
Sequence analysis

Insane in the vembrane: filtering and transforming

VCF/BCF files

Till Hartmann 1*, Christopher Schröder2, Elias Kuthe3, David Lähnemann 1,4† and

Johannes Köster1,5†

1Algorithms for Reproducible Bioinformatics, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany, 2Genome

Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany, 3Computer

Science XI, TU Dortmund University, Dortmund 44227, Germany, 4Department of Medical Oncology, West German Cancer Center,

University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany and 5Department of Medical Oncology, Dana-Farber

Cancer Institute, Harvard Medical School, Boston, MA 02215, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors.

Associate Editor: Janet Kelso

Received on August 22, 2022; revised on November 15, 2022; editorial decision on December 12, 2022; accepted on December 14, 2022

Abstract

Summary: We present vembrane as a command line variant call format (VCF)/binary call format (BCF) filtering tool
that consolidates and extends the filtering functionality of previous software to meet any imaginable filtering use
case. Vembrane exposes the VCF/BCF file type specification and its inofficial extensions by the annotation tools VEP
and SnpEff as Python data structures. vembrane filter enables filtration by Python expressions, requiring only
basic knowledge of the Python programming language. vembrane table allows users to generate tables from sub-
sets of annotations or functions thereof. Finally, it is fast, by using pysam and relying on lazy evaluation.

Availability and implementation: Source code and installation instructions are available at github.com/vembrane/
vembrane (doi: 10.5281/zenodo.7003981).

Contact: till.hartmann@tu-dortmund.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying variation from DNA- or RNA-sequencing data and
determining its effect on phenotypes are at the heart of a wide range
of biological and medical research efforts. Initial bioinformatics
processing of such sequencing data obtains thousands to millions of
individual differences between one or more biological samples and
their reference genome. These variants are annotated with data
properties and known or predicted phenotypic effects and usually
stored in the variant call format (VCF) or its binary equivalent
(BCF) (Danecek et al., 2011). This annotation information can then
be used to filter down to a set of interesting candidate variants, for
example, those known to be drug targets in a specific disease.

Here, we present vembrane, a new filtering tool for all versions
of the VCF and BCF formats. vembrane consolidates and extends
the functionality of previously available tools and uses standard
Python syntax, while achieving very good processing speed. The dir-
ect use of Python syntax enables flexible and powerful expressions
(Fig. 1) and obviates the need to adapt to a new syntax for users al-
ready familiar with Python. It supports both SnpEff (Cingolani
et al., 2012; Ruden et al., 2012) and VEP (McLaren et al., 2016)

annotations out of the box and has an extensible design which
allows easy integration of new annotation sources. To our know-
ledge, it is the only variant filtering tool that can handle groups of
breakend events that represent structural variants. It consists of
three subcommands for processing VCF records: filter for filter-
ing, table for converting into a tabular format and annotate for
adding additional annotations based on genomic ranges.

2 Materials and methods

2.1 Implementation
For each record, vembrane evaluates a given Python expression
which has access to all fields defined in the VCF specification as
local variables (CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO,
FORMAT), typed according to the VCF file’s header and parsed via
pysam. Variant annotation is available via the ANN dictionary.
Annotations from SnpEff and VEP have custom parsers in vem-
brane, making them easy and safe to use in filter expressions. For
VCF records with multiple ANN annotation fields (for multiple
affected transcripts), vembrane only keeps ANN entries that match

VC The Author(s) 2022. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(1), 2023, btac810

https://doi.org/10.1093/bioinformatics/btac810

Advance Access Publication Date: 15 December 2022

Applications Note

https://orcid.org/0000-0002-6993-347X
https://orcid.org/0000-0002-9138-4112
http://github.com/vembrane/vembrane
http://github.com/vembrane/vembrane
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data
https://academic.oup.com/


the expression. The respective record is only kept if at least one ANN
passes the filter expression [an implicit any, i.e. conceptually:
any(evaluate(expr, ann) for ann in annotations), see

Supplementary Fig. S2].
Records with multiple alternative alleles may have completely

unrelated annotations. This both complicates filter expressions and
interpretation of variants. Thus, vembrane only accepts files whose

records have been split such that each alternative allele has its own
record. This can, for example, be achieved by normalizing the input
with bcftools norm -N -m-any; for consistent results, this is best

done before annotation.
To our knowledge, vembrane is the first tool to comprehensively

handle breakend variants (BNDs): BNDs are a way of encoding
structural variants by grouping two or more genomic breakpoints
into a joint structural variant event. As variant files are usually

sorted by chromosomal position, BND records from the same event
can occur in distant parts of the file. Thus, even if the event it

belongs to is known for each BND at the time of reading it, the total
number of BNDs (and all associated annotations) for a specific event
remains unknown until reaching the end of the file. vembrane thus

needs to ensure that each event is removed or kept as a whole. While
non-BND variants are yielded instantly during iteration, BND proc-

essing is deferred until sufficient information is available—this is the
case as soon as at least one BND of an event passes the filter
expression.

