of recurrent neural network that can efficiently miti-
gate vanishing gradient and exploding gradient issues during long
sequence training (Hochreiter and Schmidhuber, 1997). We used a
bi-LSTM that can sequentially update the hidden states H*" ¢
R for sequential data from two directions, where dj, represents
the dimension of hidden state vectors. More specifically, let H*" ¢
R% denote the hidden state vector of the ith residue, which can be
formulated by the following equations:

I; = sigmoid (H WX! + HER W + b1 ) (3)
F; = sigmoid (H{" WXF 4 HEWHE - bF ) (4)
O; = sigmoid (Hz WXO 4 HEwWHO 1 b0) (5)

C=FoC.+L0o tanh(Hf‘”" WXC + HEtr whe + bc) ©
HE™ — O, © tanh(C)) @

where I, F;, O;, C; € RM% represents three gates and the cell state
at position i of input sequence, respectively, @ stands for the
Hadamard product operation, sigmoid(-) and tanh(-) are two types
of activation functions. After the bi-LSTM, we obtained the hidden

states H*" ¢ R"*2% a5 output features by concatenating the hidden
states of both directions.

2.3.5 Prediction

In the prediction module, we used a max-pooling layer to down-
sample the high-level feature representation from bi-LSTM. Then,
the outputted features were fed into a fully connected layer, result-
ing in a prediction score. Finally, we obtained the prediction essen-
tial probability for the input sequence using a sigmoid activation
function.

2.4 Model interpretability

In addition to accurately predicting essential proteins, we would like
to explain visually how DeepCellEss makes specific predictions
across different cell lines. To achieve model interpretability, we used
a residue-level attention score vector from the multi-head self-atten-
tion module to represent the contribution of each residue position.
Specifically, for the jth single-head self-attention, the original atten-
tion score matrix @j € RM*L can be calculated from the scaled dot-
product attention scoring function,

_OK"

Ve

Then, we obtained an overall attention score matrix a € RE*E by
averaging all single-head attention score matrices. The attention
score matrix reflects the relations between any two components of
input sequential vectors. In order to assign a score to each sequence
position for assessing their contribution to prediction results, we
need to convert the score matrix to a score vector with the same size
of sequence length. Therefore, we averaged a along the second axis,
resulting in an attention score vector ¢ € R for each input sequence.
Additionally, because we trained five models for each cell line data-
set from S5-fold cross-validation, we averaged the attention score
vectors from five trained models to obtain the final attention score
vector. Through the residue-level attention score vector, we are able
to interpret prediction results by locating crucial regions from the in-
put sequence.

(8)
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2.5 Baseline methods

The primary goal of DeepCellEss is to predict the essentiality of pro-
teins using only sequence information. To demonstrate the effective-
ness of DeepCellEss, we compared it with five sequence-based
baseline methods on the independent test set of HCT-116 bench-
mark dataset. The baseline methods are described as follows:

1. Seringhaus’s: It is a sequence-based method for essential gene
prediction proposed by Seringhaus et al. (2006). It extracts 14
features from protein sequences using CodonW, TMHMM v2.0
and PA-SUB v2.5. Then, these sequence-derived features are fed
into an ensemble machine-learning model for prediction. We
implemented this model and trained it on our benchmark data-
set. It should be noted that PA-SUB v2.5 is not available now, so
we used Hum-mPLoc 3.0 instead, which is a newly developed
protein subcellular localization predictor.

2. EP-GBDT: It extracts the pseudo amino acid composition fea-
tures using PseAAC, and then integrates multiple GBDT base
classifiers to predict essentiality. We re-trained and tested EP-
GBDT based on the source code provided in the original paper.

3. EP-EDL: It is a deep learning-based model. For a fair compari-
son of the model structures, we applied the same sequence repre-
sentation method as DeepCellEss and re-trained EP-EDL based
on its source code.

4. Pheg: It uses J-interval Z curve method to extract features and
SVM classifier to predict essentiality. We directly evaluated Pheg
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on the independent test set with nucleotide sequence as input
using its source code.

