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Abstract

Motivation: T cells use T cell receptors (TCRs) to recognize small parts of antigens, called epitopes, presented by
major histocompatibility complexes. Once an epitope is recognized, an immune response is initiated and T cell acti-
vation and proliferation by clonal expansion begin. Clonal populations of T cells with identical TCRs can remain in
the body for years, thus forming immunological memory and potentially mappable immunological signatures,
which could have implications in clinical applications including infectious diseases, autoimmunity and tumor
immunology.

Results: We introduce TCRconv, a deep learning model for predicting recognition between TCRs and epitopes.
TCRconv uses a deep protein language model and convolutions to extract contextualized motifs and provides state-
of-the-art TCR-epitope prediction accuracy. Using TCR repertoires from COVID-19 patients, we demonstrate that
TCRconv can provide insight into T cell dynamics and phenotypes during the disease.

Availability and implementation: TCRconv is available at https://github.com/emmijokinen/tcrconv.

Contact: emmi.jokinen@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T cell receptors (TCRs) form diverse repertoires through V(D)J re-
combination, which allows T cells to recognize a large variety of
antigens. Short peptide sequences from the antigens, called epitopes,
are presented to T cells via major histocompatibility complex
(MHC) molecules, and successful recognition of an epitope–MHC
complex by a TCR results in T cell activation and immune response
against the antigen. Discovering epitope-specific TCRs holds the po-
tential to provide clinically relevant insights into TCR repertoires in
fields ranging from vaccine design and diagnostics to immunother-
apy biomarker identification.

Latest high-throughput sequencing technologies have enabled
profiling large quantities of TCR sequences. Concurrently, several

methods have been proposed for predicting TCR-epitope recogni-
tion that include Gaussian processes (TCRGP by Jokinen et al.,
2021), deep learning methods [DeepTCR by Sidhom et al. (2021),
and ERGO-II by Springer et al. (2021)], gradient boosting decision
trees [SETE by Tong et al. (2020)] and TCRdist by Dash et al.
(2017). Apart from ERGO-II all these methods use epitopes as class
information to predict if a TCR would recognize one of the prede-
termined epitopes, which may still be more reliable with the limited
amount of epitope-specific TCR data available. TCRGP is a
Gaussian process-based classifier that can utilize complementarity
determining region 3 (CDR3) or additionally any other CDRs from
either a- or b-chain or both, depending on what information is avail-
able. DeepTCR uses convolutional neural networks (CNNs) with
trainable embedding layers for the CDR3 and V/D/J genes. SETE on
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the other hand computes the PCA of 3-mer occurrences in CDR3
regions and uses gradient boosting decision trees to classify CDR3
sequences. TCRdist uses a BLOSUM62-based distance measure be-

tween selected CDRs to determine if a new test TCR is closer to
TCRs specific to a certain epitope or to some non-specific control
TCRs. ERGO-II learns long short-term memory encodings for both

CDR3s and epitopes (or autoencoder embeddings for CDR3s) and
uses both the TCR and the epitope as inputs to predict if a given
TCR and epitope bind.

Previous work has shown that while the CDR3 is crucial for the
prediction, it is beneficial to utilize also other TCR regions as well

as the paired TCRab sequences (Dash et al., 2017; Jokinen et al.,
2021; Sidhom et al., 2021; Springer et al., 2021). We focus on major
open questions in TCR-epitope prediction: how to (i) utilize effi-

ciently all TCR regions that determine epitope-specificity, (ii) handle
TCR cross-reactivity and (iii) use TCR-epitope prediction methods
for unsupervised analysis of TCR-repertoires.

Here, we present TCRconv, a CNN that utilizes rich contextualized
transformer embeddings of TCRs to predict epitope recognition (see
Fig. 1). Unlike the previous methods, TCRconv models TCR specificity

with a multilabel predictor that naturally accounts for TCR cross-
reactivity. Transformer-based language models, such as BERT
(Bidirectional Encoder Representations from Transformers), have been

adapted for proteins and can capture protein folding as well as learn
useful representations of binding sites and complex biophysical proper-
ties (Vig et al., 2020). They have been successfully used in various

tasks, including protein family and protein interaction prediction
(Nambiar et al., 2020) and protein-specific drug generation
(Grechishnikova, 2021), making them a plausible candidate for TCR-

epitope prediction. We utilize the transformer model protBERT
(Elnaggar et al., 2020), which transfers information from the complete
TCR sequence to the CDR3 embedding from which the convolutional

networks then extract and utilize contextualized motifs.

