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The primary analysis in two-arm clinical trials usually involves inference on a
scalar treatment effect parameter; for example, depending on the outcome, the
difference of treatment-specific means, risk difference, risk ratio, or odds ratio.
Most clinical trials are monitored for the possibility of early stopping. Because
ordinarily the outcome on any given subject can be ascertained only after some
time lag, at the time of an interim analysis, among the subjects already enrolled,
the outcome is known for only a subset and is effectively censored for those
who have not been enrolled sufficiently long for it to be observed. Typically, the
interim analysis is based only on the data from subjects for whom the outcome
has been ascertained. A goal of an interim analysis is to stop the trial as soon
as the evidence is strong enough to do so, suggesting that the analysis ideally
should make the most efficient use of all available data, thus including informa-
tion on censoring as well as other baseline and time-dependent covariates in a
principled way. A general group sequential framework is proposed for clinical
trials with a time-lagged outcome. Treatment effect estimators that take account
of censoring and incorporate covariate information at an interim analysis are
derived using semiparametric theory and are demonstrated to lead to stronger
evidence for early stopping than standard approaches. The associated test statis-
tics are shown to have the independent increments structure, so that standard
software can be used to obtain stopping boundaries.
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1 INTRODUCTION

In many randomized clinical trials, the primary analysis involves a comparison of two treatments, typically an active
or experimental agent vs a control, which is formalized as inference on a scalar treatment effect parameter. When the
primary outcome is a continuous measure, this parameter is usually the difference of treatment-specific means. For a
binary outcome, the treatment effect parameter may be the risk difference, risk ratio, or odds ratio; and the odds ratio
under the assumption of a proportional odds model is often the treatment effect parameter of interest in trials involving
an ordinal categorical outcome. The primary analysis is ordinarily based on a test statistic constructed using an estimator
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for the parameter of interest, for example, the difference of sample means or maximum likelihood (ML) estimator for
the odds ratio in a proportional odds model. The overall sample size is established so that the power to detect a clinically
meaningful departure from the hypothesis of no treatment effect at a given level of significance using the test statistic at
the final analysis achieves some desired value, for example, 90%.

Most later-stage clinical trials are monitored for the possibility of early stopping for efficacy or futility by a data and
safety monitoring board (DSMB), with interim analyses planned at either fixed, predetermined analysis times or when
specified proportions of the total “statistical information” to be gained from the completed trial have accrued.1 Ordinarily,
at the time of an interim analysis, the test statistic to be used for the final analysis is computed based on the available data
and compared to a suitable stopping boundary constructed to preserve the overall operating characteristics of the trial.2,3

Because of staggered entry into the trial, the data available at the time of an interim analysis are from subjects who
have already enrolled. Moreover, the primary outcome Y is ordinarily not known immediately but is ascertained after
some lag time T, say. In some trials, the lag time T is the same for all participants, as in the case where Y is a continuous
outcome that will be measured at a prespecified follow-up time F , for example, F = 1 year, so that T = F for all subjects,
and the treatment parameter is the difference in treatment means of Y at 1 year. Here, at the time of an interim analysis,
Y will be available only for subjects enrolled for at least 1 year, so that the analysis can be based only on the data for these
subjects.

In other settings, the time lag T may be different for different participants and, moreover, T may be correlated with the
outcome Y . This issue arises in many clinical trials of COVID-19 therapeutics conducted by the Accelerating COVID-19
Therapeutic Interventions and Vaccines (ACTIV) public-private partnership. In an ongoing clinical trial coordinated
through the ACTIV-3b: Therapeutics for Severely Ill Inpatients with COVID-19 (TESICO) master protocol,4 patients hos-
pitalized with acute respiratory distress syndrome are randomized to receive an active agent or placebo and followed for
up to F = 90 days. The primary outcome Y is an ordinal categorical variable with six levels. The first five categories reflect
a subject’s status at 90 days following enrollment: (1) at home and off oxygen for at least 77 days (the most favorable cate-
gory); (2) at home and off oxygen for at least 49 but no more than 76 days; (3) at home and off oxygen for at least 1 but no
more than 48 days; (4) not hospitalized and either at home on oxygen or receiving care elsewhere; and (5) still hospital-
ized or in hospice care. Category 6 (the worst) corresponds to death within the 90 day follow-up period. While Categories
1-5 cannot be ascertained until a subject has been followed for the full 90 days, that a subject’s outcome is Category 6 is
known at the time of death. Thus, the time lag before ascertainment is T = F = 90 days for subjects with Y = 1, … , 5
and is equal to the (random) time of death T ≤ F = 90 for those with Y = 6. In TESICO, the treatment effect parameter
is the odds ratio for active agent relative to placebo under an assumed proportional odds model. Similarly, in a clinical
trial coordinated through the ACTIV-2: a study for outpatients with COVID-19 master protocol (Study A5401),5 subjects
within seven days of self-reported COVID-19 onset are randomized to receive an active agent or placebo and followed
for up to F = 28 days for the binary outcome Y , where Y = 1 if the subject dies or is or hospitalized within 28 days and
Y = 0 otherwise. For subjects who die or are hospitalized at time T prior to 28 days, Y = 1 is ascertained after a time
lag T ≤ F = 28, whereas that Y = 0 can be ascertained only after the full 28 days, and T = F = 28. Here, the treatment
parameter is the relative risk (risk ratio) of hospitalization/death for active agent vs placebo.

At the time of an interim analysis in TESICO and A5401, the available data include the outcomes for all enrolled
subjects who have been followed for at least 90 and 28 days, so for whom T = F = 90 or 28, respectively, along with the
outcomes for enrolled subjects who do not have 90 or 28 days of follow up but have already been observed to die (Y = 6)
in TESICO or to be hospitalized or die (Y = 1) in A5401 (T ≤ F = 90 or 28). Thus, information on Category 6 in TESICO
will accumulate more rapidly than that on the other categories; similarly, information on hospitalization/death in A5401
will accrue more quickly than information on subjects who remain alive and unhospitalized at day 28. Intuitively, basing
an interim analysis on all observed outcomes will naively overrepresent Y = 6 and Y = 1 and lead to potentially biased
inference on the treatment effect parameters.

To characterize this issue more precisely, if C is the time from a subject’s entry into the study to the time of an interim
analysis, then Y is known at the time of an interim analysis if C > T. Otherwise, the time lag T for ascertainment of Y is
censored at C, and Y is not observed. Basing the analysis on all subjects with C > T, the “complete cases” for whom Y is
observed, without taking appropriate account of the fact that Y is not available for those with C ≤ T leads to the bias noted
above. This bias arises because subjects with shorter lag times T are more likely to be represented among the complete
cases than those subjects with longer lag times, and because T and Y may be correlated, as in TESICO and A5401, the
distribution of Y among the complete cases thus will not reflect the true distribution of Y . These considerations suggest
that a valid interim analysis can be obtained by using only the data from enrolled subjects followed for the full, maximum
follow-up period F , that is, for whom C ≥ F . In studies like those above involving a continuous outcome or ordinal
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categorical outcome, as in TESICO, the standard interim analysis is based on the estimator to be used at the final analysis
using only the data on subjects with C ≥ F , as there is no apparent general approach to “adjusting” for the censoring.
In the case of a binary outcome as in A5401, the standard interim analysis does use the information on censoring; for
example, if the treatment effect is the risk ratio, the estimator is the ratio of the treatment-specific Kaplan-Meier estimators
for the probability of death or hospitalization at F = 28 days.

A goal of an interim analysis is to stop the trial as early as possible if there is sufficiently strong evidence to do so.
It is thus natural to consider whether or not it is possible to make more efficient use of the available data at the time of
an interim analysis to enhance precision and thus the strength of the evidence for stopping. One step toward increasing
efficiency of interim analyses would be a general approach to accounting for censoring for any outcome and treatment
effect parameter that incorporates data from all of the complete cases, not just those with C ≥ F . In addition, it may
be possible to incorporate partial information; for example, in TESICO, a subject who is at day 45 since study entry and
still in the hospital at the time of an analysis, so for whom C = 45 < F = 90, can end up only in Categories 3-6, so have
Y = 3, 4, 5, or 6, at 90 days. There may be baseline covariates as well as intermediate measures of the outcome or other
post-treatment variables that also could be exploited to increase precision at an interim analysis.