5. DeepCellEss-nc: Both protein-level and nucleotide-level sequen-
ces have been applied for essentiality prediction. To investigate
which type of sequence feature performs better under the same
model structure, we modified the original DeepCellEss with
nucleotide sequence as input and named it DeepCellEss-nc.
We re-trained it using the same sequence representation method
and model structure.

2.6 Implementation details

We used the hold-out method to evaluate the model performances
on our benchmark datasets. In previous studies, the division of data-
set into training and test sets was usually performed by the stratified
splitting strategy based on the ratio of positive and negative samples.
However, since the datasets are imbalanced i.e. the number of non-
essential proteins is larger than the number of essential proteins, the
stratified splitting strategy will result in an imbalanced test set. In
such an imbalanced test set, it is difficult to measure the prediction
performance for essential proteins. Therefore, we randomly chose
20% of essential proteins with the equal number of non-essential
proteins as the independent test set, and the rest samples as the train-
ing set. To make the most use of training data, we applied a 5-fold
cross-validation method for model training on the training set.
Specifically, the training set was divided into five folds. Each fold is
used once for validation and four times for training. After training
and validation, we obtained five trained classifiers. When predicting
the essentiality on the test set or new protein sequences, the output
values of the five classifiers are averaged as the final prediction
score.

We performed the training procedure with the mini-batch sto-
chastic gradient descent using the Adam optimizer. To take advan-
tage of the mini-batch technique for training, we utilized the
truncation and zero-padding techniques to fix the length of sequence
features. To avoid overfitting during the training process, an early
stop strategy with a patience of 30 epochs was adopted. To alleviate
the class-imbalanced training data problem, we adopted weighted
binary cross entropy as the loss function. The loss function Lypck is
defined as

l m
Lwgce = *%Zizl (wyilog(y;) + (1 —y)log(1—3,)) (9

where m is the number of training samples, y; and y; are the true
label and predictive score of sample i. The imbalance parameter w is
set to the ratio of the number of negative samples to the number of
positive samples.

Our models were implemented in PyTorch and Scikit-learn libra-
ries. All training processes were run with an Intel(R) Xeon(R) Gold
5220 CPU @ 2.20GHz, 256GB memory and a Nvidia GeForce
RTX 2080 Ti GPU. The hyper-parameter settings were determined
by grid search techniques.

2.7 Evaluation metrics

We evaluated our models on the independent test sets of different
cell lines. The model performance was assessed by the area under
the receiver-operating characteristic curve (AUROC) and the area
under precision-recall curve (AUPRC), which can measure the rank-
ing ability for prediction models. It should be noted that AUPRC is
more sensitive to the positive samples i.e. essential proteins and thus
can provide more comprehensive evaluation.

3. Results

3.1 Prediction performance on large-scale datasets of

different cell lines
To evaluate the performance of DeepCellEss, we trained and tested
DeepCellEss on a large collection of benchmark datasets across

different cell lines. Specifically, DeepCellEss was trained independ-
ently on 323 cell line benchmark datasets using the same model opti-
mization settings. After all training processes are completed, we
carried out the tests on the corresponding independent test set of
each cell line model. The detailed performance results of all cell line
models are listed in Supplementary Table S1. Figure 4 shows them
in the form of boxplots. Since we had 323 cell lines, we classified
them into 28 groups based on their cancer types and assigned differ-
ent colors to boxplots for the 28 types of cancers. From Figure 4, we
can see that the AUROCs and AUPRCs obtained by DeepCellEss
are mainly in the range of 0.72-0.80. Although the performance
varies across different cell lines and cancers, the overall prediction
performance is robust and promising. In addition, we observed that
the best performance is obtained by the SNU-C1 cell line, with an
AUROC of 0.825 and an AUPRC of 0.826. The SNU-C1 dataset is
a very imbalanced dataset that contains 1298 essential proteins out
of a total of 16 408 proteins. The results of SNU-C1 dataset indicate
that our model can work well with imbalanced data. Taken to-
gether, these results suggest that DeepCellEss is an effective and use-
ful model that can be used for essential protein prediction tasks in
various cell lines.