2 Materials and methods

Lets assume that we have N TCRs that are represented by their
amino acid sequences an ¼ ½an;1; an;2; . . . ; an;Ln

�, where an;i 2
fA;R;N; . . . ;Vg represents one of the 20 naturally occurring amino
acids and Ln is the length of the nth TCR. Each of the N TCRs is
paired with a multihot encoding. For TCR an the encoding yn ¼
½yn;1; yn;2; . . . ; yn;C� defines which of the C epitopes the TCR
recognizes:

yn;c ¼
1; if TCR an recognizes epitope c
0; otherwise:

:

�

The labeled data are denoted collectively as D ¼ fðan; ynÞg
N
n¼1.

2.1 Data
For training and testing our model, we have constructed three data-
sets of human TCR sequences from the data available in the VDJdb
database by Bagaev et al. (2020) (vdjdb.cdr3.net). VDJdb gives con-
fidence scores from 0 to 3 for each of its entries (see Supplementary
Section S1). For a comprehensive dataset VDJdbb-large, we selected
TCRbs with all confidence scores and with at least 50 unique
TCRbs for each epitope (a TCR is considered as unique if the com-
bination of its CDR3 and V- and J-genes is unique). This resulted in
a dataset with 51 distinct epitopes and 30 503 unique TCRbs. For a
high-quality dataset VDJdbb-small we chose TCRbs with at least a
confidence score of 1 and at least 40 unique TCRs per epitope,
which resulted in 1977 unique TCRs specific for 21 epitopes.
Finally, dataset VDJdbab-large consists of paired TCRab sequences
with all confidence scores and at least 50 unique TCRabs per epi-
tope, resulting in total 20 200 unique TCRs and 18 epitopes.
Supplementary Table S1 summarizes these datasets and the cross-
reactivities of the TCRs are visualized in Supplementary Figure S1.
As the requirements for the datasets overlap, so do the datasets: e.g.
VDJdbb-large contains the complete VDJdbb-small dataset.

All presented model evaluations are conducted using a stratified
10-fold cross-validation, where TCRs specific to each epitope are
distributed to the folds as evenly as possible. As our dataset only
consists of unique TCRs, the same TCR can never be both in train-
ing and test folds. To illustrate the difficulty of predicting the epi-
tope specificity of TCRs with the chosen data, we visualized the
CDR3 edit-distances from each TCR specific to an epitope to TCRs
with the same specificity and to TCRs with other specificity
(Supplementary Fig. S3). For example, in VDJdbb-large dataset, for
37 of the 51 epitopes the nearest TCRs are more often specific to an-
other epitope than to the same epitope. Further, Supplementary
Figure S4 shows the edit distances from TCRs specific to the chosen
epitope to all TCRs with the same and other specificity, illustrating
that a simple measure such as an edit-distance is not sufficient for
assessing if TCRs share the same epitope-specificity. The corre-
sponding edit-distance plots for VDJdbb-small are shown in
Supplementary Figure S5. The difficulty of classifying epitope-
specific TCRs is further highlighted by the UMAP visualizations of
the BERT embeddings for TCRs in Supplementary Figures S6 and
S7. With most epitopes the TCRs recognizing them are scattered
with no defined clusters. With a few epitopes, such as IAV
MGILGFVFTL, there are several small clusters, but a large part of the
epitope-specific TCRs are still scattered.

2.2 TCR embeddings
For constructing the TCR embeddings, we used protBERT
(Elnaggar et al., 2020) which is trained on 216 million UniRef100
sequences. The model was trained with a token-prediction task and
during the training phase 15% of the tokens (amino acids) in the

Fig. 1. TCRconv pipeline. (A) The TCR sequence determined by V(D)J recombination contains the complementarity-determining regions. TCRa and/or TCRb sequences can

be used, here TCRb is shown. (B) ProtBERT embedding is created for each TCR sequence and the CDR3 embedding, transfused with information from its context, is

extracted. (C) The multilabel predictor produces simultaneously separate predictions for each epitope
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sequences were replaced by a MASK token. The model contains 16
attention heads in each multi-head attention block on 30 layers,
with 420 million parameters in total. The embedding dimension for
each amino acid is 1024. The embeddings are contextualized, which
means that the representation of an amino acid depends on the TCR
sequence surrounding it and thus contains information from its
context.