In this article, we propose a general group sequential framework for clinical trials with a possibly censored,
time-lagged outcome, which leads to practical strategies for interim monitoring. Treatment effect estimators are proposed
via application of semiparametric theory,6,7 which dictates how censoring can be taken into account and baseline and
time-dependent covariate information can be exploited in a principled way to increase precision and thus yield stronger
evidence for early stopping. Although ordinarily incorporation of post-randomization covariates in clinical trial analyses,
for example, in models for covariate adjustment, raises concerns over causal interpretations, the use of such informa-
tion in the proposed approach follows from semiparametric theory and serves only to increase efficiency. Estimation of
the risk ratio via treatment-specific Kaplan-Meier estimators as described above emerges as a simple special case, which
can be improved upon through incorporation of covariates. We show that the test statistics based on these estimators
have an independent increments structure,8 which allows standard software for constructing stopping boundaries2,3,9 to
be used. Two interim monitoring strategies are discussed: an information-based monitoring approach under which the
trial will continue, with possibly a larger sample size than originally planned, until the full, target statistical information
accrues; and a fixed-sample size approach appropriate in settings where the planned sample size cannot be increased due
to resource and other constraints. We focus on the common case of two treatments; extension to more than two treatments
is possible10 and could be adapted to group sequential methods for multi-arm trials.11,12

In Section 2, we introduce the basic statistical framework and assumptions, and we sketch the estimation approach
and state the independent increments property in Section 3. In Section 4, we describe practical implementation of the
resulting approach to interim monitoring. We demonstrate the performance of the methods in a series of simulation
studies in Section 5, and we present a case study exemplifying the use of the methods for a simulated trial based on
TESICO. Technical details and sketches of proofs of results are given in the Supplemental Material.

2 STATISTICAL FRAMEWORK

2.1 General model

As in Section 1, denote the outcome by Y . Let A denote the treatment indicator, where A = 0 (1) corresponds to control
(active/experimental treatment), and 𝜋 = pr(A = 1) is the probability of being assigned to active treatment; and let X be a
vector of baseline covariates. Treatment effects are often characterized in terms of a model for (features of) the distribution
of (Y ,A) or (Y ,A,X), which involves parameters (𝛼T

, 𝛽), where 𝛽 is the scalar treatment effect parameter of interest and
𝛼 is a vector of nuisance parameters, and the model is parameterized such that 𝛽 = 0 corresponds to the null hypothesis
of no treatment effect.

In the case of the first example in Section 1 of continuous Y , 𝛽 = E(Y |A = 1) − E(Y |A = 0); equivalently,

E(Y |A = a) = 𝛼 + 𝛽a, a = 0, 1. (1)

For an ordinal categorical outcome with c categories, as in TESICO with c = 6, the outcome can be represented as either
a scalar random variable Y taking values 1, … , c or a random vector Y = {I(Cat = 1), … , I(Cat = c − 1)}, where Cat
takes values 1, … , c. Using the first definition, the treatment effect can be defined through an assumed proportional odds
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model

logit{pr(Y ≤ j|A = a)} = 𝛼j + 𝛽a, j = 1, … , c − 1, 𝛼 = (𝛼1, … , 𝛼c−1)T , a = 0, 1, (2)

where logit(p) = log{p∕(1 − p)}, so that 𝛽 is the log odds ratio of interest. If the conditional (on X) treatment effect is of
interest, replace (2) by logit{pr(Y ≤ j|X = x,A = a)} = 𝛼j + 𝛽a + 𝜉Tx, where now 𝛼 = (𝛼1, … , 𝛼c−1, 𝜉

T)T . If Y is binary as
in A5401 and the relative risk (risk ratio) pr(Y = 1|A = 1)∕pr(Y = 1|A = 0) is the focus, taking

E(Y |A = a) = exp(𝛼 + 𝛽a), a = 0, 1, (3)

corresponds to log relative risk 𝛽.
In general, estimators for the parameter of interest 𝛽 in (1)-(3) and other models based on the data available at the final

analysis, at which time (Y ,A,X) are known for all n participants, are obtained by solving, jointly in 𝛼 and 𝛽, appropriate
estimating equations. Namely, with independent and identically distributed (iid) data (Yi,Ai,Xi), i = 1, … ,n, available,
and p equal to the dimension of (𝛼T

, 𝛽)T , 𝛼 and ̂
𝛽 solve in 𝛼 and 𝛽 equations of the form

n∑

i=1
(Yi,Ai,Xi; 𝛼, 𝛽) = 0, (4)

where (Y ,A,X; 𝛼, 𝛽) is a p-dimensional vector of functions such that E{(Y ,A,X; 𝛼0, 𝛽0)} = 0, and 𝛼0 and 𝛽0
are the true values of 𝛼 and 𝛽 under the assumption that the model is correctly specified. For example, under
models (1) and (3)

(a) (Y ,A,X; 𝛼, 𝛽) =

(
1
A

)

(Y − 𝛼 − 𝛽A) and (b) (Y ,A,X; 𝛼, 𝛽) =

(
1
A

)

{Y − exp(𝛼 + 𝛽A)}, (5)

respectively. Writing Y a =
∑n

i=1YiI(Ai = a)∕
∑n

i=1I(Ai = a), a = 0, 1, the treatment-specific sample means, the estimator
obtained from (5a) is ̂𝛽 = Y 1 − Y 0 and that from (5b) is ̂𝛽 = log(Y 1∕Y 0), which is the estimator for the relative risk used
in A5401. Under model (2), with expit(u) = eu∕(1 + eu),

(Y ,A,X; 𝛼, 𝛽) = (A)
⎛
⎜
⎜
⎜
⎝

I(Y ≤ 1) − expit(𝛼1 + 𝛽A)
⋮

I(Y ≤ c − 1) − expit(𝛼c−1 + 𝛽A)

⎞
⎟
⎟
⎟
⎠

, (6)

where (A) is a (c × c − 1) matrix of functions of A; the ML estimator13 takes (A) = DT(A; 𝛼, 𝛽)V−1(A; 𝛼, 𝛽), where
D(A; 𝛼, 𝛽) is the (c − 1 × c) gradient matrix of the vector {I(Y ≤ 1) − expit(𝛼1 + 𝛽A), … , I(Y ≤ c − 1) − expit(𝛼c−1 + 𝛽A)}T

in (6) with respect to 𝛼1, … , 𝛼c−1, 𝛽, and V(A; 𝛼, 𝛽) is its (c − 1 × c − 1) conditional covariance matrix
given A.

In general, given a particular model and estimating equations defined by the corresponding function(Y ,A,X; 𝛼, 𝛽),
let (𝛼, 𝛽) be the last row of the (p × p) matrix

−
[

E
{
𝜕(Y ,A,X; 𝛼, 𝛽)

𝜕𝛼
T
𝜕𝛽

}]−1

, (7)

where the matrix inside the expectation is the (p × p)matrix of partial derivatives of the p components of(Y ,A,X; 𝛼, 𝛽)
with respect to (𝛼T

, 𝛽)T . Then, with (𝛼0, 𝛽0) denoting this expression evaluated at 𝛼0, 𝛽0,

m(Y ,A,X; 𝛼0, 𝛽0) = (𝛼0, 𝛽0)(Y ,A,X; 𝛼0, 𝛽0), (8)

is referred to as the influence function of the corresponding estimator for 𝛽 and has mean zero. From the theory of
M-estimation14 and semiparametric theory,7 it can be shown the estimator ̂𝛽 obtained by solving in 𝛽 the estimating
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equation

n∑

i=1
m(Y ,A,X; 𝛼, 𝛽) = 0, (9)

where 𝛼 is any root-n consistent estimator for 𝛼, has influence function (8). Tsiatis et al10 show this explicitly in the case
of (6). Such estimators are consistent for the true value 𝛽0 and asymptotically normal, where the variance of the limiting
normal distribution of n1∕2(̂𝛽 − 𝛽0) is equal to var{m(Y ,A,X; 𝛼0, 𝛽0)} = E{m(Y ,A,X; 𝛼0, 𝛽0)2}, so that approximate (large
sample) SEs and test statistics are readily derived.

From semiparametric theory,7 there is a one-to-one correspondence between influence functions and estimators.
Thus, if the form of influence functions in a specific model involving a parameter 𝛽 can be derived, estimating equations
leading to estimators for 𝛽 can be developed. As we demonstrate in Section 3, influence functions corresponding to esti-
mators for 𝛽 based on the data available at an interim analysis can be derived from the influence function (8), and the
resulting estimators exploit baseline and time-dependent covariate information to gain precision.