3.2 Comparison with baseline methods
In this section, we carried out comparison experiments to investigate
the effectiveness of DeepCellEss for essential protein prediction. We
compared the performance of DeepCellEss with five sequence-based
baseline methods (described in Section 3.4) on the independent test
set of HCT-116 cell line. The comparison results are shown in
Table 1, which demonstrates that DeepCellEss outperforms the
existing sequence-based methods in terms of AUROC and AUPRC.
Specifically, when compared to other baseline methods,
DeepCellEss achieves AUROC and AUPRC scores of 0.782 and
0.795, with an increase of 1.8-45.4% and 2.3-76.7%, respectively.
In addition, we can see that Pheg gets AUROC and AUPRC
scores of 0.427 and 0.450, respectively, which are lower than the
other methods. This can be explained by the fact that Pheg web ser-
ver only provides a general human gene essentiality predictor, and it
ignores specific differences in the essentiality of genes and the
encoded products across cell lines, resulting in poor prediction per-
formance on cell line-specific test datasets. Such results indicate the
difficulty of identifying cell line-specific essential genes and proteins
using a general model trained on common essential samples in cell
lines. Thus, training cell line-specific models is necessary for discov-
ering specific essential genes and proteins in different cell lines.
Moreover, we observed that the performance of DeepCellEss is
better than DeepCellEss-nc, which means that protein sequence fea-
tures are more effective than nucleotide sequence features for
DeepCellEss model. The results may be thanks to that: (i) protein
sequences are composed of 21 types of amino acids while nucleotide
sequences are made up of four different types of nucleotides, result-
ing in protein sequences has a more diverse sequence information;
(ii) the encoded protein sequence is much shorter than the nucleotide
sequence for a gene, which can reduce computational consumption
and processing complexity; and (iii) protein sequence features are
more informative for essentiality prediction.

3.3 Comparison with network-based methods under cell

line-specific networks

Over the past two decades, many studies have reported that the es-
sentiality of proteins is highly related to the topological properties of
PPI networks. Extensive network-based centrality measures were
developed for discovering new essential proteins. These methods can
efficiently mine latent information from network topology and rank
essentiality for proteins in PPI networks. However, the network-
based methods suffer from several major drawbacks: (i) these meth-
ods cannot be directly used for proteins that are not in the PPI
networks; (ii) their prediction ability for essential proteins with low
degrees is greatly limited. As a sequence-based method, DeepCellEss
is able to compensate for the shortcomings of network-based cen-
trality measures.
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Fig. 4. The AUROCs and AUPRC:s on the independent test sets of 323 different cell lines using DeepCellEss. (a) Boxplots of AUROC (b) Boxplots of AUPRC. Since we had
323 cell lines, we classified them into 28 types of cancers and assigned them various colors to represent the 28 types of cancers. Note that the AUROCs, AUPRC:s of 323 cell
lines mainly vary from 0.72 to 0.80, demonstrating the promising and robust prediction performances of DeepCellEss

Table 1. Performances of DeepCellEss and existing sequence-
based methods on the independent test set of HCT-116

Method AUROC AUPRC
Seringhaus’s 0.734 0.682
EP-GBDT 0.768 0.777
EP-EDL 0.760 0.736
Pheg 0.427 0.450
DeepCellEss-nc 0.751 0.740
DeepCellEss 0.782 0.795

Note: The best performance values are highlighted in bold.

In order to investigate whether DeepCellEss can achieve promis-
ing prediction performance without interaction information, we
designed the following experiments: We first downloaded protein
interaction data of HCT-116 cell line from the BioPlex 3.0 database
(Huttlin et al., 2021) and constructed an HCT-116 cell line-specific
PPI network (referred to as the HCT-116 network), which includes
10 115 proteins and 70 966 interactions in total. Then, six classical
network-based centrality measures i.e. BC, CC, DC, EC, LAC and
NC, are calculated for all 10 115 protein nodes in the HCT-116 net-
work. The scores of BC, CC, DC and EC are calculated using the py-
thon library NetworkX (Hagberg et al., 2008) and the scores of
LAC (Li et al., 2011) and NC (Wang et al., 2012) are calculated
based on the proposed methods.

