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Abstract

Motivation: Adverse drug reactions (ADRs) are a major issue in drug development and clinical pharmacology. As
most ADRs are caused by unintended activity at off-targets of drugs, the identification of drug targets responsible
for ADRs becomes a key process for resolving ADRs. Recently, with the increase in the number of ADR-related data
sources, several computational methodologies have been proposed to analyze ADR–protein relations. However, the
identification of ADR-related proteins on a large scale with high reliability remains an important challenge.

Results: In this article, we suggest a computational approach, Large-scale ADR-related Proteins Identification with
Network Embedding (LAPINE). LAPINE combines a novel concept called single-target compound with a network
embedding technique to enable large-scale prediction of ADR-related proteins for any proteins in the protein–protein
interaction network. Analysis of benchmark datasets confirms the need to expand the scope of potential ADR-
related proteins to be analyzed, as well as LAPINE’s capability for high recovery of known ADR-related proteins.
Moreover, LAPINE provides more reliable predictions for ADR-related proteins (Value-added positive predictive val-
ue¼0.12), compared to a previously proposed method (P < 0.001). Furthermore, two case studies show that most
predictive proteins related to ADRs in LAPINE are supported by literature evidence. Overall, LAPINE can provide reli-
able insights into the relationship between ADRs and proteomes to understand the mechanism of ADRs leading to
their prevention.

Availability and implementation: The source code is available at GitHub (https://github.com/rupinas/LAPINE) and
Figshare (https://figshare.com/articles/software/LAPINE/21750245) to facilitate its use.

Contact: dhlee@kaist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Adverse Drug Reactions (ADRs) are defined as unintended harmful
or unpleasant reactions caused by drug intervention (Coleman and
Pontefract, 2016). Some serious ADRs are enough to result in life-
threatening events or even death. ADRs impose a significant public
health concern, contributing to over 100 000 deaths per year in the
U.S (Ernst and Grizzle, 2001). Also, serious ADRs such as liver and
kidney failures lead to drug withdrawals from the market (Qureshi
et al., 2011). Still, the prevention of ADRs is difficult due to an in-
complete understanding of ADRs, which leads to an increase in the
cost of drug development and the failure rates during clinical trials
(Waring et al., 2015). Therefore, complete and accurate information
on drug ADRs is required to improve drug safety for patients and to
reduce risks for pharmaceutical companies.

It is widely accepted that there are two types of ADRs; one refers
to uncommon and idiosyncratic responses that cannot be predicted
from known pharmacology, and the other to predictable responses
caused by on-target or off-target interactions between drugs and
proteins (Garon et al., 2017; Pirmohamed et al., 1998). Therefore,
most previous studies on the subject of ADRs aim to mitigate the lat-
ter. From the early stages of drug discovery, pharmaceuticals have
screened drug candidates binding against a panel of safety targets to
anticipate possible ADRs (Bowes et al., 2012; Whitebread et al.,
2005). However, these in vitro experimental tests for drug–target
interactions are expensive, labor-intensive and time-consuming.
Hence, in silico models such as molecular docking simulations or
structure-activity relationship approaches have been proposed to
calculate the binding affinity between drug and protein to predict
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the drug–target–ADR relationships (Wallach et al., 2010; Yang
et al., 2009, 2011). Even then, these methods are available only to a
few proteins with known three-dimensional structures.

To broaden the scope of the investigation to include more pro-
teins, systematic methods were suggested to predict ADR-related
drug targets. Some studies identified significantly correlated drug
targets to ADR by combining drug–target interaction data and
drug–ADR relation data (Kuhn et al., 2013; Smit et al., 2021).
These methods successfully increased the number of proteins consid-
ered for relation with ADRs compared to previous structure-based
methods. However, these methods were heavily dependent on the
drug–target interaction data, such that proteins without known
interaction with drugs were out of scope. Another study suggested
an algorithm to infer potential ADR–protein relations based on an
integrated network with protein–protein interactions, ADR–ADR
similarities and ADR–protein relations (Chen et al., 2016b).
Although this large-scale prediction algorithm could consider all tar-
getable proteins, there was still room for improvement in prediction
accuracy due to the lack of information about the known ADR-
related proteins which is the key of the algorithm. Furthermore,
with the increase in the number of studies about ADRs, databases
containing relations between proteins and potential ADRs were
built by integrating information from ADR-related public databases
and literature mining (Galletti et al., 2021; Huang et al., 2018).
Despite their efforts, relations reported by these databases contain
only a limited extent of ADRs and proteins.