2.2 Data and assumptions

To characterize the data that would be available at an interim analysis, we first describe more fully the data that would
be available at the final analysis if the trial were carried out to completion. Subjects enter the trial in a staggered fashion;
thus, if the trial starts at calendar time 0, denote by E the calendar time at which a subject enters the trial. As in Section 1,
let T denote the time lag in ascertaining the outcome Y ; thus, T is the time since entry at which Y is determined, measured
on the scale of subject time. We assume that Y can be determined with certainty by the maximum follow-up period F
for any subject, so that pr(T ≤ F) = 1. In addition to baseline covariates X , time-dependent covariate information may
be collected on each participant up to the time Y is ascertained. Denote by L(u) the vector of such information at time u
following entry into the study, and let L(u) = {L(s) ∶ 0 ≤ s ≤ u} be the history of the time-dependent covariate information
through time u. Thus, L(T) represents the covariate history for a subject for whom Y is ascertained after time lag T.

With these definitions, for a trial with planned total sample size n, the data available at the final analysis are iid

{Ei,Xi,Ai,Ti,Yi,Li(Ti)}, i = 1, … ,n; (10)

we refer to (10) as the full data. As in Section 2.1, estimation of 𝛽 at the final analysis is based only on the data on Y , A,
and possibly X (in the case of conditional inference), and E, T, and L(T) are not used, and we call (8) a full data influence
function.

Now consider the data that would be available at an interim analysis at calendar time t following the start of the trial
at calendar time 0. It proves convenient for the developments in Section 3 to represent these data in terms of the full data
(10) that would be available at the final analysis were the trial to be carried out to completion. At t, data will be observed
only for subjects for whom E ≤ t. For such subjects, define C(t) = t − E to be the censoring time, that is, the time from a
participant’s entry into the study to the time of the interim analysis. If the time lag T a subject would have in ascertaining
the outcome is such that T ≤ C(t), then Y would be available at t; otherwise, Y would not yet be observed. Accordingly,
define U(t) = min{T,C(t)} andΔ(t) = I{T ≤ C(t)}, so that Y is available at the time of the interim analysis only ifΔ(t) = 1.
With these definitions, the data available at an interim analysis at calendar time t can be represented as iid


(t)
i = I(Ei ≤ t)

[

Ei,Xi,Ai,Ui(t),Δi(t),Δi(t)Yi,Li{Ui(t)}
]

, i = 1, … ,n, (11)

where then n(t) =
∑n

i=1I(Ei ≤ t) is the number of subjects of the n planned enrolled in the trial by calendar time t.
As noted in Section 1, an interim analysis that uses all of the available data, including those from subjects for whom

T < F , can naively overrepresent some values of the outcome over others. In terms of (11), the data on which this
naive analysis would be based involve only subjects i who are enrolled and whose outcome is available, that is, for
whom I{Ei ≤ t,Δi(t) = 1} = 1. In contrast, a valid analysis that uses only the data from subjects enrolled for at least
the full, maximum follow-up period F involves subjects i for whom I{Ei ≤ t,Ci(t) ≥ F} = 1. In the next section, we
appeal to semiparametric theory as noted at the end of Section 2.1 to deduce methods yielding valid inference on 𝛽
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based on the available data (11) that can improve substantially on this analysis and thus lead to more efficient interim
analyses.

3 INFERENCE BASED ON INTERIM DATA

3.1 Treatment effect estimation

We first present general estimating equations using the available data (11) at an interim analysis at time t that yield treat-
ment effect estimators offering gains in precision relative to the estimator based only on subjects for whom I{Ei ≤ t,Ci(t) ≥
F} = 1. Letting “⟂⟂” denote statistical independence, assume that X ⟂⟂ A, which is guaranteed by randomization. Also
assume that

E ⟂⟂ {X ,A,T,Y ,L(T)}; (12)

(12) implies that subjects enter according to a completely random process, which is reasonable in many trials. Because
C(t) = t − E, (12) also implies that C(t) ⟂⟂ {X ,A,T,Y ,L(T)}. We discuss weakening these assumptions in Section 7. We
also require that pr{C(t) > F} > 0, so that there is positive probability of seeing subjects for whom the final outcome has
been ascertained at an interim analysis at t and so that the first interim analysis must occur at least F time units after
the start of the trial.

We first summarize the theoretical underpinnings of the practical, more efficient interim monitoring approach we
propose in Section 4. Under the above assumptions, if m(Y ,A,X; 𝛼0, 𝛽0) is the influence function of a given estimator for a
treatment effect parameter 𝛽 in a model for (Y ,A,X) as in Section 2.1, so based on the full data (10), then semiparametric
theory yields that influence functions for estimators for 𝛽 based on the available data (t) in (11) at an interim analysis at
time t are of the form

I(E ≤ t)
pr(E ≤ t)

(
Δ(t)m(Y ,A,X; 𝛼0, 𝛽0)

t{U(t)}
+
∫

t

0

dM(t)
c (u)𝜇(m,u; 𝛼0, 𝛽0)

t(u)

− (A − 𝜋)f (X) +
∫

t

0
dM(t)

c (u)
[

h{u,X ,A,L(u)} − 𝜇(h,u)
])

. (13)

In (13), f (X) is an arbitrary function of X ; h{u,X ,A,L(u)} is an arbitrary function of u, X , A, and L(u); and

t(u) = pr{C(t) ≥ u|E ≤ t}, 𝜇(m,u; 𝛼0, 𝛽0) = E{m(Y ,A,X; 𝛼0, 𝛽0)|T ≥ u}, 𝜇(h,u) = E
[

h{u,X ,A,L(u)}|T ≥ u
]

,

dM(t)
c (u) = dN(t)

c (u) − dΛ(t)c (u) (t)(u), N(t)
c (u) = I{U(t) ≤ u,Δ(t) = 0},  (t)(u) = I{U(t) ≥ u}, Λ(t)c (u) = − log{t(u)}.

Here, t(u) is the survival distribution for the censoring variable C(t) at the time of the interim analysis, N(t)
c (u)

and  (t)(u) are the censoring counting process and at-risk process, and Λ(t)c (u) is the cumulative hazard function for
censoring.

Let ̂t(u) be the Kaplan-Meier estimator for t(u) using the data {Ui(t), 1 − Δi(t)} for i such that Ei ≤ t, and define
̂Λ
(t)
c (u) = − log{ ̂t(u)}, d ̂M(t)

ci (u) = dN(t)
ci (u) − d̂Λ

(t)
c (u) (t)i (u), and 𝜋t =

∑n
i=1I(Ei ≤ t)Ai∕n(t), the proportion of enrolled

subjects at t assigned to active treatment. Then it can be shown that estimating equations corresponding to the influence
functions in (13) based on the available data (11) yielding estimators for 𝛽 are of the form

n∑

i=1
I(Ei ≤ t)

[
Δi(t)m{Yi,Ai,Xi; 𝛼(t), 𝛽}

̂t{Ui(t)}
− (Ai − 𝜋t)f (Xi) +

∫

t

0
d ̂M(t)

ci (u)h{u,Xi,Ai,Li(u)}

]

= 0, (14)

where 𝛼(t) is a consistent estimator for 𝛼 based on the available data at t. For a specific model, corresponding full data
influence function m(Y ,A,X; 𝛼0, 𝛽0), and choice of the functions f (X) and h{u,X ,A,L(u)}, to be discussed momentarily,
an estimator for 𝛽 based on the data available at interim analysis time t is the solution to (14).
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Taking f (X) ≡ 0 and h{u,X ,A,L(u)} ≡ 0 in (14) yields the estimating equation

n∑

i=1
I(Ei ≤ t)

[
Δi(t)m{Yi,Ai,Xi; 𝛼(t), 𝛽}

̂t{Ui(t)}

]

= 0, (15)

whose solution is a so-called inverse probability weighted complete case (IPWCC) estimator, which effectively bases esti-
mation of 𝛽 on only subjects for whom Y is available at t, that is, the complete cases at t, but with inverse weighting by the
censoring distribution “adjusting” appropriately for the lag time in ascertaining the outcome. In particular, intuitively, the
inverse weighting of the complete cases by the probability of being represented in the available data accounts for the fact
that subjects with shorter lag times are more likely to be represented, so that the weighted sample of completers mimics
the distribution of Y if there were no censoring. Judicious nonzero choices of f (X) and h{u,X ,A,L(u)} facilitate exploiting
baseline and time-dependent covariate information to gain efficiency over the IPWCC estimator solving (15) through the
two rightmost “augmentation” terms in the bracketed expression in (14), leading to what is referred to as an augmented
inverse probability weighted complete case (AIPWCC) estimator for 𝛽; the optimal such choices are discussed below.