To compare the performance of DeepCellEss with network-
based centrality measures based on the same dataset, we screened
the 450 intersection proteins of HCT-116 network and HCT-116
test set as a new test set, which includes equal numbers (225) of es-
sential and non-essential proteins. We ranked the result scores pre-
dicted by the six network-based methods and DeepCellEss from
highest to lowest and compared the cumulative counts of essential
proteins in the top 10%, top 20%, 30% and top 40% proteins. The
results in Figure 5 show that DeepCellEss is able to identify more es-
sential proteins than centrality measure methods.

We further explored the prediction performance of DeepCellEss
on the proteins with low degree in PPI networks. According to the
Centrality-Lethality Rule (Jeong et al., 2001), higher centrality
measure values indicate higher essentiality of proteins. Therefore,
network-based methods usually predict the proteins with low degree
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Fig. 5. Count of essential proteins detected by network-based methods and
DeepCellEss based on the ranked prediction scores on the new HCT-116 test set

to be non-essential, resulting they could barely identify those essen-
tial proteins that have few interaction partners or lack of interaction
information. To evaluate how well DeepCellEss performs on the
low-degree essential proteins, we screened the 147 essential proteins
with only one degree in the HCT-116 network. Then, we re-split the
HCT-116 dataset with these 147 essential proteins as the new inde-
pendent test set and the rest as the new training set. After re-training
the HCT-116-specific DeepCellEss model, the results show that
69.4% (102) of the 147 essential proteins could be accurately pre-
dicted, indicating that our model has practical and effective prediction
ability for the essential proteins on the low-degree essential proteins.
To better illustrate the prediction performance of different types
of methods for the proteins with low degree, we gave prediction
results of an example essential protein ‘Probable ATP-dependent
RNA helicase DDX59’ (DDX59, Uniprot ID: Q5T1V6). DDXS59 is
a member of the DEAD box helicase family proteins, which involves
in all aspects of RNA metabolism and plays an important role in
many cellular activities. Supplementary Figure S2 shows the local
connectivity information of DDXS59. From the ranking results of the
HCT-116 network using six classical centrality measure scores [i.e.
DC, BC, CC, EC, NC, LAC), DDX59 ranked 9097 (89.9%), 9033


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac779#supplementary-data

DeepCellEss

(89.3%), 9671 (95.6%), 8920 (88.2%), 9783 (96.7%) and 9783
(96.7%) out of 10 115 proteins, respectively]. These network-based
methods cannot identify the cell line-specific essentiality of DDX59,
while DeepCellEss predicts DDX59 correctly with the essentiality
score of 0.788 in the HCT-116-specific model.

Last, we explored the performance of DeepCellEss on the pro-
teins that have no protein interaction information in our HCT-116
benchmark dataset. Based on our statistics, there are 438 essential
proteins that do not appear in the HCT-110 network, which means
they are not able to be identified by network-based approaches.
Then, we tested them using our re-trained HCT-116-specific model.
The results show that 63.9% (280) of them are correctly predicted,
indicating that our model has practical and effective prediction abil-
ity for essential protein prediction without PPI information.

Overall, these experiment results and comparative analysis of
DeepCellEss and network-based methods confirm that DeepCellEss
can achieve promising performance for essential proteins with no
PPI information or low degree in PPI networks. DeepCellEss effect-
ively compensates for the limitations of network-based methods and
offers a more practical approach to essential protein prediction.