Given an amino acid sequence an ¼ ½an;1; an;2; . . . ; an;Ln
� of a

TCR, protBERT computes a corresponding embeddings
~Xn ¼ ½xn;1; xn;2; . . . ; xn;Ln

�, where xn;i 2 R
1024. The length of the

TCR sequences, Ln, defined by V-genes, CDR3 sequences and J-
genes, varies roughly between 100 and 140 amino acids. We extract
the part of the embedding corresponding to the CDR3,
Xn ¼ ½xn;rn

;xn;rnþ1; . . . ; xn;rnþln�1�. The CDR3 embedding provides a
more compact presentation of the TCR that is still transfused with
information from its context.

We also experimented with a protBERT model fine-tuned with
TCR sequences, two different ELMO (Embeddings from Language
Models) architectures, and one-hot encodings for the CDR3 and
TCR sequences, but the original protBERT model had the best per-
formance. See Supplementary Section S2 for details.

2.3 CNN predictor
Once the protBERT embeddings are computed for the TCRs, our
training data consists of pairs ðXn; ynÞ that are used for training our
predictor network fðXn; WÞ ¼ ŷn with parameters W. Our multila-
bel classifier consists of a parallel convolutional unit and a simple
linear unit for each TCR chain and was motivated by the CNN clas-
sifier presented by Gligorijevi�c et al. (2021) (see Fig. 2). The convo-
lutional unit consists of parallel convolutional layers with varying
kernel sizes (5, 9, 15 and 21, with 120, 100, 80 and 60 filters, re-
spectively) that can capture different length motifs. The outputs
from these layers are concatenated and fed through batch normal-
ization, rectified linear unit (ReLU) activation, and a dropout layer
with 0.1 dropping probability. Those are followed by another con-
volutional layer (kernel size 3, 60 filters) that can extract higher level
features based on the outputs from the previous convolutional
layers. Finally, max pooling is performed over the sequence lengths,
which provides fixed sized outputs regardless of the sequences’
lengths. As our input embeddings are contextualized, the convolu-
tional unit extracts contextualized motifs where the surroundings of
the motif even outside the CDR3 also affect how it is perceived. The
linear unit can more flexibly utilize the expressive features of the
BERT embeddings. It consists of a max pooling layer, a linear layer,
and a ReLU activation. The outputs of the convolutional and linear
units are concatenated and put through a dropout layer with drop-
ping probability 0.1, batch normalization and ReLU. The final

linear layer gives predictions simultaneously for each class that are
separately squashed between 0 and 1 by a sigmoid layer.

To optimize the parameters W of the network, we minimize the
binary cross-entropy (BCE) with logits loss between the true labels
yn and predicted labels ŷn, simultaneously for all epitopes. For TCR
n 2 f1; . . . ;Ng and label c 2 f1; . . . ;Cg, the loss is defined as

‘ðŷn;c; yn;cÞ ¼ �½pc � yn;c � log rðŷn;cÞ

þð1� yn;cÞ � logð1� rðŷn;cÞÞ�;
(1)

where pc ¼ N=ðmc � CÞ is the weight for positive samples from class
c of size mc, and rðyÞ ¼ 1=ð1þ e�yÞ is the sigmoid function. Loss
over all TCRs and labels is then defined as

Loss ¼ 1

NC

XC

c¼1

XN
n¼1

‘ðŷn;c; yn;cÞ: (2)

This multilabel formulation and usage of BCE loss allows us to ac-
count for also cross-reacting TCRs that can recognize multiple
epitopes.

For training the models, we use stochastic weight averaging
(SWA) with learning rate scheduling (Izmailov et al., 2018). The
models are first trained for 2500 iterations (mini-batches) without
weight averaging but with cosine annealing for the learning rates, so
that the learning rates gradually decrease. After that, the training is
continued for another 500 iterations with SWA on every iteration
and again a decreasing learning rate is used. The learning rate is
0.0002, except for the linear unit, for which the learning rate is set
to 0.01.