A counterintuitive result from semiparametric theory is that, for any arbitrary f (X) and h{u,X ,A,L(u)}, it is possible
to improve the precision of the above estimators by replacing the Kaplan-Meier estimator ̂t(u) by treatment-specific
Kaplan-Meier estimators ̂t(u, a), say, obtained using the data {Ui(t), 1 − Δi(t)} for i such that Ei ≤ t and Ai = a, a = 0, 1,
even though because of (12) the distribution of C(t) is not treatment dependent. This substitution leads to influence
functions for estimators for 𝛽 based on the available data of the form

I(E ≤ t)
pr(E ≤ t)

(
Δ(t)m(Y ,A,X; 𝛼0, 𝛽0)

t{U(t),A}
+
∫

t

0

dM(t)
c (u,A)𝜇(m,u,A; 𝛼0, 𝛽0)

t(u,A)

− (A − 𝜋)f (X) +
∫

t

0
dM(t)

c (u,A)

[

h{u,X ,A,L(u)} − 𝜇(h,u,A)

])

, (16)

where now

t(u,A) = pr{C(t) ≥ u|E ≤ t,A}, 𝜇(m,u,A; 𝛼0, 𝛽0) = E{m(Y ,A,X𝛼0, 𝛽0)|T ≥ u,A},

𝜇(h,u,A) = E
[

h{u,X ,A,L(u)}|T ≥ u,A
]

,

dM(t)
c (u,A) = dN(t)

c (u) − dΛ(t)c (u,A) (t)(u), Λ(t)c (u,A) = − log{t(u,A)}.

Estimating equations corresponding to (16) are then

n∑

i=1
I(Ei ≤ t)

[
Δi(t)m{Yi,Ai,Xi; 𝛼(t), 𝛽}

̂t{Ui(t),Ai}
− (Ai − 𝜋t)f (Xi) +

∫

t

0
d ̂M(t)

ci (u,Ai)h{u,Xi,Ai,Li(u)}

]

= 0, (17)

where now ̂Λ
(t)
c (u, a) = − log{ ̂t(u, a)}; and d ̂M(t)

ci (u, a) = dN(t)
ci (u) − d̂Λ

(t)
c (u, a) (t)i (u). The estimating equations (17) with

f (X) ≡ 0 and h{u,X ,A,L(u)} ≡ 0,

n∑

i=1
I(Ei ≤ t)

[
Δi(t)m{Yi,Ai,Xi; 𝛼(t), 𝛽}

̂t{Ui(t),Ai}

]

= 0, (18)

yield an IPWCC estimator, and, again, nonzero choices of f (X) and h{u,X ,A,L(u)} lead to an AIPWCC estimator.
When Y is a binary outcome, as in study A5401, it can be shown that the IPWCC estimator ̂

𝛽(t) solving (18) is
algebraically identical to the logarithm of the ratio of treatment-specific Kaplan-Meier estimators for the probability of
death or hospitalization at F days. Thus, as noted in Section 1, the standard estimator for the risk ratio at an interim
analysis is a special case of the general formulation here. Moreover, because this estimator is equivalent to an IPWCC
estimator, it should be possible to obtain more efficient inference on the risk ratio at an interim analysis via an AIPWCC
estimator.
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Semiparametric theory provides the optimal choices of f (X) and h{u,X ,A,L(u)} yielding the most precise AIPWCC
estimator solving either of (14) or (17), given by

f opt(X) = E{m(Y ,A,X; 𝛼0, 𝛽0)|X ,A = 1) − E{m(Y ,A,X; 𝛼0, 𝛽0)|X ,A = 0),

hopt{u,X ,A,L(u)} = E{m(Y ,A,X; 𝛼0, 𝛽0)|T ≥ u,X ,A,L(u)}
t(u)

. (19)

The conditional expectations in (19) are not likely to be known in practice. We propose an approach to approximating
f opt(X) and hopt{u,X ,A,L(u)} in Section 4. We recommend estimating 𝛽 at an interim analysis at time t by ̂𝛽(t) solving an
estimating equation of the form (17) with the approximations for f opt(X) and hopt{u,X ,A,L(u)} substituted.

From semiparametric theory, estimators solving estimating equations of the form (14) or (17) are consistent for 𝛽0
(for n(t) and n large) and asymptotically normal, where, as at the end of Section 2.1, the variance of the large sample
distribution of ̂𝛽(t) can be obtained from the variance of the corresponding influence function. Thus, the resulting approx-
imate SEs SE{̂𝛽(t)} can be used to form a Wald-type test statistic, T(t) = ̂

𝛽(t)∕SE{̂𝛽(t)} appropriate for addressing the null
hypothesis of no treatment effect, H0 ∶𝛽0 = 0.

We conclude this section by noting an important implication of these results. In the case where the full data (10)
are available, as would be the case at the conclusion of the trial if not stopped early, the preceding developments lead
to covariate-adjusted estimators for 𝛽 based on the full data that have the potential to yield increased efficiency over
the usual full data analyses outlined in Section 2.1. In particular, considering (17), if tend is the calendar time at which
the trial concludes with the full data accrued and outcomes for all subjects ascertained, I(Ei ≤ tend) = 1, Δi(tend) = 1,
tend{Ui(tend),Ai} = 1, and d ̂M(tend)

ci (u,Ai) = 0, i = 1, … ,n, and (17) becomes

n∑

i=1

[
m{Yi,Ai,Xi; 𝛼(tend), 𝛽} − (Ai − 𝜋)f (Xi)

]
= 0, (20)

where 𝜋 = n−1∑n
i=1Ai, with corresponding influence function

m(Y ,A,X; 𝛼0, 𝛽0) − (A − 𝜋)f (X). (21)

As above, the optimal choice of f (X) leading to the most precise estimator solving (20) is that given in (19). The estimating
Equation (20) is of the form of those in Zhang et al15 Thus, the proposed approach leads naturally to estimators for a final
analysis that exploit baseline covariate information to improve efficiency through the “augmentation term” (A − 𝜋)f (X).

3.2 Interim analysis

In practice, interim analyses will be carried out at times t1 < · · · < tK , with the possibility of stopping the trial early, for
example, for efficacy if evidence of a large treatment effect emerges at an interim analysis. That is, focusing on efficacy,
the trial may be stopped at the first interim analysis time at which the relevant test statistic exceeds some appropriate
stopping boundary; that is, if

|T(tj)| ≥ bj, j = 1, … ,K,

for a two-sided alternative or T(tj) ≥ or ≤ bj, j = 1, … ,K, for a one-sided alternative, where bj, j = 1, … ,K, are the
stopping boundaries. As is well-studied in the group sequential testing literature, the stopping boundaries b1, … , bK
are chosen to take into account multiple comparisons and ensure that the resulting procedure preserves the desired
overall type 1 error.1-3,9 Standard methods2,3,9 for deriving stopping boundaries are based on the premise that the
sequentially-computed test statistics T(t1), … ,T(tK) have the so-called independent increments structure.8,16 In the Sup-
plemental Material, we sketch an argument demonstrating that, with the optimal choices of f (X) and h{u,X ,A,L(u)}
given in (19), the proposed test statistics, properly normalized, have the independent increments structure. Owing to
this property, the practical strategies for interim monitoring presented in Section 4 can be implemented using standard
software for computation of stopping boundaries; in the simulations in Section 5, we use the R package ldbounds.17
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4 PRACTICAL IMPLEMENTATION AND INTERIM MONITORING
STRATEGIES

4.1 Treatment effect estimation

Generalizing the approach in Tsiatis et al10 in the special case of a proportional odds model (2), we propose estimation
of 𝛽 at an interim analysis at time t using an AIPWCC estimator solving (17), which can be obtained via a two-step
algorithm.