To overcome the limitations of previous studies, we have focused
on the recent advances in various techniques developed to embed
biological information, especially network embedding techniques.
Network embedding learns a low-dimensional representation for
each node in the network without manual feature selection. By pro-
jecting every node in the given network with preserving the struc-
tural information, network embedding allows for the extraction of
latent features of nodes. These features can be applied to many tasks
related to networks, such as link prediction, community detection
and node classification (Hamilton et al., 2017). Also, network
embedding techniques have been utilized for biomedical challenges
such as predicting drug–drug interactions (Zhang et al., 2018), pro-
tein–protein interactions (Wang et al., 2017), drug–target interac-
tions (Mohamed et al., 2019), drug–disease associations (Zhou
et al., 2020) and disease similarity (Li et al., 2021). So, through
many previous studies, it has been shown that network embedding
techniques can successfully extract node features from various bio-
logical networks.

In this article, we suggest a computational approach, Large-scale
ADR-related Proteins Identification with Network Embedding
(LAPINE) that adopts the network embedding technique to develop
a novel method to achieve large-scale prediction of ADR-related
proteins (Fig. 1). One of the major challenges in predicting ADR-
related proteins is that the number of known protein-ADR relations
(2055 pairs in our benchmark dataset), available to train a predict-
ive model, is very small compared to all possible relations to be pre-
dicted. The number of known ADR-related drugs, on the other
hand, is relatively larger [139 756 pairs in the SIDER Database
(Kuhn et al., 2016)] and hence the accuracy of the model predicting
drug–ADR relations is expected to be higher. Since each drug

functions through its target proteins, we can thus try to transfer the
relatively richer information from drug–ADR relations to protein-
ADR relations, in order to overcome the limitations of the previous
methods. However, it would not make sense to simply use embed-
ding for proteins as the input for the drug–ADR models. We, there-
fore, introduced a novel concept called single-target compounds
(STCs). An STC is a fictitious compound that has only one specific
target protein, and likewise, each target protein has a corresponding
STC. Then, we can assume that the biological effects of a given STC
are entirely derived by perturbation started from its respective target
protein. Therefore, if we can predict the likelihood that an STC
causes ADRs, we can interpret it as the significance of the relation
between the target protein of the STC and ADRs.

To this end, we constructed the integrated network containing
drug–target interactions, protein–protein interactions and STC-
protein interactions. Through the network embedding, we obtained
low-dimensional representations of nodes for drugs and STCs in the
integrated network. Then we trained logistic regression classifiers to
predict the ADRs of the drugs by using low-dimensional representa-
tions of drugs as an input feature vector. Finally, the trained classi-
fier was used to calculate the ADR probability of STCs, which can
be interpreted as the score of the relation between ADR and a target
protein of an STC. With LAPINE, we achieved ADR-related protein
prediction on a larger scale than with previous approaches
(Supplementary Table S5). Also, we illustrated that previously
reported ADR–protein relations resulted in high scores and that
drugs that bind to high-scoring ADR-related proteins exhibited
ADRs more frequently compared to a previous study. Furthermore,
additional literature investigation confirmed the reliability of the
predicted ADR–protein relations.

2 Materials and methods

2.1 Collection of known ADR–protein relations as

benchmark datasets
We collected a benchmark dataset of ADR–protein relations from
three different previous studies. Kuhn et al. (2013) extracted over
200 ADR-target protein relations from PubMed’s abstract through
manual curation, and Smit et al. (2021) collected and organized
relations from three other papers about the drug-safety target.
ADReCS-Target (Huang et al., 2018) is a public database that pro-
vides information about ADRs caused by interaction between drugs
and proteins, manually curated from the MEDLINE database. ADR
terms are mapped to Preferred Terms (PTs) suggested by Medical
Dictionary for Regulatory Activities Terminology (MedDRA)
(Brown et al., 2012), and proteins are mapped to Ensembl protein
ID. Finally, we collected 218 ADR–protein relations from (Kuhn
et al., 2013), 964 from (Smit et al., 2021) and 905 from the
ADReCS-Target.

