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Abstract 

The composition of the latent human immunodeficiency virus 1 (HIV-1) reservoir is shaped by when proviruses integrated into host 
genomes. These integration dates can be estimated by phylogenetic methods like root-to-tip (RTT) regression. However, RTT does not 
accommodate variation in the number of mutations over time, uncertainty in estimating the molecular clock, or the position of the 
root in the tree. To address these limitations, we implemented a Bayesian extension of RTT as an R package (bayroot), which enables 
the user to incorporate prior information about the time of infection and start of antiretroviral therapy. Taking an unrooted maximum 
likelihood tree as input, we use a Metropolis–Hastings algorithm to sample from the joint posterior distribution of three parameters 
(the rate of sequence evolution, i.e., molecular clock; the location of the root; and the time associated with the root). Next, we apply 
rejection sampling to this posterior sample of model parameters to simulate integration dates for HIV proviral sequences. To validate 
this method, we use the R package treeswithintrees (twt) to simulate time-scaled trees relating samples of actively and latently infected 
T cells from a single host. We find that bayroot yields significantly more accurate estimates of integration dates than conventional RTT 
under a range of model settings.

Key words: HIV-1; latent viral reservoir; molecular clock; root-to-tip regression; Bayesian inference.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Root-to-tip (RTT) regression is a simple method to locate the ear-
liest point in time in a phylogenetic tree (i.e., rooting the tree; 
Huelsenbeck, Bollback, and Levine 2002), to measure the rate of 
evolution (Drummond et al. 2003), or to reconstruct the divergence 
times of common ancestors. This method assumes the existence 
of a strict molecular clock, i.e., that the rate of molecular evolution 
is roughly constant (Bromham and Penny 2003). Accordingly, the 
number of nucleotide substitutions accumulating in a sequence 
should increase linearly over time. Hence, this method is a lin-
ear regression of the evolutionary divergence of sequences from 
their common ancestor against the times when those sequences 
were observed. The primary input of RTT regression is an unrooted 
phylogenetic tree with branch lengths measured in units of evo-
lutionary time (i.e., the expected number of substitutions per site; 
Tajima and Nei 1984), which is the standard output of maximum 
likelihood methods for reconstructing phylogenies. The tips of the 
tree representing observed sequences are labelled with sampling 
times. Thus, RTT becomes an optimization over three parameters: 
the location of the root in the tree, the time associated with the 
root (x-intercept), and the molecular clock (slope of regression).

RTT has a broad range of applications. Since many viruses have 
a very rapid rate of evolution, RTT can be applied to sequences 

collected over a number of months or years. For instance, RTT has 

recently been used to estimate the origin date and clock rate of 

severe acute respiratory syndrome coronavirus 2 within the first 
few months of the pandemic (Duchene et al. 2020). We are par-

ticularly interested in the use of RTT to estimate the integration 
dates of HIV-1 proviruses within hosts (Jones et al. 2018). HIV-1 

converts its RNA genome into double-stranded DNA that becomes 

integrated into the host genome as part of the virus replication 
cycle. In some cases, this integrated provirus becomes reversibly 

dormant in a transcriptionally inactive host cell (Siliciano and Sili-
ciano 2004). This long-lived reservoir of latently infected cells is 

the primary obstacle to an effective cure for HIV-1. Consequently, 
characterizing the composition and dynamics of the latent reser-

voir has significant implications for HIV-1 cure research (e.g., 
Gondim et al. 2021).

For instance, we can estimate the molecular clock (the slope 
of the regression) from longitudinal samples of plasma HIV-1 RNA 
sequences before the start of antiretroviral therapy (ART). If we 
reconstruct a tree relating both these RNA sequences and provi-
ral sequences from the latent reservoir, we can then use our clock 
estimate to extrapolate integration dates for the latter (Jones et al. 
2018). This relies on the assumption that the integrated HIV-1 
genome ceases to accumulate mutations upon integrating into the
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host genome. Since we are reconstructing a tree relating individual 
HIV-1 sequences from a single host, the resulting tree is techni-
cally a ‘genealogy’ instead of a phylogeny, and we are counting 
mutations in an individual lineage instead of the accumulation of 
substitutions in a population. Consequently, we will avoid using 
the terms ‘phylogeny’ and ‘substitution’ from this point onward.