Assume that the treatment effect 𝛽 of interest is defined within a model for which, given full data at the end of the
study, the estimator for 𝛽 would be obtained jointly with that for 𝛼 by solving an estimating equation of the form in (4) for
a particular estimating function(Y ,A,X; 𝛼, 𝛽). Because the optimal choices f opt(X) and hopt{u,X ,A,L(u)} in (19) are
not known, we approximate them by linear combinations of basis functions. Letting f0(X), f1(X), … , fM(X) be functions
of X specified by the analyst, with f0(X) ≡ 1, approximate f opt(X) by

M∑

m=0
𝜓mfm(X). (22)

Similarly, specify basis functions of {u,X ,L(u)}, h1{u,X ,L(u)}, … , hL{u,X ,L(u)}, and approximate hopt{u,X , a,L(u)} by

L∑

𝓁=1
𝜙a,𝓁h𝓁{u,X ,L(u)}, a = 0, 1. (23)

With suitably chosen basis functions, experience in other contexts6,10,15 suggests that this approach can lead to AIPWCC
estimators that achieve substantial efficiency gains over IPWCC estimators.

The AIPWCC estimator for 𝛽 obtained by substituting (22) and (23) in (17) has influence function (16) with these
same substitutions. Because from semiparametric theory the variance of the estimator depends on the variance of the
influence function, as at the end of Section 2.1, we find the coefficients𝜓m, m = 1, … ,M, and𝜙a,𝓁 , 𝓁 = 1, … ,L, a = 0, 1,
that minimize this variance, which, from the form of (16), is a least squares problem, as detailed below.

With these considerations, the two-step algorithm is as follows. At an interim analysis at time t:

Step 1. Estimate 𝛼 and 𝛽 by solving jointly in 𝛼 and 𝛽

n∑

i=1
I(Ei ≤ t)

[
Δi(t)(Yi,Ai,Xi; 𝛼, 𝛽)

̂t{Ui(t),Ai}

]

= 0,

to obtain 𝛼(t) and ̂
𝛽

init(t); ̂𝛽 init(t) is an IPWCC estimator solving (18). Then obtain an estimator ̂{𝛼(t), ̂𝛽 init(t)} for (𝛼, 𝛽).
If the expectation in (7) is analytically tractable, ̂{𝛼(t), ̂𝛽 init(t)} is the last row of (7) with 𝛼(t) and ̂

𝛽

init(t) substituted for 𝛼
and 𝛽; if not, take the estimator ̂{𝛼(t), ̂𝛽 init(t)} to be the last row of

−

[

n(t)−1
n∑

i=1
I(Ei ≤ t) Δi(t)

̂t{Ui(t),Ai}
𝜕(Yi,Ai,Xi; 𝛼, 𝛽)

𝜕𝛼
T
𝜕𝛽

|
|
|
|𝛼=𝛼(t),𝛽=̂𝛽 init(t)

]−1

.

For each subject i for whom Ei ≤ t, based on (8), construct

m{Yi,Ai,Xi; 𝛼(t), ̂𝛽 init(t)} = ̂{𝛼(t), ̂𝛽 init(t)}{Yi,Ai,Xi; 𝛼(t), ̂𝛽 init(t)}.

Step 2. Estimate the coefficients 𝜓m, m = 1, … ,M, and 𝜙a,𝓁 , 𝓁 = 1, … ,L, a = 0, 1, in the approximations (22) and (23)
by “least squares,” as suggested above. Namely, for each subject i for whom Ei ≤ t, define the “dependent variable”

̂𝔜i(t) =
Δi(t)m{Yi,Ai,Xi; 𝛼(t), ̂𝛽 init(t)}

̂t{Ui(t),Ai}
+
∫

t

0

d ̂M(t)
ci (u,Ai)𝜇{m,u,Ai; 𝛼(t), ̂𝛽 init(t)}

̂t(u,Ai)
,
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where, in the integrand in the second term of the above expression, for Ai = a, a = 0, 1,

𝜇{m,u, a; 𝛼(t), ̂𝛽 init(t)}
̂t(u, a)

=

{ n∑

k=1
I(Ek ≤ t) (t)k (u)I(Ak = a)

}−1

×
n∑

k=1

{
I(Ek ≤ t)Δk(t)m{Yk,Ak,Xk; 𝛼(t), ̂𝛽 init(t)}

̂t{Uk(t), a}

(t)
k (u)I(Ak = a)

}

.

Likewise, for each of these subjects and suitably chosen basis functions as discussed above, define the M + 1 + 2L
“covariates”

(Ai − 𝜋t)fm(Xi), m = 0, 1, … ,M;

I(Ai = 0)
∫

t

0
d ̂M(t)

ci (u, 0)
[

h𝓁{u,Xi,Li(u)} − 𝜇(h𝓁 ,u, 0)
]

, 𝓁 = 1, … ,L,

I(Ai = 1)
∫

t

0
d ̂M(t)

ci (u, 1)
[

h𝓁{u,Xi,Li(u)} − 𝜇(h𝓁 ,u, 1)
]

, 𝓁 = 1, … ,L,

where, for a = 0, 1

𝜇(h𝓁 ,u, a) =

{ n∑

k=1
I(Ek ≤ t) (t)k (u)I(Ak = a)

}−1 n∑

k=1
h𝓁{u,Xk,Lk(u)} (t)k (u)I(Ak = a).

Then obtain estimators 𝜓̂m, m = 0, 1, … ,M, and ̂
𝜙a,𝓁 , 𝓁 = 1, … ,L, a = 0, 1, by linear regression of ̂𝔜i(t) on the above

covariates. Based on this regression, obtain “predicted values” for each subject i for whom Ei ≤ t as

Predi = (Ai − 𝜋t)
M∑

m=0
𝜓̂mfm(Xi) +

∫

t

0
d ̂M(t)

ci (u,Ai)
L∑

𝓁=1

̂
𝜙Ai,𝓁

[

h𝓁{u,Xi,Li(u)} − 𝜇(h𝓁 ,u,Ai)
]

.

The estimator for 𝛽 is then obtained as the one-step update

̂
𝛽(t) = ̂

𝛽

init(t) − n(t)−1
n∑

i=1
I(Ei ≤ t)Predi, (24)

and an approximate SE for ̂𝛽(t) is given by

SE{̂𝛽(t)} = n(t)−1

[ n∑

i=1
I(Ei ≤ t){̂𝔜i(t) − Predi}2

]1∕2

. (25)

By an argument similar to that in the Supplementary Material of Tsiatis et al,10 the estimator (24) is asymptotically
equivalent to an AIPWCC estimator solving (17).

In some settings, scant time-dependent covariate information may be available. Here, a special case of the general AIP-
WCC formulation that still attempts to gain efficiency from only baseline covariates X is to solve an estimating equation
of the form in (17) but with f (X) as in (19) and h{u,X ,A,L(u)} = 0. Implementation is as above, but with the “depen-
dent variable” in Step 2 regressed only on the M + 1 “covariates” (Ai − 𝜋t)fm(Xi), m = 0, 1, … ,M, to obtain estimators
𝜓̂m, m = 0, 1, … ,M, and by redefining Predi = (Ai − 𝜋t)

∑M
m=0𝜓̂mfm(Xi) in the one-step update (24) and its associated stan-

dard error (25). For definiteness, we refer to the resulting estimator as “AIPW1” and that incorporating time-dependent
covariates above as “AIPW2.”

4.2 Interim analysis

There is a vast literature on early stopping of clinical trials using group sequential and other methods; such methods are
readily applied if the independent increments property holds. We now discuss information-based and fixed-sample size
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monitoring strategies for using these approaches with the proposed treatment effect estimators, for which, as argued in
the Supplemental Material and demonstrated empirically in Section 5, the independent increments property holds exactly
or approximately.

In the general information-based monitoring approach,1 monitoring and group sequential tests are based on the pro-
portion of the total information to be gained from the completed trial available at interim analysis times t, where in the
present context information is approximated at time t using the large-sample approximate SE of the relevant estimator
̂
𝛽(t), SE{̂𝛽(t)}. If a group sequential test is desired with type 1 error 𝛼 for testing H0 ∶𝛽0 = 0 and power (1 − 𝛾) against a
clinically meaningful alternative value 𝛽0 = 𝛽A, say, then the maximum information MI required to achieve this objective
at the final analysis with a two-sided test is

MI =
(z

𝛼∕2 + z
𝛾

𝛽A

)2

IF,

where z
𝛿

is the (1 − 𝛿) quantile of the standard normal distribution, and IF is an inflation factor to account for the loss
of power that results due to repeated testing relative to doing a single final analysis. For example, the inflation factor
associated with using O’Brien-Fleming stopping boundaries3 is modest, equal to about 1.03; see Tsiatis.1 Information at
an interim analysis at time t is approximated as

Inf (t) =
[

SE{̂𝛽(t)}
]−2

.