2.4 Comparison to other methods
We compared TCRconv to recently published methods for predict-
ing TCR epitope-specificities, TCRGP (Jokinen et al., 2021),
DeepTCR (Sidhom et al., 2021), SETE (Tong et al., 2020), TCRdist
(Dash et al., 2017) and ERGO-II (Springer et al., 2021). While our
TCRconv can be trained simultaneously for all epitopes using the
multi-hot labels, with TCRGP, DeepTCR, SETE, and TCRdist we
trained separate binary classifiers for each epitope, so that TCRs
known to recognize the epitope in question are considered as posi-
tive data points and TCRs specific to other epitopes are considered
as negative data points. DeepTCR and SETE have options for multi-
class classification, but they do not provide support for cross-
reactive TCRs that our data contains. Therefore, they would have
had a disadvantage if trained as multiclass classifiers as they then
would have operated with either conflicted or missing class labels.
ERGO-II takes TCR-epitope pairs as inputs and predicts if the pairs
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bind. Non-binding TCR-epitope pairs then need to be generated for
its training.

We compared the above methods on our two TCRb datasets,
VDJdbb-large and VDJdbb-small, using stratified 10-fold cross-
validation. The folds used in the cross-validation were the same for
each of these methods. As suggested by the authors, with DeepTCR
25% and with ERGO-II 20% of the training data were used as val-
idation data for determining early stopping when training the classi-
fiers. With ERGO-II, we used all the binding TCR-epitope pairs in
our data, but additionally sampled five times more non-binding
data, replicating their training procedure. Therefore, when with
TCRconv e.g. TCR CASLSGRAPQHF, TRBV27*01 occurs once in
VDJdbb-small with a multi-hot encoding indicating that it can rec-
ognize epitopes GTSGPIINR and GTSGPIVNR, with ERGO-II it is
repeated 12 times, twice in a positive pair with both GTSGPIINR
and GTSGPIVNR, and 10 times in negative pairs formed by ran-
domly selecting 10 of the other 19 epitopes in the dataset.

2.5 TCR diversity
To estimate the diversity of N TCRs specific to a certain epitope, we
utilized a diversity measure similar to measures used in previous
studies (Dash et al., 2017; Jokinen et al., 2021). These measures are
based on Simpson’s diversity index, but due to the large variety of
TCRs, they measure similarities between TCRs instead of exact
matches. Here, the similarity between TCRs n and j is computed
based on the used embeddings Xn and Xj that have been aligned
based on IMGT numbering:

diversity ¼

PN�1

n¼1

PN
k¼nþ1

exp � jjXn�X j jj2Fro

2 s:d:2

� �

1
2 N � 1ð ÞN

0
B@

1
CA
�1

; (3)

where jjXjjFro denotes the Frobenius norm of X, and s:d: is set to
10.4 (maximum feature-wise standard deviations multiplied by the
median sequence length 14).

3 Results

3.1 Comparison to other methods
We first compared the prediction accuracies of TCRconv and previ-
ous methods, TCRGP, deepTCR, TCRdist, SETE and ERGO-II, on
the two epitope-specific datasets: a comprehensive VDJdbb-large
consisting of data with all confidence levels, and a smaller high-
quality VDJdbb-small (see Section 2.1 and Supplementary Table
S1). Prediction accuracies are quantified using the average precision
(AP), which accounts for class imbalances, and the area under the
receiver operating characteristic curve (AUROC). TCRconv achieves
the highest AP and AUROC scores on VDJdbb-large (33% and 3%
improvement to the second best DeepTCR) (Fig. 3A). High AP
scores are essential as minimizing false positive predictions with
large TCR repertoires and small TCR clones (Qi et al., 2014) is cru-
cial. Overall, all methods performed better on the higher confidence,
albeit smaller, VDJdbb-small dataset (Supplementary Fig. S8 and
Table S2).

3.2 TCR cross-reactivity and diversity
As TCRs can be cross-reactive (Supplementary Fig. S1), TCRconv
benefits from using a single multilabel predictor that can predict a
TCR to recognize several epitopes. Whereas, to account for cross-
reactivity with previous binary (Dash et al., 2017; Jokinen et al.,
2021) and multiclass classifiers (Sidhom et al., 2021; Tong et al.,
2020), a large set of separate (one-vs-all) classifiers had to be
trained, one for each epitope. TCRconv performs well also with
cross-reacting TCRs (Supplementary Fig. S2). Further, consistent
with previous results (Dash et al., 2017; Jokinen et al., 2021), we
confirmed that prediction accuracy across epitopes correlates nega-
tively with the diversity of the TCRs recognizing these epitopes
(Fig. 3B, Supplementary Fig. S9A).