Due to its simplicity, RTT has a number of significant limita-
tions. It implicitly assumes that the input tree is known without 
error. In practice, each proviral sequence is mapped to the regres-
sion line for a given tree to yield one and only one estimate of its 
integration date. Although one could generate interval estimates 
for integration dates, this is not trivial because we need to con-
sider the joint confidence for the regression slope and intercept 
and to invert the model to predict dates. Furthermore, varia-
tion in the number of mutations after a given amount of time is 
expected, even under a strict molecular clock (Langley and Fitch 
1974). In other words, a proviral sequence may by chance carry 
more mutations than expected given its actual date of integration. 
This random outcome can cause RTT to project a sequence’s inte-
gration date estimate into the future, past its time of sampling or 
even past the start of ART, when the infection of new cells should 
be nearly completely suppressed.

Here we describe a Bayesian extension of the RTT method to 
estimate HIV-1 integration dates. Adopting a Bayesian approach 
provides a means of quantifying our uncertainty in estimating 
integration dates, as well as incorporating prior information about 
the time of infection and the start of ART. We detail our implemen-
tation of this method as an R package called bayroot and use a 
simulation model of within-host population dynamics to validate 
bayroot in comparison to conventional RTT methods.

2. Methods
2.1 Regression model
We start with an unrooted tree T relating n observed sequences. 
A strict molecular clock assumes that mutations accumulate at 
a constant rate 𝜇 over time, such that the number of mutations 
per unit time follows a Poisson distribution. Let Yi be the number 
of mutations in the ith observed sequence, which is determined 
by the location of the root in T. Since Yi is an integer-valued out-
come, we must rescale the input tree T by multiplying its branch 
lengths by the sequence length, such that lengths are in units 
of the expected number of mutations per genome. Note that 
because these measures of evolutionary time are derived from a 
continuous-time Markov model of sequence evolution, multiple 
hits and reversions are accounted for. Let t0 be the origin time 
associated with the root. Let Δ𝑡𝑖 be the time that has elapsed 
between the ith sample and the root. The log-likelihood for a set 
of RNA sequences {𝑌𝑖,Δ𝑡𝑖} is:

where Γ(𝑥) is the gamma function. Equation (1) is sometimes 
referred to as the Langley–Fitch model (Langley and Fitch, 1974).

Following prior work (Huelsenbeck, Bollback, and Levine 2002; 
Didelot et al. 2018), we assume a uniform prior distribution for 
possible locations of the root over the entire length of the tree. We 
also assume a uniform prior distribution for t0, as standard prac-
tice in applications of Bayesian inference to HIV-1 infections (e.g., 
Sweeting et al. 2010; Stirrup and Dunn 2018). If a seroconversion 
window, i.e., the time interval between the last HIV seronegative 
visit and the first seropositive visit, is available for the host individ-
ual, these visit dates can be used to set lower and upper bounds 

for the uniform prior on t0. If this information is not available, 
then these bounds may be based on other data such as viral load 
and CD4 cell count measurements (Pantazis et al. 2019). Other-
wise, one may set the upper bound to the first sample collection 
date, and the lower bound may be derived from regional esti-
mates of the time to HIV-1 diagnosis (e.g., Van Sighem et al. 2015). 
Finally, we assume a lognormal prior distribution on the clock 
rate 𝜇, which can be informed by previous measurements of HIV-1 
mutation rates within hosts e.g., Alizon and Fraser (2013).

With these prior distributions and the model likelihood, we 
implemented a Metropolis–Hastings sampling algorithm in R. A 
proposal function shifts the root along a branch by some distance 
𝑑 ∼ Unif(0,𝛿𝑟), selecting a branch at random if it encounters an 
internal node (i.e., split) as it traverses the length of the tree. If, 
however, a terminal node is encountered before the root has been 
shifted by distance d, then the remaining distance is travelled 
by reflecting back from this terminus. This results in a symmet-
ric proposal distribution. We also used a uniform proposal 𝜇′ ∼
Unif(𝜇 − 𝛿𝑐,𝜇 + 𝛿𝑐) for the clock rate and a truncated normal pro-
posal 𝑡′

0 ∼ 𝑁(𝑡0,𝜎) for the origin time. The sampling algorithm 
returns an S3 object storing a data frame of sampled parame-
ter values and a character vector of sampled trees serialized into 
Newick strings.