Thus, the proportion of information at interim analysis time t is approximated as

p(t) =
Inf (t)

MI
. (26)

Given the proportion of information (26) together with, for example, the Lan-DeMets spending function,9 standard soft-
ware can be used to obtain stopping boundaries such that the resulting group sequential testing procedure has the desired
operating characteristics.

Typically, in determining the overall sample size for a clinical trial to achieve the desired power to detect a meaning-
ful difference at a given level of significance, the analyst must make assumptions on the values of nuisance parameters.
If these assumptions are not correct, the trial could be underpowered. An oft-cited advantage of information-based
monitoring is that interim analyses would continue until the information Inf (t) achieves the maximum information
MI, guaranteeing the desired operating characteristics regardless of the values of nuisance parameters. However, if the
assumptions leading to the target sample size are not correct, the information available at the time this planned sample
size is reached and all participants have the outcome ascertained may be less than MI. If evidence emerges during the
trial that MI is unlikely to be achieved, the sample size might be reestimated and increased so that the full information
threshold MI is met.

In many trials, however, resource constraints or other factors may make exceeding the originally planned sample size
impossible, thus rendering principled information-based monitoring infeasible. If a fixed, maximum sample size nmax,
say, is planned and inalterable, then the proportion of information available at an interim analysis at any time t on which
stopping boundaries can be determined must instead be based on nmax. In terms of the data (11) available at an interim
analysis at t, as before, n(t) =

∑n
i=1I(Ei ≤ t) is the number of subjects who have enrolled by time t; of these subjects,

nA(t) =
∑n

i=1I{Ei ≤ t,Ci(t) ≥ F} is the number who have been enrolled for the maximum follow-up period and thus have
the outcome ascertained with certainty, and it is likely that nA(t) < n(t). In general, a typical interim analysis at t for fixed
nmax would be based only on the data from these nA(t) subjects, and, accordingly, the proportion of information available
at t would be p(t) = nA(t)∕nmax, with p(t) = 1 at the final analysis. However, here, the proposed IPWCC and AIPWCC
estimators allow censoring due to the time lag in ascertaining the outcome to be taken into account and incorporation
of covariates to increase efficiency, so make use of additional information in (11) beyond that available on just the nA(t)
subjects for whom the outcome has been ascertained by time t. Thus, if monitoring is based on test statistics constructed
from these estimators, the proportion of information available at t should be between nA(t)∕nmax and n(t)∕nmax.

With these considerations, for fixed-sample size monitoring, we propose characterizing the proportion of information
available at an interim analysis at time t in terms of what we refer to as the effective sample size nESS(t), say, at t. Intuitively,
we define nESS(t) to be the number of participants, had they been enrolled for the maximum follow-up period F and had
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their outcome ascertained with certainty, that would be required to lead to an estimator for 𝛽 based only on data from such
subjects with the same precision as that achieved by an IPWCC or AIPWCC estimator for 𝛽 based on all of the available
data at t. The proportion of information at t would then be nESS(t)∕nmax.

To define effective sample size formally, with n∗ subjects for whom the outcome has been fully ascertained, indexed
by j = 1, … ,n∗, consider the estimator ̂𝛽∗ obtained by solving in 𝛽 the full data estimating Equation (9) based on these
n∗ subjects,

n∗∑

j=1
m(Yj,Aj,Xj; 𝛼, 𝛽) = 0,

for some consistent estimator 𝛼. Then from the semiparametric theory, ̂𝛽∗ has SE approximately equal to the square
root of var{m(Y ,A,X; 𝛼0, 𝛽0)}∕n∗. The effective sample size at an interim analysis at time t for the IPWCC estimator ̂𝛽(t)
calculated using the available data (11) at t is the value n∗ such that var{m(Y ,A,X; 𝛼0, 𝛽0)}∕n∗ = SE{̂𝛽(t)}2. Accordingly,
define the effective sample size when monitoring is based on the IPWCC estimator as

nESS(t) =
var{m(Y ,A,X; 𝛼0, 𝛽0)

SE{̂𝛽(t)}2
. (27)

Because var{m(Y ,A,X; 𝛼0, 𝛽0)} is not known, in practice we must estimate it based on the available data, which can be
accomplished via the estimator

v̂ar{m(Y ,A,X; 𝛼0, 𝛽0)} = n(t)−1
n∑

i=1
I(Ei ≤ t)Δi(t)m{Yi,Ai,Xi; 𝛼(t), ̂𝛽(t)}2

̂t{Ui(t),Ai}
. (28)

Thus, in practice, we obtain the approximate effective sample size as

nESS(t) =
v̂ar{m(Y ,A,X; 𝛼0, 𝛽0)}

SE{̂𝛽(t)}2
. (29)

The effective sample size for an AIPWCC estimator ̂𝛽(t) (either AIPW1 or AIPW2) calculated using the available data
at t via the two-step algorithm is defined similarly, but with the full data influence function m(Y ,A,X; 𝛼0, 𝛽0) in (27)
replaced by the influence function m(Y ,A,X; 𝛼0, 𝛽0) − (A − 𝜋)f opt(X) as in (21). An estimator for var{m(Y ,A,X; 𝛼0, 𝛽0) −
(A − 𝜋)f opt(X)} based on the available data is given by

v̂ar{m(Y ,A,X; 𝛼0, 𝛽0)} = n(t)−1
n∑

i=1
I(Ei ≤ t)

Δi(t)[m{Yi,Ai,Xi; 𝛼(t), ̂𝛽(t)} − Pred∗i ]
2

̂t{Ui(t),Ai}
, Pred∗i = (Ai − 𝜋t)

M∑

m=0
𝜓̂mfm(Xi), (30)

where now the “predicted values” Pred∗i are obtained by a weighted least squares regression with “dependent variable”
m{Y ,A,X; 𝛼(t), ̂𝛽(t)}, “covariates” (Ai − 𝜋t)fm(Xi), m = 0, 1, … ,M, and “weights” Δi(t)∕ ̂t{Ui(t),Ai}. Thus, for ̂𝛽(t) the
AIPW1 or AIPW2 estimator, nESS(t) is defined as in (29) with the numerator given by (30).

With the appropriate definition of nESS(t), we approximate the corresponding proportion of information available at t
with interim analyses based on an IPWCC or AIPWCCC estimator as

p(t) = nESS(t)
nmax

. (31)

From (28) and (30), p(t) = 1 at the final analysis. As for information-based monitoring, given the proportion of information
(31), one can use standard software with, for example, the Lan-DeMets spending function9 to obtain stopping boundaries.

In the simulation studies in the next section, we study the methods under fixed-sample monitoring, as in our
experience this approach is most common in practice. Moreover, while performance of information-based monitoring
with statistics that possess the independent increments property has been well-studied,8,18 because our approach to
characterizing proportion of information in fixed-sample monitoring based on the proposed effective sample size measure
is new, evaluation of its performance is required.
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5 SIMULATION STUDIES

We present results from several simulation studies, each involving 10 000 Monte Carlo replications. For each simulation
scenario, we considered a uniform enrollment process during the calendar time interval [0,Emax]with a maximum, fixed
sample size nmax and maximum follow up time F , and fixed-sample size monitoring with interim analyses planned at
calendar times t1 < · · · < tK and a final analysis at time tend = Emax + F = tK+1 > tK , for a total of K + 1 possible analyses.
For simplicity, in each scenario, we took nmax to be the sample size required to achieve roughly 80% or 90% power for
a single analysis at tend and did not include an inflation factor.1 At each of the K + 1 analysis times, we estimated the
relevant treatment effect parameter 𝛽 four ways:

(i) using the estimator ̂𝛽F (tj) obtained by carrying out the full data analysis based only on subjects enrolled for at least
the maximum follow-up period F , so using subjects i for whom I{Ei ≤ t,Ci(t) ≥ F} = 1;

(ii) using the IPWCC estimator ̂𝛽IPW (tj) = ̂
𝛽

init(tj) based on the available data (11), obtained at Step 1 of the two-step
algorithm;

(iii) using the AIPWCC estimator ̂𝛽AIPW1(tj) based on the available data (11), obtained at Step 2 of the two-step algorithm
using only baseline covariates X to gain efficiency, as at the end of Section 4.1;

(iv) using the AIPWCC estimator ̂𝛽AIPW2(tj) based on the available data (11), obtained at Step 2 of the algorithm using
both baseline and time-dependent covariates X and L(u).