3.3 Effect of the CDR3 context size and ab-chain usage
CDR3 is essential in epitope recognition, but structural (Glanville
et al., 2017) and computational (Dash et al., 2017; Jokinen et al.,
2021) evidence suggests that CDR1 and CDR2, which mainly con-
tact the MHC, may also interact with the epitope and aid the predic-
tion. We next evaluated how much of the TCR sequence around the
CDR3 should be used as context when computing the protBERT
embedding. The prediction AUROC score improves gradually from
0.68 to 0.77 when the context size is increased from no context to
full context (i.e. the full-length TCRb sequence, or VDJ-sequence)
on VDJdbb-large (Fig. 3C), indicating that protBERT successfully
conveys relevant information from the context to the CDR3 embed-
ding. Using the CDR3 with full context corresponds to using both
V- and J-genes in addition to the CDR3, since the region before the
CDR3 is encoded by the V-gene and the region after CDR3 by the J-
gene. With both datasets the AUROC and AP scores improve or re-
main the same when using context as far as before CDR1 (Fig. 3C,
Supplementary Fig. S9B). Remarkably, the entire TCR embedding is
not needed, but using the CDR3 embedding with full context pro-
vides similar or slightly better results.

TCR is a dimeric molecule that consists of a and b chains. While
TCRb is more often in close proximity to an epitope than TCRa,
usually both chains are within 5 Å of the epitope (Glanville et al.,
2017). We studied the effect of TCRa and TCRb on TCR-epitope
prediction on VDJdbab-large dataset of paired TCRab sequences
(Supplementary Table S1). We found substantial performance im-
provement from using both chains over either chain individually
(Fig. 4). Further, when using either chain individually, it varies
which chain provides the best accuracy. With most epitopes, the ac-
curacy is better when using the b-chain, but with some epitopes
using the a-chain is clearly more beneficial. When using both chains,
the increase in accuracy when compared to either chain individually
is more systematic.

With complex models such as protBERT and multiple convolu-
tional layers, each with several filters, it can be challenging to iden-
tify any clear motifs that would be important for the predictions. In
Supplementary Section S3, we discuss how saliency maps can be
used for this purpose.

3.4 The effect of HLA-type
As the TCR regions outside the CDR3 do not often interact with an
epitope but may interact with the MHC molecule presenting the epi-
tope, the HLA-type of the MHC can affect the recognition between
the TCR and the epitope. Therefore, utilizing these regions could
introduce a bias in the epitope-specificity prediction. Although the
available TCR-epitope-MHC complexes in VDJdb contain various
HLA-types, most of the data are restricted to HLA-A*02 and almost
all the epitopes are presented by a single HLA-group (see
Supplementary Fig. S10A). This makes it difficult to model or even
assess how different HLA-types affect the TCRs’ ability to bind cer-
tain epitopes. To ensure that our multilabel predictor is predicting a
TCR’s ability to bind to an epitope and not to the HLA presenting
it, we examined how much the results differ between different HLA-
genes as well as between TCRconv models trained on data restricted
by any HLA type or only with HLA-A*02 restricted data. The num-
ber of epitopes restricted by each HLA-gene is limited and the pre-
diction accuracy varies considerably between epitopes, but
Supplementary Figure S10B indicates that differences between HLA-
genes are modest (AUROC across genes varies from 0.743 to 0.810,
while AUROC across epitopes varies from 0.532 to 0.996). Further,
Supplementary Figure S10C shows that the accuracy is similar when
TCRconv is trained on all data or only with HLA-A*02 restricted
epitopes. These results suggest that TCRconv predicts TCR’s ability
to bind epitopes and not the HLAs.

3.5 Dynamics and phenotypes of SARS-CoV-2-specific

TCRs in COVID-19
Finally, we demonstrate how to utilize TCRconv in repertoire data
analysis to track T cell dynamics (Snyder et al., 2020) during cor-
onavirus disease 2019 (COVID-19) and to reveal the phenotypes of
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severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spe-
cific T cells in moderate and severe COVID-19. We first trained a
TCRconv model specifically for SARS-CoV-2 epitopes using
ImmuneCODE (Nolan et al., 2020) and VDJdbb-large data.