3.4 Case studies
A major advantage of our proposed model is the capability to learn
and predict protein essentialities across different cell lines. To dem-
onstrate the effectiveness of our model for cell line-specific predic-
tion, we used ‘G1/S-specific cyclin-D1° (CCND1, Uniprot ID:
P24385) as an example to compar DeepCellEss with other two
available servers (Pheg and EP-GBDT). From pre-existing biological
experiments, CCND1 performs obvious differences within various
cellular environments in terms of essentiality. For instance, it is identi-
fied as essential in CL-11 cell line while non-essential in RPMI-B226
cell line. Figure 6a presents the prediction results of CCND1 using
DeepCellEss, Pheg and EP-GBDT, respectively. With the support of
cell line-specific predictions, DeepCellEss gets different essentiality
scores with 0.429 of RPMI-B226 and 0.775 of CL-11, yielding accur-
ate predictions of CCND1 under different cell lines. However, Pheg
and EP-GBDT can only give overall prediction scores of 0.717 and
1.479 because they cannot support cell line-level prediction. Both
Pheg and EP-GBDT predict CCND1 as an essential protein but fail to
capture the non-essentiality of CCND1 in cell line of RPMI-B226.
Moreover, DeepCellEss leverages the advantage of the attention
mechanism to assign residue-level attention scores for query pro-
teins, and provides the visual heatmap for interpretation. Figure 6b
shows the prediction heatmap of CCND1 in CL-11. The red regions
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indicate contributions to be essential while the blue regions indicate
contributions to be non-essential in the prediction. To further illus-
trate our interpretable model is possible to detect regions which are
important motifs and correlated with protein essential functions, we
performed a case study as follows:

The JAB1/MPN/Mov34 metalloenzyme (JAMM) motif is highly
conserved, typically consisting of a canonical sequence of ‘H-[NST]-
H-x(7)-S-x(2)-D’. JAMM-containing proteins are metal-dependent
proteases and responsible for providing the active site for isopepti-
dase activity (Ambroggio et al., 2004). Supplementary Figure S3a
shows the JAMM motif logo generated from JAMM-containing pro-
teins in UniprotKB database using MEME (Bailey ez al., 2015).
PSMD14/Rpn11/POH1 is a representative JAMM-containing pro-
tein. PSMD14 plays a key role within the proteasomes, where it acts
as an intrinsic deubiquitinase removing polyubiquitin chains from
substrate proteins (Wauer and Komander, 2014). Research evidence
suggests that the JAMM motif of SMD14 is essential for human cell
viability (Gallery et al., 2007; Verma et al., 2002). We used
DeepCellEss to predict PSMD14 (Uniport ID: O00487) under
‘Unknown’ cancer type and ‘Unknown’ cell line options.
Supplementary Figure S3b shows the prediction result (0.687) and
the visualization heatmap of SMD14. In the heatmap, the JAMM
motif is marked red in the whole sequence. The results suggest that
our predictor could identify essential protein and might recognize its
important motif.

Additionally, we analyzed the performance of DeepCellEss on
intrinsically disordered proteins (IDPs), which are widely distributed
in eukaryotes and closely associated with human diseases. From the
cancer-related protein dataset of DisProt database, we found a con-
ditional essential IDP with 100% disorder content, called ‘nuclear
factor erythroid 2-related factor 2’ (NFE2L2, Uniprot ID: Q16236).
Several studies have revealed that NFE2L2 is highly related to lung
cancers (Binkley ez al., 2020; Sanchez-Ortega et al., 2021). We used
DeepCellEss to predict NFE2L2 under the options of ‘Non-Small
Cell Lung Carcinoma’, ‘Squamous Cell Lung Carcinoma’, and ‘No-
cancerous’ cancer types, respectively. The results (shown in
Supplementary Fig. S4) indicate that DeepCellEss predicts NFE2L2
to be essential in two types of lung cancers but non-essential in non-
cancerous, implying that our essentiality predictor is useful for IDPs
and has the potential to find some cancer-related essential IDPs.

3.5 Ablation study
To measure the contributions of individual components to
DeepCellEss structure, we conducted ablation studies by re-training
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Fig. 6. Case study for cell line-specific predictions and model interpretability by DeepCellEss on CCND1. (a) Predictions of CCND1 (Uniprot ID: P24385) by three available
online predictors. DeepCellEss enables accurate cell line-specific predictions while Pheg and EP-GBDT only give a unified result for all cell lines. (b) Interpretability for the pre-
diction of P24385 in CL-11. In the visual heatmap, the red regions indicate higher attention scores that contribute more to essential, and the blue regions indicate lower atten-

tion scores that contribute more to non-essential


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac779#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac779#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac779#supplementary-data

Y.Lietal.