At the final analysis at time tend at which the outcome has been ascertained on all nmax subjects, ̂𝛽F (tend) and
̂
𝛽IPW (tend) yield (versions of) the intended full data analysis; and ̂

𝛽AIPW1(tend) and ̂
𝛽AIPW2(tend) are identical and yield the

covariate-adjusted analysis exploiting baseline covariate information discussed at the end of Section 3.1. In all scenarios,
for the null hypothesis H0 ∶𝛽0 = 0 and one-sided alternative hypotheses and level of significance 𝛼 = 0.025, we used the
R package ldbounds17 with a Lan-DeMets spending function to compute both O’Brien-Fleming3 and Pocock2 stopping
boundaries at each analysis time tj, j = 1, … ,K + 1. For ̂𝛽F (tj), this calculation was based on the proportion of informa-
tion p(tj) = nA(tj)∕nmax; for each of the IPWCC and AIPWCC estimators ̂𝛽IPW (tj), ̂𝛽AIPW1(tj), and ̂

𝛽AIPW2(tj), the stopping
boundaries were obtained using the approximate proportion of information (31) based on the relevant approximate
effective sample size nESS(tj) given in (29).

For each scenario, we present the following results from two simulation studies, one under H0, so with data generated
with 𝛽0 = 0, and one under an alternative of interest 𝛽0 = 𝛽A:

(i) for each estimator, Monte Carlo estimates of cov{̂𝛽(s), ̂𝛽(t)}, s < t, and var{̂𝛽(t)}, s, t ∈ {t1, … , tK , tend}; if the
independent increments property holds, cov{̂𝛽(s), ̂𝛽(t)} = var{̂𝛽(t)}, s < t;

(ii) for each estimator at each t ∈ {t1, … , tK , tend}, Monte Carlo mean and SD of ̂𝛽(t), Monte Carlo mean of SE{̂𝛽(t)},
and Monte Carlo mean square error (MSE) for ̂𝛽F (t) divided by that for ̂𝛽(t);

(iii) for each estimator and stopping boundary, the Monte Carlo proportion of data sets for which H0 was rejected, Monte
Carlo estimate of expected sample size, and Monte Carlo estimate of expected stopping time.

The first two simulation scenarios, demonstrating the methods for an ordinal categorical outcome and a binary
outcome, respectively, are based on the TESICO study with F = 90 days, using the generative models adopted by
Tsiatis et al,10 with nmax = 602, Emax = 240 days, and K = 4 interim analyses planned at calendar times (t1, … , t4) =
(150,195, 240,285) days, with the final analysis at tend = 330 days. For each simulated subject, A was generated as Bernoulli
with pr(A = 1) = 𝜋 = 0.5, where a = 0 (1) corresponds to placebo (active agent). To produce data for which the propor-
tional odds model (2) holds, we generated Υ ∼ U(0, 1) and set Γ = (1 − A)Υ + AΥ(1∕OR)∕{1 − Υ + Υ(1∕e𝛽)}, where as
in (2) 𝛽 is the log odds ratio, so that the distribution of Γ given A = 1 satisfies logit{pr(Γ ≤ u | A = 1)} = logit{pr(Γ ≤
u | A = 0)} + 𝛽. For Y an ordinal outcome, we took pr(Y = j|A = 0) = 0.12, 0.23, 0.17,010, 0.05, 0.33 for j = 1, … , 6 as
in Table 1 of Tsiatis et al10 and thus generated Y according to in which interval Γ fell as determined by the cutpoints
[0.00, 0.12, 0.35, 0.52, 0.62, 0.67, 1.00]. Then if Γ < 0.52, so Y = 1, 2, or 3, we took the time in hospital to be H = FΓ∕0.52
and the number of days at home and off oxygen as F −H, and T = F . If 0.52 ≤ Γ < 0.62 or 0.62 ≤ Γ < 0.67, corre-
sponding to Y = 4 or 5, again T = F ; if Γ ≥ 0.67, corresponding to death, time of death T = (1 − A)T0 + AT1, where
T0 ∼ U(0, 30) if A = 0 and T1 ∼ U(20, 50) if A = 1. A baseline covariate was generated as X ∼ {1.5(Υ − 0.5), 1}, so that
X is independent of A, correlated with Y , and does not affect the proportional odds model. Two time dependent covariates
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were generated as L1(u) = I( < u), where = HI(Γ < 0.52) + FI(Γ ≥ 0.52), so that L1(u) = 1 if the subject was still in
the hospital at time u; and L2(u) = (F −)L1(u), the number of days the subject was expected to be out of the hospital at
day F , and L(u) = {L1(u),L2(u)}. For a scenario with binary outcome, we generated the data according to the foregoing
scheme, except that we defined Y = 1, corresponding to death, if Γ ≥ 0.67, and Y = 0 otherwise.

For the first scenario with ordinal categorical outcome, we generated data as above under the null hypothesis, so
with 𝛽 = 𝛽0 = 0, and 𝛽 = 𝛽A = log(1.5), corresponding to the alternative for which TESICO was powered (80% at the final
analysis with n = 602),10 and HA ∶𝛽0 > 0. Here, ̂𝛽F (t) is the ML estimator for 𝛽 in (2) obtained using the R function
polr in the MASS package.19 Following Tsiatis et al,10 to simplify implementation, we constructed ̂

𝛽IPW (t), ̂𝛽AIPW1(t), and
̂
𝛽AIPW2(t) using the estimating function (6) with (A) = DT(A; 𝛼, 𝛽)V−1

ind(A; 𝛼, 𝛽), where Vind(A; 𝛼, 𝛽) is chosen according
to the “working independence” assumption, so that with full data at the final analysis, ̂𝛽F (tend) and ̂

𝛽IPW (tend) are not
identical. As shown by Tsiatis et al10 and borne out in the simulations below, the efficiency loss for ̂𝛽IPW (tend) relative to
̂
𝛽F (tend) is negligible.

Under (a) the null hypothesis and (b) the alternative, the Monte Carlo sample covariance matrices of the 10 000
estimates {̂𝛽AIPW2(t1), … ,

̂
𝛽AIPW2(t4), ̂𝛽AIPW2(tend)} are

(a)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.041 0.027 0.022 0.019 0.019
0.027 0.028 0.021 0.019 0.018
0.022 0.021 0.022 0.019 0.019
0.019 0.019 0.019 0.019 0.018
0.019 0.018 0.019 0.018 0.018

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (b)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.042 0.027 0.022 0.019 0.019
0.027 0.029 0.022 0.019 0.019
0.022 0.022 0.022 0.019 0.019
0.019 0.019 0.019 0.019 0.019
0.019 0.019 0.019 0.019 0.019

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (32)

In (32), it is evident that cov{̂𝛽(s), ̂𝛽(t)} ≈ var{̂𝛽(t)}, s < t, demonstrating that the independent increments property holds
approximately for this estimator. Analogous results for the other three estimators are given in the Supplemental Material,
showing that the independent increments property holds approximately for all.