2.2 Collection of protein–drug, protein–protein

interactions and drug–ADR relations
We obtained protein–protein interaction data from STRING
(Szklarczyk et al., 2021), a database with an extensive collection of

Fig. 1. Overall process of LAPINE to predict ADR-related proteins
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known and predicted physical or functional associations between
proteins. Also, we obtained drug–protein interaction data from
STITCH (Szklarczyk et al., 2016), which integrated information

about interactions between chemicals and proteins extracted from
metabolic pathways, experimental results and other databases. For

both STRING and STITCH databases, we only considered interac-
tions that had been experimentally verified or extracted from other
public databases. Also, as both databases assigned confidence scores

(0–1000) to each interaction according to the evidence, we set a
threshold value of 700 for the confidence score, as recommended by

the authors as a ‘high confidence score’. This value was also demon-
strated by achieving the highest Pearson correlation coefficient be-
tween ADR similarity and target similarity of drug pairs

(Supplementary Fig. S1). As a result, we extracted 702 834 protein–
protein interactions between 13 633 proteins and 32 964 drug–pro-

tein interactions between 1136 drugs and 6952 proteins.
We obtained drug–ADR relations from the SIDER database

(Kuhn et al., 2016) which contains information on marketed drugs

and their ADRs extracted from public documents and medical pre-
scribes. The ADR terms in SIDER are mapped to MedDRA

Preferred Terms. Drugs that have no target proteins in the STITCH
database were excluded from our analysis. Hence, ADRs not related
to the rest of the drugs were also excluded from the analysis. To

summarize, the LAPINE utilized 1103 drugs and 4085 ADRs.

2.3 Construction of the integrated network of drug,

protein and STC
The integrated network was constructed by combining protein–pro-
tein interactions and drug–protein interactions. In particular, drug–
protein interactions were parsed to include only those between drugs

with at least one ADR and proteins that are present in the PPI net-
work. The directions for the edges were determined to take into ac-

count the characteristics of each biological interaction. Hence,
drug–protein interactions were converted into directed edges from
drug to protein, while protein–protein interactions were converted

into bidirectional edges in the integrated network. For all proteins in
the network, one STC targeting the corresponding protein was

added to the network. Interactions between STCs and proteins were
also converted into directed edges from STC to protein. The final
integrated network consists of 1103 drugs, 13 633 proteins and 13

633 STCs with 1 444 902 directed edges between them.

2.4 Network embedding of the integrated network
We used node2vec in embedding the integrated network to obtain

low-dimensional representations of drugs and STCs in the same
embedding space. The node2vec (Grover and Leskovec, 2016) is a
flexible network embedding model which learns representations of

nodes based on sequences of nodes sampled through random walks.
Given the assumption that nearby nodes in the random walk se-
quence are neighbors, node2vec learns a low-dimensional vector

representation of each node that maximizes the likelihood of pre-
serving the node’s neighbors in the network. In the following ADR

prediction process, we confirmed the suitability of node2vec for our
study compared to four other embedding methods (Cao et al., 2015;
Kipf and Welling, 2016; Ou et al., 2016; Tang et al., 2015) which

showed high performance in the node classification task reviewed
by Yue et al. (2020) (Supplementary Fig. S2).

The integrated network used for embedding was considered
directed and weightless according to the previously described prop-

erties. The hyperparameters p and q that determine the characteris-
tics of the biased random walk in node2vec were optimized with
values that maximize the performance of the subsequent ADRs pre-

diction model (Supplementary Table S1). Other hyperparameters of
node2vec were set to values as recommended by a previous study

(Yue et al., 2020).

2.5 Learning the ADR prediction model and prioritizing

ADR-related proteins
Predicting multiple ADRs for a drug is generally considered a multi-
label classification task. For our research, we transformed this into
a set of independent binary classification tasks, each with logistic
regression classifiers based on the binary relevance method
(Tsoumakas et al., 2006). Logistic regression classifiers were
trained for each ADR with the low-dimensional representation of
drugs from network embedding as the input. So we trained the
identical number of classifiers for all 4085 ADRs. The drug–ADR
relations extracted from SIDER were used as a training set for
learning. After the training was completed, relations between each
STC and ADRs were predicted by applying the model to the low-
dimensional representation of the STC. The predicted STC-ADR re-
lation score then can be interpreted as a relation score between the
target protein of the STC and the ADR. Hence, ranks of the scores
of all proteins for the ADR is used to prioritize the proteins related
to the ADR.