3.5.1 TCRconv model for SARS-CoV-2 epitopes

For training TCRconv models for SARS-CoV-2 epitopes, we utilized
ImmuneCODE MIRA-data of TCRs specific to MHC-I restricted
peptides. To fully exploit the data, we did the following preprocess-
ing with three options for the TCR sequences: (i) If the V- and J-
genes and their alleles could be determined from the nucleotide se-
quence (length 29 nucleotides), we used the exact TCR amino acid
sequence determined by the CDR3b, V- and J-genes. (ii) If a V- or J-
gene could be determined but not its allele, we set the allele to 01
and used it for constructing the amino acid sequence. (iii) If a gene
could not be determined, we utilized a partial amino acid sequence
that we could uniquely determine based on the nucleotide sequence.
BERT embeddings were computed for these TCRb sequences and
the parts of the embeddings corresponding to the CDR3s were
extracted and used with the CNN predictor. TCR uniqueness was
determined by these longest amino acid sequences that we could ob-
tain. We selected 139 099 unique TCRbs specific to 188 peptide
groups with at least 50 unique TCRbs specific to them (see
Supplementary Table S3) and used stratified 10-fold cross-
validation with these TCRs to evaluate TCRconv on this data. The
performance in terms of AP scores for the TCRs specific to each pep-
tide group is shown by the peptide group’s genomic location in
Figure 5, and Supplementary Figure S11A additionally shows the
AUROC scores and diversity of these TCRs. The mean AUROC and
AP scores are shown in Supplementary Figure S11B. We then
selected the twenty peptide groups that performed best in terms of

weighted mean of AUROC and AP scores (both scores were scaled
into range [0,1]) and used the corresponding TCRs together with
VDJdbb-large dataset to construct the final predictor (performance
using stratified 10-fold cross-validation is shown in Supplementary
Fig. S11C).

3.5.2 Dynamics of SARS-CoV-2-specific TCRs

To track the T cell dynamics during COVID-19, we selected 493
COVID-19 patients from ImmuneCODE repertoires and 110
healthy controls from (Emerson et al., 2017). We utilized TCR rep-
ertoires from ImmuneCODE that contain at least 250 000 TCRs
and the number of days between diagnosing the patient and collect-
ing the sample is reported. For the control repertoires, we also
required at least 250 000 TCRs and only selected subjects with age
at least 18 years (which is the age of the youngest subject in
ImmunoCode data). The data are described in Supplementary Table
S4. The sequences were preprocessed in the same way as the
ImmuneCODE MIRA-data and each sample was downsampled to
250 000 TCRs. Using the TCRconv model for SARS-CoV-2 epito-
pes, we predicted the specificity for each of the approx. 150M T
cells within these repertoires. We chose a threshold separately for
each epitope that corresponds to false positive rate of 0.001. With
thresholds this strict we are not likely to find all TCRs specific to the
selected epitopes but have a high confidence in that the TCRs pre-
dicted to recognize these epitopes are true positives. We computed
the frequency of SARS-CoV-2-specific TCRs in each repertoire and
normalized it by the number of SARS-CoV-2 epitopes (20) to be bet-
ter able to compare to responses for other viruses.

Figure 6A shows that the frequency of SARS-CoV-2-specific T
cells is highest during the first two days after diagnosis and starts to
decrease later after the infection. In contrast, with influenza A virus

Fig. 3. TCRconv evaluation. Results are obtained using stratified 10-fold cross-validation on VDJdbb-large dataset. (A) Comparing TCRconv to other methods using average

AUROC and AP scores. (B) The AUROC scores for TCRconv predictions correlate negatively with the diversity of the epitope specific TCRs (Pearson correlation �0.72). (C)

Increasing the embedding context size increases the predictive AUROC score. The schematics on top show the approximate sections included in different context sizes.

CDR3þX refers to CDR3 embeddings with context size X and complete TCR to embeddings for complete TCRs without extracting only the CDR3 parts. TCRconv uses

CDR3þ full (bolded)
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(IAV), cytomegalovirus (CMV), Epstein-Barr virus (EBV) and hepa-
titis C virus (HCV) (Fig. 6 and Supplementary Fig. S12), the normal-
ized frequency remains lower.

To assess if the COVID-19 patients have significantly higher fre-
quency of virus-specific T cells than healthy control subjects, and if
the frequencies are positively correlated with subjects’ age, a linear
regression analysis was performed. This was done separately for
each time interval using linear model y ¼ aþ bccxcc þ bagexage,
where y is the observed frequency, a is offset, bcc is parameter for
case-control covariate xcc which is zero for control samples and
one for case samples of the considered time interval and bage is
parameter for age covariate xage. This analysis showed that the case-
control difference is significant for time intervals 3–7, 8–14 and 15–
28, as quantified by the Benjamini–Hochberg corrected one-tailed t-
test (see Fig. 6A and Supplementary Table S5).