Table 2. The performances of DeepCellEss and its variant models
in the ablation study

Model AUROC AUPRC
Without skip connection 0.759 0.764
Without CNN module 0.765 0.776
Without multi-head self-attention module 0.766 0.763
Without bi-LSTM module 0.754 0.767
DeepCellEss 0.782 0.795
Note: The best performance values are highlighted in bold.
and validating DeepCellEss without different components.

Specifically, four main components, including skip connection,
CNN module, multi-head self-attention module and bi-LSTM mod-
ule, were separately removed, and we obtained four variants of
DeepCellEss model. Then, we trained and validated these four mod-
els. The strategies for dataset splitting and model training remain
unchanged as the raw DeepCellEss. Table 2 reports the results of
DeepCellEss and its variants, which show that the removal of the
different components leads to a reduction in the prediction perform-
ance of DeepCellEss. Our model yields the best AUROC of 0.782
and the best AUPRC of 0.795, in which the AUPRC is improved by
about 4.1%, 2.2%, 4.2% and 3.7% over DeCepCellEss without
skip connection, CNN module, multi-head self-attention module
and bi-LSTM module, respectively. The ablation studies demon-
strate that the model architecture of raw DeepCellEss is optimal for
our prediction task.

3.6 Web server

To facilitate the access to DeepCellEss, we developed a user-friendly
web  server,  http:/csuligroup.com:8000/DeepCellEss.  The
DeepCellEss web server provides cell line-specific essential protein
prediction and visualization for a large amount of cell lines.
Supplementary Figure S5 shows the user interface of DeepCellEss
web server. Users can enter an UniProt ID to search for the protein
sequence or directly input a single protein sequence with length less
than 1000aa in FASTA format, and then choose a cell line from a
list of 323 cell lines, to predict and analyze protein essentiality in the
certain cell line environment. Besides, if users are unsure which cell
line environment the query protein is located in, we offer an option
of ‘Unknown’ to enable a unified result for human protein essential-
ity prediction. The results of this option are the average prediction
score under all cell line-specific models. For each submission, the
output panel presents two parts, i.e., the result of predicted essential-
ity and the visualization of residue-level attention scores. The result
part gives a five-column table containing the cell line name, the in-
put protein ID, the sequence length, the predicted essentiality score
and the final predicted label. The visualization part provides a heat-
map and an interactive line plot, which allows users to estimate the
contribution of each residue position to the prediction results from
various perspectives. To the best of our knowledge, it is the first web
server that can predict essential proteins under specific cell lines and
provide visualization analysis. We believe that DeepCellEss can
serve as a practical and useful tool for human essential protein
study.

4. Conclusion

The identification of cancer cell line-specific essential proteins is par-
ticularly relevant for the discovery of novel precision cancer drug
targets. However, existing computational methods have not taken
into account the specificity of essential proteins in different cell lines,
and lack practical and interpretable tools for human essential pro-
tein prediction. In this study, we proposed DeepCellEss, a cell line-
specific interpretable deep learning prediction method based on the
attention mechanism. The main contributions of DeepCellEss are
summarized as follows:

* To the best of our knowledge, DeepCellEss is the first computa-
tional method that supports cell line-specific essential protein
predictions, which makes it possible to predict protein essential-
ities in different cellular environments;

* DeepCellEss implements an interpretable deep-learning model
through residue-level attention scores from multi-head self-atten-
tion mechanism. The attention scores enable to locate the most
important sequence regions for different prediction results, and
further make more comprehensive analysis and comparison for
cell line-specific essential proteins;

* For real practical applications of our cell line-specific model, we
constructed extremely large-scale datasets across 323 cell lines.
Moreover, we provided a user-friendly web server of cell line-
specific essential protein predictions. It is expected to help dis-
cover potential diagnostic biomarkers and therapeutic targets for
precision cancer therapy.