2.2 Sampling integration dates
Given a posterior sample of parameters Y, 𝜇, and t0, we need to 
propagate this information to the distribution of integration times 
associated with proviral DNA sequences sampled post-ART initia-
tion. Using Bayes rule, the probability of integration time tj for the 
𝑗th DNA sequence given divergence Yj is:

where we index by j instead of i to emphasize a shift from HIV-1 
RNA to DNA sequences. We assume a uniform prior for inte-
gration times, 𝑃(𝑡𝑗) = (𝑇 − 𝑡0)−1 for 𝑡0 ≤ 𝑡𝑗 ≤ 𝑇 and 𝑃(𝑡𝑗) = 0 oth-
erwise, where t0 is the origin date and T is the time of ART 
initiation. Substituting Equation (1) as 𝑃(𝑌𝑗 | 𝑡𝑗) into the denomi-

nator 𝑃(𝑌𝑗) = ∫𝑇
𝑡0

𝑃(𝑌𝑗 | 𝑡𝑗)𝑃 (𝑡𝑗)𝑑𝑡 and setting 𝑠 = 𝑡 − 𝑡0, we solve the 

definite integral:

where 𝛾(𝑎,𝑥) is the lower incomplete gamma function,
∫𝑥
0

𝑡𝑎−1 exp(−𝑡)𝑑𝑡. Finally, substituting Equations (1) and (3) into (2), 
we can write: 

where we use a shorthand 𝑀 = 𝜇(𝑇 − 𝑡0) to simplify the equation. 
To generate a sample of integration dates from this distribution, 
we use a simple rejection sampling method. For a given posterior 
sample of Yj, 𝜇, and t0, we use Brent’s algorithm to find the maxi-
mum of Equation (4), initialized at the midpoint 𝑡 = 𝑡0 + (𝑇 − 𝑡0)/2. 
This maximum was used as an upper bound for rejection sampling 
for times drawn from the prior distribution, 𝑡 ∼ Unif(𝑡0,𝑇 ).

The Bayesian regression and integration date sampling meth-
ods described above were implemented in R as a package called 
bayroot. All source code is publicly available under the MIT license 
at https://github.com/PoonLab/bayroot.

https://github.com/PoonLab/bayroot
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Figure 1. A schematic diagram of the compartmental model used to 
simulate cell population dynamics. Each box represents a well-mixed 
population of cells sharing the same rate parameters. We assume that 
only actively infected cells release virus particles that go on to infect 
other susceptible cells.

2.3 Simulating data
To validate the above method, we used the R package twt
(‘treeswithintrees’, https://github.com/PoonLab/twt) to simulate 
cell population dynamics forward in time and then to simulate 
trees by sampling lineages backwards in time to their common 
ancestors. This package uses exact stochastic simulation of dis-
crete events (Gillespie, 1977). In brief, it calculates the total rate 
of all events (Λ), draws an exponentially distributed waiting time 
to the first event 𝜏 ∼ Λexp(−Λ), and then draws a uniform ran-
dom number to determine which event occurs. We implemented 
a compartmental model of cell population dynamics (Fig. 1) that 
can be represented by the following set of differential equations: 

This model is a simplified version of the system described 
by Rong and Perelson (2009). Most notably, our version does not 
model changes in the viral load. T represents a finite population 
of naive CD4+ T cells from which the populations of active (A) 
and resting (latent, L) cells are replenished at rates 𝑘𝜌 and (1 − 𝑘)𝜌, 
respectively, for 0 ≤ 𝑘 ≤ 1. The S and I subscripts denote susceptible 
and infected subpopulations of active and latent cells. A branching 
event (𝜆xy) requires a source cell to induce a target cell to undergo 
a change of state (switch compartments from x to y). For example, 
𝜆AA represents the infection rate of a susceptible active T cell by a 
virus released from an actively infected cell. We assume that virus 
replication is completely blocked by the initiation of ART at time 𝑡∗

(Kearney et al. 2014; Brodin et al. 2016), such that 𝜆𝐴•(𝑡 ≥ 𝑡∗) = 0. A 
transition event occurs when a cell spontaneously migrates from 
compartments x to y at rate mxy. For example, mLA represents the 

reactivation rate of a latent cell. Finally, we assume constant cell 
death rates 𝜇x for each compartment x.