3.5.3 Phenotypes of SARS-CoV-2-specific TCRs

To link TCR-specificity to T cell phenotype, we utilized
scRNAþTCRab-seq of CD8þ T cells from bronchoalveolar lavage
samples of nine COVID-19 patients with moderate or severe disease
(Liao et al., 2020). The scRNA-seq data were analyzed mainly with
Python package scVI tools and R package Seurat (see
Supplementary Section S4 for details). The T cell clustering colored
by disease severity, phenotype and predicted epitope specificity is
shown in Figures 7A–C As expected, SARS-CoV-2-specific T cells
were highly abundant in these samples (Fig. 7D). Interestingly, con-
sistent with slightly elevated frequency of EBV-specific T cells in
COVID-19 repertoires (Supplementary Fig. S12C), T cells specific to
EBV epitopes were also abundant in bronchoalveolar lavage sam-
ples. Moreover, in patients with moderate disease (n¼3) the SARS-
CoV-2-specific T cells most often had tissue-resident memory
phenotype (overexpression of ZNF683, CD69, TCF7) (Fig. 7A–C).
In patients with severe disease (n¼6), we found SARS-CoV-2-
specific T cells to have possibly overtly proliferating (MKI67) and
exhausted (HAVCR2/TIM3, CTLA4) phenotype, with high expres-
sion of co-stimulatory signals (ICOS, TNFRSF4/OX40R, GITR)
and IFNG (Fig. 7A–C and E). These findings refine previous findings
of Moss (2022) by suggesting that patients with a moderate disease
course form T cells capable of eliminating SARS-CoV-2 with min-
imal tissue damage while T cell overactivation in patients with a se-
vere disease leads to an inappropriate tissue damage. The patient
from which the T cells originate, and the frequency of epitope-
specific TCRs per patient are shown in Supplementary Figure S13.

3.6 Experimental validation of TCRconv predictions
To estimate how well TCRconv performs compared to experimental
measurements, we again utilized ImmuneCODE samples (Nolan
et al., 2020) for which both a TCRb repertoire sequencing and a
MIRA experiment were reported. We opted to focus on the
SpikeYLQPRTFLL epitope that was the only SARS-CoV-2 epitope in
our VDJdbb-large dataset, and used the TCRconv predictor trained
on that dataset to make predictions for the TCR repertoires. One of
the peptide groups used in the MIRA experiments consisted of

Fig. 4. TCRconv performs best when using both a- and b-chains. Results are

obtained on VDJdbab-large dataset in terms of average AUROC and AP scores over

stratified 10-fold cross-validation. Each circle corresponds to TCRs specific to one

epitope as described in the legend. Above boxplots show the distribution of the pre-

diction accuracies when the TCRconv model is trained using embeddings for

CDR3a, CDR3b or both (always with the full context, meaning that an embedding

is first computed for the complete TCR determined by the CDR3, and V- and J-

genes, and then the part corresponding to the CDR3 is extracted). Mean metrics are

shown on top of each boxplot. Below the circles from the three models are con-

nected by lines, illustrating how for most epitopes the best results are obtained when

using both chains and that using b-chains is better than using a-chains, although

there are exceptions
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peptides YLQPRTFL, YLQPRTFLL and YYVGYLQPRTF. Here we
assume that a TCR that is found to recognize one of these peptides
in the MIRA experiment is likely to recognize SpikeYLQPRTFLL. We
only focused on the TCR clones from the repertoires with size two
or larger, so that there would be a reasonable chance of capturing
the exact same TCR both in the repertoire and the MIRA experi-
ment (see Fig. 8). To be able to evaluate TCRconv’s prediction accu-
racies, we analyzed repertoire and MIRA sample pairs, where at
least five TCR clones from the repertoire (with size two or larger)
were validated in the corresponding MIRA experiment.