Although the extensive results show that DeepCellEss is an effect-
ive predictor for cell line-specific essential proteins and outperformers
existing sequence-based methods, we would like to point out its limi-
tations. The main limitation is that we do not consider the relations of
different cell lines under the same tissue or cancer type. In our
reported results, the models of different cell lines under the same can-
cer type show varying prediction performance. For example, in the
cancer type of Colorectal Carcinoma, SNU-C1 model yields the best
AUROC (0.825) and AUPRC (0.826), while MDST8 model gets the
worst AUROC (0.728) and AUPRC (0.731). Therefore, future efforts
could be devoted to improving the poor performance for some cell
lines by introducing the relations between different cell lines. One po-
tential solution is to use transfer learning techniques (Pan and Yang,
20105 Zeng et al., 2019). To be specific, we can first pre-train with
multiple cell line datasets that are closely related to the target cell line,
and then apply the knowledge to the target cell line dataset to develop
a more powerful cell line-specific model.

Acknowledgements

We acknowledge for technical support from the High Performance
Computing Center of Central South University and thank Dr. Chuan Dong
(Wuhan University) for providing the source code of Pheg.

Funding

This work was supported by the National Natural Science Foundation of
China [62225209]; Hunan Provincial Science and Technology Program
[2019CB1007]; The science and technology innovation program of Hunan
Province [2021RC4008].

Conflict of Interest: The authors declare that they have no conflict of interest.

References

Ambroggio,X.I. et al. (2004) JAMM: a metalloprotease-like zinc site in the
proteasome and signalosome. PLoS Biol., 2, 2.

Bailey,T.L. et al. (2015) The MEME suite. Nucleic Acids Res., 43, W39-W49.

Bartha,l. et al. (2018) Human gene essentiality. Naz. Rev. Genet., 19, 51-62.

Behan,F.M. et al. (2019) Prioritization of cancer therapeutic targets using
CRISPR-Cas9 screens. Nature, 568, 511-516.

Binkley,M.S. et al. (2020) KEAP1/NFE2L2 mutations predict lung cancer radi-
ation resistance that can be targeted by glutaminase InhibitionKEAP1/NFE2L.2
mutations predict lung cancer radio resistance. Cancer Discov., 10,
1826-1841.

Deng,]J. et al. (2011) Investigating the predictability of essential genes across
distantly related organisms using an integrative approach. Nucleic Acids
Res., 39, 795-807.

Dwane,L. et al. (2021) Project score database: a resource for investigating can-
cer cell dependencies and prioritizing therapeutic targets. Nucleic Acids
Res., 49, D1365-D1372.

Eraslan,G. et al. (2019) Deep learning: new computational modelling techni-
ques for genomics. Nat. Rev. Genet., 20, 389-403.


http://csuligroup.com:8000/DeepCellEss
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac779#supplementary-data

DeepCellEss

Gallery,M. et al. (2007) The JAMM motif of human deubiquitinase Poh1 is es-
sential for cell viability. Mol. Cancer Ther., 6,262-268.

Guo,F.B. et al. (2017) Accurate prediction of human essential genes using only
nucleotide composition and association information. Bioinformatics, 33,
1758-1764.

Hagberg,A. et al. (2008) Exploring Network Structure, Dynamics, and
Function Using NetworkX. Los Alamos National Lab. (LANL), Los
Alamos, NM (United States).

Hasan,M.A. and Lonardi,S. (2020) DeeplyEssential: a deep neural network
for predicting essential genes in microbes. BMC Bioinformatics, 21, 1-19.
Hochreiter,S. and Schmidhuber,]. (1997) Long short-term memory. Neural

Comput., 9, 1735-1780.

Huttlin,E.L. et al. (2021) Dual proteome-scale networks reveal cell-specific
remodeling of the human interactome. Cell, 184, 3022-3040.¢28.

Jeong,H. et al. (2001) Lethality and centrality in protein networks. Nature,
411, 41-42.