The simulation is initialized at time zero with user-specified 
population sizes of susceptible cells in each compartment, and a 
single actively infected cell, 𝐴𝐼(0) = 1. We simulated the integer-
valued population size trajectories {𝑇 ,𝐴𝑆,𝐴𝐼,𝐿𝑆,𝐿𝐼}(𝑡) forward in 
time until a stopping time of t = 20 simulation time units. We 
generated 50 replicate sets of trajectories under two different sce-
narios by exact stochastic simulation. The rate parameters were 
set to the following values: r = 0.02, k = 0.5, 𝜆𝐴𝐴(𝑡 < 𝑡∗) = 0.002, 
𝜆𝐴𝐿(𝑡 < 𝑡∗) = 10−4, 𝑚𝐴𝐿 = 𝑚𝐿𝐴 = 0.001, 𝜇𝐴𝑆

= 0.005, 𝜇𝐴𝐼
= 0.1, and 

𝜇𝐿 = 0.001. ART was initiated at 𝑡∗ = 10 time units post-infection 
in Scenario 1 and at 𝑡∗ = 15 in Scenario 2. For each iteration of 
the simulation, we calculated the rates for every type of event, 
adjusted by the respective compartment size at the current time 
t. For example, the rate of transmissions from AI to AS was set to 
𝜆𝐴𝐴(𝑡)𝐴𝐼(𝑡)𝐴𝑆(𝑡). We drew an exponential waiting time given the 
total rate of all event types: 

and then determined which event type occurred with probabil-
ity 𝜆𝑥𝑦(𝑡)𝑁𝑥(𝑡)𝑁𝑦(𝑡)/Λ(𝑡) or 𝑚𝑥𝑦(𝑡)𝑁𝑥(𝑡)/Λ(𝑡). Next, we incremented 
or decremented the respective population sizes for compartments 
affected by the event type. The time, type, and compartments of 
this event is recorded in a log that is later used to simulate trees. 
An example set of population size trajectories simulated using this 
algorithm under Scenario 1 is illustrated in Fig. 2.

To generate a tree relating the sampled lineages in twt, we 
applied another exact stochastic simulation algorithm in reverse 
time. For the 50 replicate sets of trajectories generated under Sce-
nario 1, we sampled 10 HIV-1 RNA lineages at times t = 3, 6, and 
9 post-infection. For trajectories generated under Scenario 2, we 
sampled 10 HIV-1 RNA lineages at t = 11, 13, and 15 post-infection. 
In both scenarios, we sampled 10 latently infected cells at t = 20 
post-infection, for a total of 40 sampled lineages per replicate tree. 
These lineage sampling times defined the initial conditions for 
the reverse-time simulation of trees. Next, the algorithm samples 
events from the log generated in the forward-time simulation to 
build up a tree relating the sampled lineages. The stopping condi-
tion of the tree sampling algorithm is that the sampled lineages 
converge to a single common ancestor, which becomes the root.

We modified twt to output a Newick serialization of this ‘trans-
mission tree’ among cells, labelling tips with sampling times. This 
tree included internal nodes with only one descendant branch, 
representing lineage state transitions, or transmissions to/from 
an unsampled lineage. Internal nodes were labelled with strings 
encoding the event type, node states (compartments), and unique 
identifiers for the individual cells involved. These annotations 
enabled us to ‘colour’ the branches of the tree by lineage state. 
The true integration dates for sampled latently infected cells were 
recorded to a separate file. An example of a tree generated by this 
process is shown in Fig. 2.

To simulate molecular evolution, we collapsed all branches 
corresponding to latently infected cells and used the resulting 
tree as input for INDELible (version 1.03; Fletcher and Yang 
2009). We assigned an HIV-1 env sequence at the root (Gen-
Bank accession number AY772699). This sequence is one of 
the HIV-1 subtype C references curated by the Los Alamos 
National Laboratory HIV Sequence Database (http://www.hiv.lanl.
gov). We configured INDELible to use the Tamura–Nei (TrN) model 
of nucleotide evolution with transition rates 𝜅1 = 4 and 𝜅2 =
8 and stationary base frequencies 𝑓𝐴 = 0.4 and 𝑓𝐶 = 𝑓𝐺 = 𝑓𝑇 =