Figure 8 shows the TCRconv predictions for each TCR clone
in a repertoire together with the experimentally validated
SpikeYLQPRTFLL-specific TCRs. We computed four metrics for evalu-
ating this performance: true positive rate (TPR), false positive rate
(FPR), false discovery rate (FDR) and positive predictive value
(PPV). These results show that TCRconv is able to identify a large
portion of the SpikeYLQPRTFLL-specific TCR clones that are vali-
dated in the matched MIRA experiment. Furthermore, the propor-
tion of false positive predictions is small, especially when only larger
clone sizes are considered. Supplementary Figure S14 results for an-
other pair of matched repertoire and MIRA experiments.

4 Discussion and conclusions

Here, we have presented TCRconv, a novel deep learning method
that combines transformer embeddings for TCR sequences and a
CNN predictor. The protBERT model transfers useful information
to the CDR3 embedding from the TCR regions surrounding it, mak-
ing a compact and rich presentation of the TCR. Unlike previous
methods, it has been formulated as a multilabel predictor that can
make predictions simultaneously for multiple epitopes and account
for cross-reacting TCRs. We have demonstrated that TCRconv has

state-of-the-art accuracy in terms of AUROC and AP scores. We
have also demonstrated how TCRconv can be applied for unsuper-
vised analysis of TCR-repertoires as well as to link T cell phenotypes
and epitope-specificity with single-cell RNAþTCR-seq data.

Fig. 6. Analyzing TCR repertoires of COVID-19 patients with TCRconv. Dynamics of (A) SARS-CoV-2 (B) IAV and (C) CMV-specific T cells in terms of frequency normalized

by the number of virus-related epitopes. There are 20 epitopes for SARS-CoV-2, 8 for IAV and 9 for CMV. Each data point corresponds to a repertoire and is colored by its

dataset (Supplementary Table S4). Symbols “*” indicate statistically significant increase in frequency compared to healthy samples (see Supplementary Table S5)

Fig. 7. Characteristics of SARS-CoV-2-specific CD8þ T cells from bronchoalveolar lavage samples from patients with moderate (n¼ 3) or severe (n¼6) COVID-19 disease.

UMAP presentations colored by (A) disease severity and (B) phenotypes. Panel (C) shows clustering with epitope-specific T cells marked, (D) proportions of epitope specific T

cells and (E) phenotype distribution of virus specific T cells

Fig. 8. Predicted and experimentally validated specificity of TCRs for SARS-CoV-2

epitope SpikeYLQPRTFLL. Each TCR clone in the repertoire sample

ADIRP0000466_20200518 is represented as a circle that is colored red if it has

been validated in the MIRA experiment eJL158 and grey if not. Each circle is posi-

tioned by it’s productive frequency (y-axis) and TCRconv prediction score (x-axis).

The two vertical black lines show prediction thresholds 0.643 and 0.944 that corres-

pond to false positive rates of 0.001 and 0.0001 obtained from the 10-fold cross-val-

idation with VDJdbb-large dataset. The TCRs with clone size one are shaded. The

table below shows the true positive rate (TPR), false positive rate (FPR), false dis-

covery rate (FDR) and positive predictive value (PPV) for the two thresholds and for

clones of size at least two or at least three (A color version of this figure appears in

the online version of this article)

TCRconv 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac788#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac788#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac788#supplementary-data


Machine learning methods in general benefit from having ample
data for training the models. As the amount of epitope-specific data
increases the accuracy of existing methods such as TCRconv will
further improve. Similarly, having sufficiently long sequencing reads
that allows the recovery of the complete V(D)J sequences can clearly
benefit the predictors, as we showed with the varying context sizes.
As also the number of unique epitopes increases, it can become more
productive to also incorporate the epitope sequence into TCR-
epitope prediction models and predict TCRs’ specificity to previous-
ly unseen epitopes.
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Data availability

Implementation for TCRconv and the epitope-specific TCR datasets are avail-

able at https://github.com/emmijokinen/tcrconv. The VDJdbb-large, VDJdbb-

small, and VDJdbab-large datasets were obtained from the VDJdb database

by Bagaev et al. (2020) (https://vdjdb.cdr3.net). Additional SARS-COV-2

specific TCRs and COVID-19 patient repertoires are available in the

immuneACCESS database at https://clients.adaptivebiotech.com/pub/covid-

2020. Control repertoires from Emerson et al. (2017) are available in

the immuneACCESS database at https://doi.org/10.21417/B7001Z.

Implementation for the scRNAþTCRab-seq data analysis is available at

https://github.com/janihuuh/tcrconv_manu. Count matrices, TCRab-seq

results, and metadata from Liao et al. (2020) are available at GEO

GSE145926.
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