2.2 Comparison to other tools
Various tools exist for filtering VCF records using conditional
expressions over their fields. They vary greatly in the scope of

their functionality (Table 1). For example, the SnpEff and VEP
annotation suites have their own filtering tools, SnpSift and fil-
ter_vep. Both use custom syntax, special handling of only their
own annotations and neither supports the BCF format.
Additionally, filter_vep is several orders of magnitude slower

than the other tools (Supplementary Fig. S1). The bcftools suite
also developed its own expression syntax and supports VEP
annotations by explicitly activating a dedicated plugin. bio-vcf
(Garrison et al., 2021) defines its own domain-specific language
for processing VCF files, is multi-threaded by default, but has nei-

ther BCF support nor built-in support for annotations. slivar
(Pedersen et al., 2021) is geared more toward trio/pedigree filter
scenarios, but has some support for specific parts of SnpEff, VEP
and bcftools annotations such as Consequence. The only other
tool that does not define its own syntax is VcfFilterJdk
(Lindenbaum and Redon, 2018), which uses Java expressions for
filtering and in principle supports both VEP and SnpEff (only
supports obsolete annotation format from the ‘EFF’ tag) annota-

tions. However, at the time of writing, it produced incorrect VCF
v4.2 files. A detailed comparison of specific syntactic capabilities

of the different tools, as well as a performance benchmark, can be
found in the supplementary Material.

3 Summary

vembrane is a software for efficient filtering of data in VCF and BCF
files. It combines the capabilities of existing tools and should work as a

replacement to any of them. Thus, users will not have to remember
which tool can achieve what, but should be able to perform any filter-

ing task with vembrane. Further, vembrane allows for filtering via arbi-
trary Python expressions, meaning that Python users can compose
filtering expressions without having to learn custom syntax. In add-

ition, it extends beyond existing functionality in other tools by provid-
ing support for breakends. Finally, it also allows formatting VCF files
into tables and has basic support for annotating records itself.

Acknowledgements

We sincerely thank Marcel Bargull, Jan Forster, Felix Mölder and Sven

Rahmann for their advice.

Funding

This work was funded by the German Research Foundation collaborative Research

Center 876 [SFB 876], subproject C1 (C1), GRF/DFG project number 124020371.

Conflict of Interest: none declared.

References

Cingolani,P. et al. (2012) Program for annotating and predicting the effects of

single nucleotide polymorphisms. Fly (Austin), 6, 80–92.

Danecek,P. et al.; 1000 Genomes Project Analysis Group. (2011) The variant

call format and VCFtools. Bioinformatics, 27, 2156–2158.

Garrison,E. et al. (2021) Vcflib and tools for processing the VCF variant call

format. bioRxiv.

Lindenbaum,P. and Redon,R. (2018) Bioalcidae, samjs and vcffilterjs: object-oriented

formatters and filters for bioinformatics files. Bioinformatics, 34, 1224–1225.

McLaren,W. et al. (2016) The ensembl variant effect predictor. Genome Biol.,

17, 1–14.

Pedersen,B.S. et al. (2021) Effective variant filtering and expected candidate

variant yield in studies of rare human disease. NPJ Genom. Med., 6, 1–8.

Ruden,D. et al. (2012) Using Drosophila melanogaster as a model for geno-

toxic chemical mutational studies with a new program, SnpSift. Front.

Genet., 3, 35.

Fig. 1. Example invocation of vembrane filter. The file ids.txt contains one ID

per line and is parsed as a set. In plain English, the filter expression translates to

‘keep all records from chromosome 2 where the quality is at least 30 or the ID is in

the set of known IDs, and where at least “pathogenic” or “drug_response” is part of

the clinical significance annotations, and where the sum of read depths across all

samples that report a homozygous genotype is at least 10’

Table 1. Comparing different tools/properties, see Supplementary

Material for details.

Tool Syntax Annotation I/O formats Breakends Speed

bcftools Custom VEPa VCF, BCF No þþþ
bio-vcf Ruby/customb - VCF No -

filter_vep Custom VEP VCF No —

slivar Js/customb Customc VCF, BCF No -

SnpSift Custom SnpEff VCF No þ
VcfFilterJdk Java VEP, SnpEff d VCF, BCFe No 8f

vembrane Python VEP, SnpEff VCF, BCF Yes þþ

aThrough þsplit-vep plugin.
bAdditionally ‘custom’ because some scenarios require complex Command

Line Interface option combinations.
cSpecial handling of impact annotations from bcftools, VEP or SnpEff.
dEFF only.
eVCF < v4.3, BCF < v2.1 only.
fManually estimated performance, since it is not included in the benchmark

due to incompatible VCF version support and lack of conda packages.

Symbols used for speed classification range from — (slowest) through 8
(average) to þþþ (fastest).

2 T.Hartmann et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac810#supplementary-data

	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn6
	tblfn7