https://github.com/PoonLab/twt
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Figure 2. Examples of twt simulation outputs for a model of cell 
dynamics in the latent reservoir. (top) Population dynamics simulated 
forward in time. Each line represents the population size of a different 
compartment. S = susceptible, I = infected. The dashed vertical line 
indicates the time of ART initiation. This plot was produced by calling 
the generic plot method on the S3 object from the twt function 
sim.outer.tree. (bottom) A tree simulated in reverse-time, relating 10 cells 
sampled from the latently infected compartment at 𝜏 = 0 and 30 from 
the actively infected compartment at 𝜏 = 11,14,17 (Scenario 1), where 
𝜏 = 20 − 𝑡. Triangles represent transmission events, open circles represent 
transitions, and closed circles represent sampling times. Branches 
representing cell lineages in a latent state (Latentcomp_N) are collapsed 
prior to simulating virus evolution. This tree visualization was generated 
from the same S3 object using the R package ggfree (https://github.com/
ArtPoon/ggfree).

0.2. In addition, we rescaled the tree such that the expected 
number of mutations per nucleotide site over its entire length 
was 1. Finally, we used FastTree (version 2.1.11, compiled 
for double precision; Price, Dehal and Arkin 2010) to recon-
struct unrooted maximum likelihood trees from these simulated
alignments.

2.4 Model validation
We ran our Bayesian sampling method on each of the 100 sim-
ulated trees for 2×104 steps, discarding a burn-in of 2,000 steps 
and thinning the remaining chain down to 1,000 steps. We set 
the lognormal prior distribution on clock rates to 𝜇 = −5 and 

𝜎 = 2, and the uniform prior distribution on root dates to a 
minimum of one simulation time unit before the true origin 
and a maximum of the first HIV RNA sampling time. In addi-
tion, we set the proposal parameters to 𝛿𝑟 = 0.01 for the root 
location, 𝜎 = 0.33 for the time of infection, and 𝛿𝑐 = 0.01 for 
the clock rate. In preliminary runs, we found that these set-
tings were sufficient for replicate chain samples to converge to 
the same posterior distribution. To sample integration dates for 
each DNA sequence, we further thinned the chain down to a 
total of 200 samples from the posterior distribution to reduce
auto-correlation.

To compare our results against conventional RTT regression, 
we censored the sampling times associated with tips that rep-
resented DNA sequences and then rooted the tree using the rtt
function in the R package ape (implementation by R. M. McCloskey; 
Paradis and Schliep 2019). We extracted the RTT distances from 
the resulting tree and fit a simple linear regression of these dis-
tances against sampling times. Finally, we used the inverse.predict
function from R package chemCal (Massart et al. 1997) to extract 
the predicted integration dates for the 200 samples from the 
posterior distribution.

To quantify the discordance between estimated ( ̂𝑡 ) and actual 
(t) integration dates, we calculated the root mean square 

error, RMSE = √∑𝑛
𝑖=1( ̂𝑡𝑖 − 𝑡𝑖)2/𝑛, where n is the number of DNA 

sequences. We also calculated the mean absolute percentage 
error, MAPE = 100%×∑𝑛

𝑖=1 (| ̂𝑡𝑖 − 𝑡𝑖|/𝑡𝑖)/𝑛, as an alternative mea-
sure of estimation error that is less sensitive to extreme values. 
We used a paired Wilcoxon rank-sum test to evaluate the signifi-
cance of differences between the RMSE (or MAPE) values obtained 
from bayroot and conventional RTT.

3. Results
To compare conventional RTT regression to our Bayesian approach 
(bayroot), we simulated the proliferation of HIV-1 among active and 
latent CD4+ T cells with an exact stochastic method. Our sim-
ulation workflow yielded a total of 100 trees reconstructed from 
HIV-1 RNA and integrated proviral DNA sequences. We assumed 
that HIV-1 RNA was sampled before the start of ART and that HIV-
1 proviral DNA was sampled from the latent reservoir post-ART 
initiation (Fig. 2). Fifty of the trees were simulated such that HIV-
1 RNA was sampled at three time points starting at 3 simulation 
time units post-infection, at intervals of 3 time units (Scenario 1). 
For the remaining 50 trees, HIV-1 RNA sampling was delayed to 11 
time units post-infection and taken at narrower intervals of 2 time 
units (Scenario 2).