To compare embedding algorithms and optimize hyperpara-
meters for the classifier, we trained the ADR prediction model using
10-fold cross-validation. The SIDER dataset is split into 10 sets, in
each fold one set is used as test data and the other set is used as
training data. To enable 10-fold cross-validation, ADRs with less
than 10 drugs were excluded. We measured the area under the ROC
curve (AUROC) and the average precision (AP) for each ADR and
averaged them to evaluate the performance of the model. The AP,
which summarizes a precision-recall curve, was calculated as the
weighted mean of precisions achieved at each threshold (Pedregosa
et al., 2011). In both metrics, higher values indicate better
performance.

By comparing the distribution of performances, we selected
node2vec as the best embedding method and set the regularization
coefficient of the logistic regression to 0.1 (Supplementary Figs S2
and S3, Supplementary Table S1). All other parameters of logistic re-
gression were set to default as recommended by the Scikit-Learn
Python package (Pedregosa et al., 2011). After these processes, we
used all drug–ADR relations in the SIDER dataset to train the final
model using optimized settings.

2.6 Comparison of ADR–protein relation prediction

performance with other methods
We evaluated the prediction performance of LAPINE in compari-
son to those of previously suggested ADR–protein relation predic-
tion models on the carefully constructed test dataset. Since the
scope of each previous study is quite different, from the benchmark
protein-ADR datasets, the positive samples were selected from
ADRs that are common to LAPINE and previous methods. The
negative samples however are not available from the such dataset,
as we cannot state for certain that there is no relation between
given pairs of ADRs and proteins. Thus, we considered non-
positive samples among the relations between proteins and ADRs
included in the benchmark dataset as negative samples for training
models. Finally, we constructed a balanced test set by sampling ran-
domly from the negative samples to the same number of positive
samples. And the distribution of prediction performance for each
test set was reported by repeating negative sampling 1000 times.
Performance was calculated with AUROC and AP, as described in
the previous section.

2.7 Quantitative evaluation of predicted proteins using

drug–ADR relations and drug–target interactions
For each predicted protein, the significance of relations with each
ADR can be inferred by calculating how many drugs that target the
protein cause the ADR. In other words, for each ADR–protein pair,
we can construct a confusion matrix that organizes the drugs into
different categories, assuming the protein as a predictor of ADR and
the ADR as the target event (Supplementary Fig. S4). With this ma-
trix, we used two widely used indicators, positive predictive value
(PPV) and likelihood ratio (LR) to evaluate the reliability of the
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predicted ADR–protein relations (Grimes and Schulz, 2005; Kuhn
and Johnson, 2013).

PPV is the ratio of drugs showing ADR among drugs targeting
the protein [PPV ¼ TP/(TP þ FP)]. Therefore, it can be considered
that the ADR–protein relation with high PPV has high reliability
(Smit et al., 2021). However, the absolute value of PPV is severely
affected by the overall prevalence of ADR. Therefore, to evaluate all
ADRs with the same criteria, value-added PPV(VAPPV) (Coulthard,
2007), which is the value obtained by subtracting prevalence from
PPV, was used as an evaluation index for the ADR–protein relation.
LR is the calculation of how many times more likely an ADR-
related drug binds to a target protein compared to other drugs [LR
¼ TP�(FP þ TN)/FP�(TP þ FN)]. So, LR indicates how useful the
target protein is in predicting the ADR of the drug (Grimes and
Schulz, 2005). So, for quantitative evaluation of predictions from
LAPINE, we calculated the VAPPV and LR of the top 50 predictive
proteins according to their relation scores. But ADR–protein rela-
tions consisting of less than five drug-related proteins or less than
five drug-related ADRs were excluded for statistical significance
(Kuhn et al., 2013).

2.8 Literature investigation and gene set enrichment

analysis on the predicted proteins
In order to validate whether predicted proteins from LAPINE are in-
deed related to a given ADR, we searched for evidence by querying
the related keywords in PubMed. This literature investigation pro-
cess was done at two different depths. First, relations between an
ADR and each of the top 10 predictive proteins were searched to-
gether to find the previously published research that indicated their
relations. Each pair in which the relation can be attributed to direct
causation was separately specified. Then, the same process was
repeated at a different depth, with the top 10 KEGG pathways that
were enriched by the top 50 predictive proteins. The enrichment test
was performed via the Enrichr (Kuleshov et al., 2016), and the top
potential pathways were selected by P-value. The literature manual
curation was done once again to look for publications with any rela-
tions between a given ADR and the process indicated by the KEGG
pathways.