Ji,X. et al. (2019) The essentiality of drug targets: an analysis of current litera-
ture and genomic databases. Drug Discov. Today, 24, 544-550.

Kim,Y. (2014) Convolutional neural networks for sentence classification. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, pp. 1746-1751.

Kuang,S. et al. (2021) Expression-based prediction of human essential genes
and candidate IncRNAs in cancer cells. Bioinformatics, 37, 396-403.

Lei,X. et al. (2018) Predicting essential proteins based on RNA-Seq, subcellu-
lar localization and GO annotation datasets. Knowl. Based Syst., 151,
136-148.

Li,G. et al. (2016) Predicting essential proteins based on subcellular localiza-
tion, orthology and PPI networks. BMC Bioinformatics, 17, 571-581.

Li,M. et al. (2016) A reliable neighbor-based method for identifying essential
proteins by integrating gene expressions, orthology, and subcellular local-
ization information. Tsinghua Sci. Technol., 21, 668-677.

Li,M. et al. (2011) A local average connectivity-based method for identifying
essential proteins from the network level. Comput. Biol. Chem., 35,
143-150.

Li,M. et al. (2014) Effective identification of essential proteins based on priori
knowledge, network topology and gene expressions. Methods, 67, 325-333.
Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658-1659.

Li,Y. et al. (2021) Accurate prediction of human essential proteins using en-
semble deep learning. IEEE/ACM Trans. Comput. Biol. Bioinform. doi:
10.1109/TCBB.2021.3122294.

Lin,C.-Y. et al. (2008) Hubba: hub objects analyzer - a framework of interac-
tome hubs identification for network biology. Nucleic Acids Res., 36,
W438-W443.

Pan,S.J. and Yang,Q. (2010) A survey on transfer learning. IEEE Trans.
Knowl. Data Eng., 22,1345-1359.

Peters,].M. et al. (2016) A comprehensive, CRISPR-based functional analysis
of essential genes in bacteria. Cell, 165, 1493-1506.

Pruitt,K.D. et al. (2009) The consensus coding sequence (CCDS) project: iden-
tifying a common protein-coding gene set for the human and mouse
genomes. Genome Res., 19,1316-1323.

Rancati,G. et al. (2018) Emerging and evolving concepts in gene essentiality.
Nat. Rev. Genet., 19, 34-49.

Sanchez-Ortega,M. et al. (2021) Role of NRF2 in lung cancer. Cells, 10, 1879.

Seringhaus,M. et al. (2006) Predicting essential genes in fungal genomes.
Genome Res., 16,1126-1135.

Tang,X. et al. (2014) Predicting essential proteins based on weighted
degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 11,
407-418.

Vaswani,A. et al. (2017) Attention is all you need. In: Advances in Neural
Information Processing Systems, Long Beach, CA, USA, pp. 6000-6010.
Verma,R. et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and

degradation by the 26 S proteasome. Science, 298, 611-6135.

Wang,]. et al. (2012) Identification of essential proteins based on edge cluster-
ing coefficient. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9,
1070-1080.

Wauer,T. and Komander,D. (2014) The JAMM in the proteasome. Nat.
Struct. Mol. Biol., 21, 346-348.

Zeng,M. et al. (2021) A deep learning framework for identifying essential pro-
teins by integrating multiple types of biological information. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 18,296-305.

Zeng,M. et al. (2019) Automatic ICD-9 coding via deep transfer learning.
Neurocomputing, 324, 43-50.

Zeng,M. et al. (2021) Improving human essential protein prediction using
only protein sequences via ensemble learning. In: 2021 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX,
USA, pp. 98-103.

Zeng,M. et al. (2020) Protein-protein interaction site prediction through com-
bining local and global features with deep neural networks. Bioinformatics,
36,1114-1120.

Zhang,X. et al. (2020) DeepHE: accurately predicting human essential genes
based on deep learning. PLoS Comput. Biol., 16,e1008229.


https://doi.org/10.1109/TCBB.2021.3122294

	tblfn1
	tblfn2