Figure 3 compares the estimates of HIV-1 DNA integration 
dates produced by RTT and bayroot. Under Scenario 1, both meth-
ods tended to produce similar estimates because the sampling 
conditions were favourable for fitting the molecular clock (Fig. 3A). 
The median RMSE was 0.947 for RTT and 0.889 time units for bay-
root. On a case-by-case basis, bayroot produced significantly more 
accurate estimates than RTT (paired Wilcoxon test, 𝑃 = 3.55×10−4, 
Fig. 3B). The overall difference between estimates was numerically 
small. For instance, the median difference in RMSE between RTT 
and bayroot was 0.059 (interquartile range, IQR = 0.004 − 0.201) time 
units. In some cases, integration dates were mapped by RTT to 
the time period after ART initiation, leading to higher RMSE val-
ues (Fig. 3B). Since bayroot incorporates the prior information that 
HIV-1 integration should not occur during effective ART, its esti-
mates are constrained to times preceding ART initiation. We found 
no significant difference between methods (paired Wilcoxon test, 
P = 0.66; Fig. S1A) when error was measured by MAPE, which is less 

https://github.com/ArtPoon/ggfree
https://github.com/ArtPoon/ggfree
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Figure 3. Comparison of results from bayroot and conventional RTT regression. (A) A scatterplot of RTT distance (divergence) against sampling times 
post-infection, for a representative example generated under Scenario 1. A solid line represents the RTT regression fitted to the RNA sequence data 
(open circles), which we expect to intercept the horizontal axis at t = 0. A vertical dashed line marks the start of ART. Red points represent estimates of 
integration dates from the RTT model for DNA sequences sampled at time t = 20, as indicated by horizontal red, thin lines. Blue points and thick line 
segments represent the median and 95 per cent credible interval for integration date estimates from bayroot. Cross marks indicate the actual 
integration dates. (B) A slopegraph comparing the RMSE of integration date estimates from RTT and bayroot for all 50 simulations generated under 
Scenario 1. Line segments are coloured red if the RMSE for a given simulation was greater for bayroot, and blue otherwise. (C) and (D) A scatterplot and 
slopegraph for simulations generated under Scenario 2. Slopegraphs were generated using R package ggfree (https://github.com/ArtPoon/ggfree).

influenced by the largest errors than the RMSE. Furthermore, 89.8 
per cent of the actual integration dates fell within the 95 per cent 
credible intervals generated by bayroot.

For Scenario 2, both methods became less accurate with 
median RMSEs of 2.79 and 2.10 time units for RTT and bay-
root, respectively (Fig. 3D). Because the sampling times of the 
RNA sequences used to calibrate the molecular clock were closer 
together and more distant from the actual time of infection in this 
scenario (Fig. 3C), we are less certain about all three parameters 
of the regression, i.e., the location of the root in the tree, the time 
associated with the root (x-intercept), and the clock rate (slope). 
Under these conditions, bayroot benefits from having prior infor-
mation about the time of infection. For our simulations where t = 0 
is the actual time, we constrained the time of infection variable 

to the interval from −1 to 3 simulation time units. (In practice, 
one could use a uniform prior bounded by the last seronega-
tive and first seropositive dates for that individual.) In other 
words, prior information about the time of infection ‘anchors’ 
the RTT regression when there are insufficient data to accurately 
estimate the x-intercept (Fig. 3C). As a result, bayroot was signifi-
cantly more accurate than RTT under this second scenario (paired 
Wilcoxon test, 𝑃 = 3.82×10−7, Fig. 3D). The median difference in 
RMSE between RTT and bayroot was 0.405 (IQR 0.190 − 0.807) time 
units—about seven times greater than scenario 1. In addition, 
this difference between methods remained significant when error 
was measured as MAPE (paired Wilcoxon test, 3.4×10−7; Fig. S1B). 
Decomposition of the mean squared error into bias and variance 
components indicated that the difference in RMSE was driven 

https://github.com/ArtPoon/ggfree
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more by a reduction in bias in either scenario (Fig. S2). Finally, 
89.4 per cent of actual integration dates fell within the 95 per cent 
credible intervals from bayroot. There was no significant associa-
tion in this outcome between scenarios (Fisher’s exact test, odds 
ratio = 0.5, P = 0.34).