3 Results

3.1 Wide coverage of LAPINE verified by benchmark

datasets
We obtained benchmark datasets from three different previous stud-
ies to evaluate our predictions. Among the previously reported
ADR–protein relations, we calculated the percentage of relations in
which the protein was not the target of any drugs related to the
ADR (Table 1). Almost half of the proteins in benchmark datasets
are not known targets of ADR-related drugs. Previous ADR-related
protein identification methods that are heavily dependent on drug–
target interaction data cannot analyze relations involving those

proteins. However, as LAPINE can analyze all proteins in a protein–
protein interaction network, it covers over 90% of all known
ADR–protein relations in benchmark datasets. In conclusion, such
statistics demonstrate the need for a new methodology that does not
depend on drug–target interaction data for a complete understand-
ing of proteins that trigger ADRs.

3.2 Drugs with similar ADRs have similar

low-dimensional representations through a

network embedding
The integrated network, constructed by combining the protein–pro-
tein interactions, drug–protein interactions and STCs was
embedded using the node2vec algorithm. As a result, we obtain
low-dimensional representations of drugs and STCs in the inte-
grated network. To evaluate how well the low-dimensional repre-
sentations contain the pharmacological properties of drugs, we
investigated the correlation between the similarity of the drug rep-
resentations and the ADRs of drugs. Jaccard index was calculated
for ADR similarity, and cosine similarity was calculated for drug
representation similarity. The result shows that there is a correl-
ation between the similarity of the ADRs of the two drugs and that
of the drug vector representations (Fig. 2), implying that these low-
dimensional vectors can be used to represent the pharmacological
properties.

Meanwhile, among drug pairs with low ADR similarity, the high
similarity of drug representations was observed in some cases.
Considering the nature of the currently available ADR information
(i.e. positive-unlabeled data), such cases suggest that the drug repre-
sentations may imply unknown associations with ADRs. The
pharmacological similarity of such drug pairs also supports this in-
terpretation (Supplementary Table S2). In conclusion, the low-
dimensional representation of drugs acquired by utilizing STCs in
the integrated network can be utilized as a feature vector of drugs
used for ADR prediction.

3.3 ADR prediction model with low-dimensional

representations of drugs show reliable performance
By using the representation of the drug as an input feature vector, lo-
gistic regression classifiers were trained to predict the association be-
tween 1103 drugs and 4085 ADRs. To confirm the successful
training of the ADR classification model, we evaluated the predict-
ive performance for each ADR based on the 10-fold cross-
validation. We used AUROC and AP as evaluation metrics, and
each metric was calculated for each ADR and then averaged. Our
ADR classification model achieves a macro-average AUROC of
0.70 and a macro-average AP of 0.24, exceeding the baseline per-
formance (Fig. 3). In particular, the model showed more stable pre-
diction performance when sufficient data on ADR-related drugs
were provided. These results confirm that the proposed ADR predic-
tion model was properly trained.

Table 1. Statistics of benchmark datasets of ADR–protein relations

Source Drug target based methods (%)a LAPINE (%)b

Kuhn’s dataset No. of relations 218 126 (57) 150 (68)

Kuhn et al. (2013) No. of ADRs 144 92 (63) 111 (77)

No. of proteins 95 59 (62) 68 (71)

Smit’s dataset No. of relations 964 509 (52) 883 (91)

Smit et al. (2021) No. of ADRs 270 163 (60) 236 (87)

No. of proteins 90 65 (72) 90 (100)

ADReCS-Target No. of relations 905 275 (30) 679 (75)

Huang et al. (2018) No. of ADRs 306 132 (43) 245 (80)

No. of proteins 416 139 (33) 342 (82)

aNumber of relations (ADRs, proteins) that can be analyzed in the prediction method based on drug target information.
bNumber of relations (ADRs, proteins) that can be analyzed in the LAPINE.
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3.4 Previously reported ADR-related proteins are highly

ranked in LAPINE
Using the trained ADR prediction model and the low-dimensional
representation of STC, the relations between the target protein of
STC and ADRs were scored. To evaluate the reliability of the pre-
dicted ADR–protein relation scores from LAPINE, we examined the
ranks for the previously reported ADR-related proteins in bench-
mark datasets. Protein ranks were calculated separately for each
ADR and then converted to a percentage for the number of all pro-
teins. The ADR-related proteins reported in 40% of Kuhn’s dataset,
30% of Smit’s dataset and 18% of the ADReCS-Target database
ranked in the top 5% of all proteins, and more than half of all
reported ADR-related proteins ranked in the top 20% (Fig. 4A–C).
Also, 24% of all reported ADR-related proteins ranked in the top
5% were not targeted by drugs, which cannot be predicted with the
methods dependent on drug–target interaction data.

In addition, we calculated the rank distribution of the scores of
all proteins in the benchmark dataset for all predictable ADRs in
LAPINE (Fig. 4D). The results indicated that the proteins in the

benchmark dataset do not always have high relation scores for all
ADRs. Hence, we can see that the high rank of reported ADR-
related proteins is not the result of biased benchmark datasets which
includes only a small number of proteins.

3.5 Comparison with other methods shows the

improved performance of LAPINE
In this section, we compared the performance of LAPINE with two
state-of-the-art methods (Galletti et al., 2022; Smit et al., 2021).
The first method identified statistically significant ADR–protein
relations based on ADR–drug–protein relations, while the second
one predicted novel ADR–protein relations with an ensemble classi-
fication model learned with known ADR–protein relations. Since
the scope of each previous study is quite different, we used different
test sets for each comparison (see Section 2 for details). As a result,
the test set for comparison with the method suggested by (Galletti
et al., 2022) contains 120 positive samples with 36 ADRs, and the
test set for comparison with the method suggested by (Smit et al.,
2021) contains 1071 positive samples with 238 ADRs. As the result,
there are two outcomes presented for each previous study, because
both studies reported two distinct prediction outcomes depending
on the dataset they used. From the results, we can see that LAPINE
outperformed the two previous methods (Fig. 5). LAPINE achieved
0.657 and 0.675 of average AUROC and average AP respectively in
one test set (Fig. 5A and C), and 0.706 and 0.749 for the other
(Fig. 5B and D), which are significantly better than those for both
previous methods (t-test, P<0.001 for both). These results show
that LAPINE overcame the important limitations of previous stud-
ies, and improved the performance in predicting the ADR–protein
relations.

3.6 Drugs targeting high-ranked proteins were more

likely to be associated with ADR
In order to quantitatively evaluate how reliable and useful the pre-
dicted ADR–protein relations are, we analyzed how often an ADR
occurs in drugs targeting specific proteins. Obviously, drugs

Fig. 3. ADR prediction performance. (A) Scatterplot showing the distribution of

AUROC values for each ADR according to the number of drugs involved in the

ADR. (B) Boxplot showing the distribution of AP values for ADRs

Fig. 4. Retrieve known ADR–protein relations from benchmark datasets. (A, B, C)

Histogram showing the rank distributions of ADR-related proteins predicted by

LAPINE. Separate figures were created depending on the source of the dataset. In

the histogram, one bar represents 5% of the total rank. (D) Histogram showing the

rank distributions of ADR-related proteins of all proteins in benchmark datasets for

all ADRs

Fig. 2. Correlation between ADR similarity and low-dimensional representation

similarity of drug pairs. Box plots showing distributions of low-dimensional repre-

sentation similarity of drug pairs for a specific range of ADR similarity

LAPINE(ADR-related protein prediction) 5



targeting ADR-related proteins should cause the related ADR more
frequently than other drugs do. Such tendency can be measured with
VAPPV and LR which are widely used metrics in clinical diagnosis
(Grimes and Schulz, 2005; Kuhn and Johnson, 2013). To confirm
the effectiveness of these metrics for evaluating the predicted ADR–
protein relations, we calculated them on benchmark datasets and
found that the average of VAPPV and LR were higher than the base-
line (0 for VAPPV; 1 for LR) (Fig. 6A and B).