Running a chain sample for 2×104 steps in bayroot required a 
median of 47.3 (IQR 45.0 − 48.8) seconds in R version 4.2.0 for Linux 
on a single core of an AMD Ryzen ThreadRipper 1950X proces-
sor. If the user is not processing a large number of samples, as 
we have done here for replicate simulations, we suggest running 
chain samples for at least 106 steps with a thinning interval of 500 
steps.

4. Discussion
The reconstruction of HIV-1 integration dates is a challenging 
problem. Cells carrying replication-competent provirus in the 
latent reservoir comprise a small fraction of resting CD4+ T cells 
(approximately 0.01–10 per million cells; Prodger et al. 2020; 
Crooks et al. 2015). Sequences of plasma HIV-1 RNA or integrated 
DNA often cover only a portion of the virus genome (Laskey et al. 
2016), making it difficult to resolve their evolutionary relation-
ships. In addition, the development of phylogenetic and statis-
tical methods for analysing these sequence data (Ferreira et al. 
2021) has lagged behind ongoing improvements in molecular tech-
niques (Cho et al. 2022; Sun et al. 2022). Here we have described a 
Bayesian extension of a widely used regression method for esti-
mating HIV-1 integration dates from sequence variation in the 
latent reservoir (Jones et al. 2018; Brodin et al. 2016; Brooks et al. 
2020). Our method provides a means of incorporating additional 
data about the infection—e.g., the estimated date of infection, 
time of ART initiation, and previous measures of the rate of HIV-1 
evolution within hosts—as prior information. Furthermore, adopt-
ing a Bayesian approach enables us to quantify our uncertainty 
about parameter estimates by sampling from the posterior distri-
bution. We expect this will be important for studies where there 
is limited access to longitudinal plasma samples for retrospective 
sequencing, for instance.

Of course, our method also retains some significant limita-
tions of conventional approaches to RTT regression. First, we are 
assuming that the unrooted tree relating HIV-1 RNA and DNA 
sequences is known without error. It is possible to relax this 
assumption by adopting a hierarchical approach and replicat-
ing our regression analysis on a posterior sample of unrooted 
trees that may be generated by a Bayesian phylogenetic pro-
gram such as MrBayes (Ronquist and Huelsenbeck 2003) or BEAST 
(Drummond and Rambaut 2007). This is less efficient than sam-
pling from the joint posterior distribution of unrooted trees, muta-
tion model, and the RTT regression parameters. Additionally, we 
are assuming that the divergence of each sequence is an indepen-
dent outcome. This convenient approximation is clearly untrue 
because of identity by descent: sequences that share a more 
recent common ancestor will have a similar RTT distance because 
they have inherited the same set of mutations. It is possible to 
overcome this limitation by adapting the covariance matrix of the 
regression model to the phylogenetic structure of the data (Neher 
2018).

Not all studies use RTT regression to estimate HIV-1 integration 
dates. For example, one of the methods described by Abrahams 
et al. (2019) uses approximate maximum likelihood to reconstruct 
a host-specific tree relating HIV-1 RNA and DNA sequences and 
then locates the closest tip representing an RNA sequence for 
every tip representing a DNA sequence, which is assigned the 

sampling time of the RNA tip. Hence, the DNA sequences can 
only be associated with a finite number of integration dates. This 
approach benefits from extensive sampling of HIV-1 plasma RNA 
over the time period spanning the start of infection to ART initi-
ation. If the ancestral HIV-1 RNA sequence most closely related 
to an HIV-1 provirus is not represented in the tree, then the lat-
ter would be mapped to another branch that may be associated 
with a sampling time that does not accurately estimate the inte-
gration date. In contrast, RTT methods directly use the number 
of mutations carried by an individual DNA sequence to estimate 
its integration date. The other sequences are used to calibrate the 
linear model mapping this divergence to the timeline.

Data availability
The R package bayroot is publicly available under the MIT license 
at https://github.com/PoonLab/bayroot. We have also provided the 
simulated data and R scripts used to perform the method valida-
tion and generate figures in this repository. The R package twt is 
publicly available under the GNU Affero General Public License 
v3.0 (AGPL-3.0) at https://github.com/PoonLab/twt.

Supplementary data
Supplementary data are available at Virus Evolution online.
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