After confirming that both metrics characterize known ADR–
protein relations, we calculated the representative VAPPV and LR
by averaging the top 50 predictive proteins for each ADR. Then, we
compared the prediction result with that from INPADR suggested
by (Chen et al., 2016b). To the best of our knowledge, INPADR
is the only previously proposed large-scale ADR-related protein
prediction method that can prioritize around 1000 proteins for
more than 4000 ADRs. For a fair comparison, ADRs used in
both LAPINE and INPADR were selectively considered for analysis.
As a result, we could see that the top 50 predictive proteins pre-
dicted by LAPINE showed significantly higher VAPPV and LR
(VAPPV¼0.12, LR¼8.20) compared to those predicted INPADR
(t-test, P<0.001) (Fig. 6C and D). Interestingly, the performance of
the prediction model for calculating ADR–protein relation scores
affected VAPPV and LR of the top 50 predictive proteins of the cor-
responding ADR. Specifically, VAPPV and LR of ADRs with high
predictive performance (AUROC>0.7) were significantly higher
than those of ADRs that did not (t-test, P<0.001) (Supplementary
Fig. S5). The verification with the known ADR–drug–protein rela-
tionships thus illustrates that the prediction results of LAPINE are
more reliable than those of the previous study.

3.7 Literature evidence supports high ranked proteins

and their enriched KEGG pathways
To further evaluate potential ADR-related proteins predicted by
LAPINE, including those that are not known targets, literature-
based investigations were performed on the ten highest-ranked pro-
teins. We selected two ADRs that seriously affect patient health for

the case study: bradycardia and epilepsy (Chen et al., 2016a;
Ovsyshcher and Barold, 2004). In the investigation, all of the top
ten predictive proteins for bradycardia and epilepsy were supported
by literature evidence. Among them, five predictive proteins for
bradycardia and six predictive proteins for epilepsy were confirmed
to have a direct causal relation with each ADR (Table 2,
Supplementary Table S3). For example, HTR3A, HTR3B and
HTR3E are genes that encode proteins for monoamine serotonin
(5-HT) receptor subunits. It has been reported that 5-HT receptor
stimulation could potentially cause bradycardia. As another ex-
ample, the overexpression of the Major Vault Protein (MVP) gene
was reported in the brain tissues of patients with refractory partial
epilepsy, subsequent focal epilepsies after ganglioglioma, and frontal
lobe epilepsy.

Similarly, the literature evidence for the top ten KEGG pathways
enriched by the top 50 predictive proteins revealed that 5 of the
pathways for bradycardia and 6 of the pathways for epilepsy had

Fig. 5. Evaluation of prediction performance of LAPINE by comparing with previ-

ously suggested ADR–protein relation prediction models. Box plots showing the dis-

tribution of AUROC and AP values across 1000 test sets constructed by random

sampling. (A, C) (Smit et al., 2021) reported two prediction results using two dis-

tinct databases: FAERs database(Smit(F)) and SIDER database(Smit(S)). The two

box plots shown in the figure represent the performance for each result. (B, D)

(Galletti et al., 2022) reported two prediction results using two distinct datasets:

The community dataset(Galletti(C)) and the controlled dataset(Galletti(T)). The

two box plots shown in the figure represent the performance for each result

Fig. 6. Evaluation of predicted ADR-related proteins using drug–target information.

(A, B) Bar plots showing the average of VAPPV and LR of ADR–protein relations in

each dataset. (C, D) Bar plots showing the average of VAPPV and LR of the top 50

predictive proteins for common ADRs. The error bar indicates the 95% confidence

interval of the average

Table 2. Top 10 predictive proteins for Bradycardia

Rank Symbol VAPPV LR Evidence

1 LYNX1 N/A N/A Kessler et al. (2017)

2 HTR3E N/A N/A

3 HTR3A 0.307 3.65 Jeggo et al. (2005)

5 HTR3B 0.433 6.39

4 ADRB1 0.274 3.19 Kelley et al., (2018) and

Gao et al. (2019)

6 CHRNE 0.385 5.11

8 CHRNA5 0.318 3.83 Riese et al. (2014) and

Picciotto and Kenny

(2013)

10 CHRNA3 0.218 2.55

7 REN 0.175 2.15 Poirier and Tobe (2014)

9 CYP2D6 0.273 3.18 Meloche et al. (2020) and

Sharp et al. (2009)

Note: Proteins in bold have direct causal evidence for ADR.
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evidence that their perturbation can lead directly to each ADR
(Table 3, Supplementary Table S4). For example, infusion of acetyl-
choline is known to cause sinus bradycardia, and variations in genes
such as GNB5 can cause bradycardia by affecting the cholinergic
responses. As another example, apoptosis-associated molecular
mechanisms control neuronal death, a common pathologic hallmark
of mesial temporal lobe epilepsy. Therefore, we could see that the
predicted proteins and their enriched KEGG pathways for bradycar-
dia and epilepsy are well-supported by previous knowledge or
studies.

3.8 ADR-related proteins are similar among ADRs with

the same MeSH term
In order to confirm the reliability and usefulness of predicted scores
of ADR-related proteins from another perspective, we investigated
the correlation between the physiological similarity and the similar-
ity of protein relation scores of ADR pairs. To obtain physiological
similarity, we investigated whether the two ADRs share a certain
MeSH term that describes a disease category. For 14 out of 17
MeSH terms for a disease category, ADR pairs that shared MeSH
terms showed significantly higher cosine similarity between protein
relation scores than ADR pairs that did not share MeSH terms
(t-test, P-value<0.05) (Fig. 7). The remaining three MeSH terms
were not higher than baseline, but not significantly different.
Therefore, this result not only showed the reliability of the predicted
ADR-related proteins but also showed the possibility that the pre-
dicted ADR–protein relation scores can be used as a feature vector
representing ADR in other ADR studies.

4 Discussion

ADRs are a serious problem in the biomedical sciences, and the
identification of target proteins that mediate ADRs may be the key
to understanding and preventing ADRs. In this study, we proposed
LAPINE to prioritize ADR-related proteins which introduced a net-
work embedding model to the integrated biological network which
includes STCs. LAPINE can significantly increase the number of
proteins of which relations with ADRs can be predicted. The limited
scope of analyzable proteins has been pointed out as one of the im-
portant limitations in target-based prediction methods. There was
another study that also attempt to extend the scope of considered
proteins. But, their approach relies on the small number of known
ADR–protein relation data, leading to low predictive reliability.
However, LAPINE overcome the limitation of the previous ap-
proach by utilizing the drug–ADR relations with the network
embedding model and obtained significantly higher reliability com-
pared to the previous approach.

Furthermore, two case studies showed that our predictions are
supported by literature evidence. In particular, case studies with the
results of KEGG pathway enrichment analysis showed the potential
of predicted ADR-related proteins to interpret the mechanism of

ADR. Moreover, the similarity of scores between the predicted pro-
teins of pathologically similar ADR pairs suggested the possibility
that predicted scores of ADR–protein relations can be utilized in
other studies as feature vectors of ADR.

In conclusion, our study provides important information for
understanding the mechanism of ADRs and suggests a novel strategy
for ADR-related studies based on network embedding. Considering
the incompleteness of the available ADR-related data, our achieve-
ments are quite meaningful. We expected the increase in quantity
and quality of data in the future could sufficiently contribute to
improving the accuracy of the prediction. Also, considering the re-
cent powerful performance of deep learning in artificial neural net-
works, the development of an end-to-end algorithm that integrates
the embedding process and predictive model in the field of ADR can
be expected.
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Table 3. Top 10 KEGG pathways enriched by the top 50 predictive proteins for Bradycardia

Rank Name P-value Evidence

1 Neuroactive ligand–receptor interaction 1.1e–05 Silvani et al. (2016) and Herring et al. (2008)

2 Serotonergic synapse 1.3e–05 Ramage (2001) and N’Diaye et al. (2001)

3 Cholinergic synapse 2.3e–05 Meyer and Sommers (1988)

4 Nicotine addiction 2.5e–05 Persico (1992)

5 cAMP signaling pathway 2.8e–05 Milanesi et al. (2006)

6 Taste transduction 3.4e–05 Horio (2000)

7 Gastric acid secretion 4.6e–05 Cuomo et al. (2006) and Rogers and Hermann (1985)

8 Calcium signaling pathway 8.1e–05 Graudins et al. (2016)

9 Renin secretion 9.1e–05 Adachi et al. (2015)

10 Adrenergic signaling in cardiomyocytes 1.2e–04 Lymperopoulos et al. (2013)

Note: KEGG pathways in bold have direct causal evidence for ADR.

Fig. 7. The similarity of related protein score vectors between ADR pairs sharing the

same MeSH terms. Bar plots show the cosine similarity of all ADR pairs which

share a certain MeSH term. The average cosine similarity of ADR pairs that do not

share any mesh terms is indicated by a vertical red line as a baseline. The MeSH

terms with a significant difference in the average similarity between the baseline are

plotted in the blue bar and others are plotted in the gray bar. The error bar indicates

the 95% confidence interval of the average
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rupinas/LAPINE) and Figshare (https://figshare.com/articles/soft
ware/LAPINE/21750245).
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