Under the null hypothesis and the alternative, Table 1 presents Monte Carlo mean and SD, the Monte Carlo average of
standard errors SE{̂𝛽(t)}, and MSE ratio defined above as the Monte Carlo MSE for ̂𝛽F (t) divided by that for the indicated
estimator. Thus, the MSE ratio reflects efficiency of the indicated estimator relative to the usual ML estimator using data
only on subjects enrolled for the maximum follow-up period F . From the table, all estimators are consistent, with SEs that
track the Monte Carlo SDs, under both hypotheses. The efficiency gains over ̂𝛽F (t) achieved at interim analyses by using
any of ̂𝛽IPW (t), ̂𝛽AIPW1(t), and ̂𝛽AIPW2(t) are substantial. The IPWCC estimator achieves gains solely through accounting for
censoring; the AIPWCC estimators improve on these gains by additionally incorporating covariates. Notably, ̂𝛽AIPW2(t)
yields a 2-fold gain at the initial interim analysis. For all three estimators, the efficiency gains are most pronounced at the
early interim analyses where censoring is the most substantial and diminish as censoring decreases as the trial progresses.
At the final analysis, ̂𝛽F (tend) and ̂

𝛽IPW (tend) show very similar performance, with ̂
𝛽IPW (tend) exhibiting minimal relative

loss of efficiency, as noted above. As expected, ̂𝛽AIPW1(tend) and ̂
𝛽AIPW2(tend) are identical and, due to the incorporation of

adjustment for baseline covariates, result a 16%-17% gain in efficiency over the usual final analysis.
Table 2 presents interim monitoring results using each estimator with both O’Brien-Fleming and Pocock stopping

boundaries under the null hypothesis and under the alternative 𝛽 = log(1.5). Under the null, the nominal level 𝛼 = 0.025
is achieved for all estimators. Under the alternative, power for ̂𝛽F (t) is slightly shy of the desired 80%, as expected with no
inflation factor; by comparison, the AIPWCC estimators yield improved power due to inclusion of covariate information.
Under the alternative and both types of boundaries, basing interim analyses on ̂

𝛽IPW (t), ̂𝛽AIPW1(t), and ̂
𝛽AIPW2(t) results

in impressive reductions in expected sample size and expected stopping time relative to ̂
𝛽F (t), with the gains especially

impressive for ̂𝛽AIPW2(t).
For the second scenario with binary outcome, we generated data as above under the null hypothesis and with the log

odds ratio equal to 1.5, which implies a log relative risk (risk ratio) for death (Y = 1) of 𝛽 = 𝛽0 = 𝛽A = log(0.247∕0.33) =
−0.290 as in (3) and alternative hypothesis HA ∶𝛽0 < 0. We took nmax = 900, which corresponds roughly to 90% power
to detect this alternative. The Monte Carlo sample covariance matrices of the 10 000 estimates {̂𝛽(t1), … ,

̂
𝛽(t4), ̂𝛽(tend)}

for each of the four estimators under both the null and alternative settings are shown in the Supplemental Material
and exhibit patterns analogous to those in (32), demonstrating that all estimators have approximately the independent
increments property. Also shown in the Supplemental Material for each estimator at each analysis time are the Monte
Carlo mean and SD, the Monte Carlo average of standard errors SE{̂𝛽(t)}, and MSE ratio defined above as the Monte
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T A B L E 1 For Scenario 1 with ordered categorical outcome, performance of estimators for 𝛽 under (a) the null hypothesis 𝛽 = 0 and
(b) the alternative 𝛽 = log(1.5) = 0.405 at each interim analysis time (t1, … , t4) = (150,195, 240,285) days and at the final analysis at
tend = 330 days

MC mean MC SD Ave MC SE MSE ratio MC mean MC SD Ave MC SE MSE ratio

(a) Null hypothesis

̂
𝜷F
(t) ̂

𝜷IPW (t)

t1 −0.002 0.294 0.294 1.000 −0.004 0.232 0.232 1.603

t2 −0.002 0.221 0.221 1.000 −0.002 0.189 0.189 1.330

t3 −0.003 0.184 0.185 1.000 −0.002 0.166 0.164 1.239

t4 −0.001 0.162 0.162 1.000 −0.001 0.152 0.151 1.139

tend 0.000 0.146 0.146 1.000 0.000 0.147 0.146 0.991
̂
𝜷AIPW1(t) ̂

𝜷AIPW2(t)

t1 −0.004 0.221 0.221 1.775 −0.005 0.203 0.198 2.095

t2 −0.002 0.178 0.178 1.534 −0.002 0.168 0.165 1.717

t3 −0.002 0.156 0.154 1.399 −0.002 0.149 0.145 1.542

t4 −0.001 0.141 0 .140 1.327 −0.001 0.138 0.136 1.380

tend 0.000 0.135 0.135 1.169 0.000 0.135 0.135 1.169

(b) Alternative hypothesis

̂
𝜷F
(t) ̂

𝜷IPW (t)

t1 0.408 0.294 0.294 1.000 0.406 0.235 0.235 1.566

t2 0.406 0.220 0.221 1.000 0.406 0.191 0.191 1.336

t3 0.404 0.185 0.185 1.000 0.405 0.167 0.165 1.221

t4 0.406 0.163 0.162 1.000 0.406 0.153 0.152 1.131

tend 0.406 0.147 0.146 1.000 0.406 0.148 0.147 0.985
̂
𝜷AIPW1(t) ̂

𝜷AIPW2(t)

t1 0.405 0.224 0.224 1.733 0.406 0.204 0.200 2.078

t2 0.406 0.180 0.180 1.508 0.408 0.169 0.167 1.702

t3 0.405 0.158 0.155 1.378 0.408 0.150 0.147 1.523

t4 0.406 0.142 0.141 1.314 0.407 0.139 0.137 1.373

tend 0.406 0.137 0.136 1.159 0.406 0.137 0.136 1.159

Note: MC mean is the mean of 10 000 Monte Carlo estimates; MC SD is the Monte Carlo SD, Ave MC SE is the mean of Monte Carlo SEs, and MSE ratio is the
ratio of Monte Carlo mean square error for ̂𝛽F

(t) divided by that for the indicated estimator.

Carlo MSE for the estimator divided by that for ̂
𝛽F (t) under the null and alternative hypotheses. All estimators are

consistent, and SEs are very close to the Monte Carlo SDs. Under both null and alternative hypotheses, the estimator
̂
𝛽IPW (t), which takes censoring at interim analysis times into account and as noted previously is identical to the ratio of
treatment-specific Kaplan-Meier estimators often used in practice, achieves substantial efficiency gains over ̂𝛽F (t), with
a 2-fold increase at the first interim analysis and 24% at the last at t4 = 285 days. These estimators are equivalent, as
expected, at the final analysis. The AIPWCC estimators ̂𝛽AIPW1(t) and ̂

𝛽AIPW2(t) achieve even greater gains. Here, ̂𝛽AIPW2(t)
does not offer improved performance over ̂𝛽AIPW1(t); this behavior is not surprising, as the time-dependent covariates
L(u) = {L1(u),L2(u)} reflecting length of hospital stay do not provide information on death. As expected, these estimators
are identical at tend and offer 10%-12% gains in efficiency over the standard analysis through adjustment for the baseline
covariate.

Table 3 shows interim monitoring results using each estimator with O’Brien-Fleming and Pocock stopping boundaries
under the null hypothesis and under the alternative 𝛽A = −0.290. Again, overall testing procedures achieve the nominal
level. Power gains over ̂𝛽F (t) under the alternative are achieved using the AIPWCC estimators. As for the first scenario,
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T A B L E 2 For Scenario 1 with ordered categorical outcome, interim analysis performance using each estimator with O’Brien-Fleming
and Pocock stopping boundaries under (a) the null hypothesis 𝛽 = 0 and (b) the alternative 𝛽 = log(1.5) = 0.405, with maximum sample
size nmax = 602 and tend = 330 days

P(reject) MC E(SS) MC E(Stop) P(reject) MC E(SS) MC E(Stop)

(a) Null hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.024 601.9 (2.7) 329.3 (7.5) 0.023 599.7 (21.4) 327.4 (19.5)

̂
𝛽IPW (t) 0.024 601.6 (7.8) 328.4 (12.1) 0.024 598.8 (25.9) 326.7 (22.4)

̂
𝛽AIPW1(t) 0.024 601.7 (6.7) 328.5 (11.3) 0.024 598.9 (25.5) 326.8 (22.0)

̂
𝛽AIPW2(t) 0.024 601.2 (11.4) 327.9 (14.9) 0.027 598.0 (28.9) 326.1 (24.7)

(b) Alternative hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.784 592.7 (31.5) 284.2 (44.7) 0.710 548.1 (85.3) 260.5 (68.7)

̂
𝛽IPW (t) 0.771 564.6 (62.5) 257.1 (55.9) 0.701 516.3 (100.3) 239.0 (74.7)

̂
𝛽AIPW1(t) 0.836 562.7 (62.7) 251.5 (53.4) 0.774 508.3 (100.6) 230.1 (72.2)

̂
𝛽AIPW2(t) 0.841 531.9 (81.7) 231.7 (58.0) 0.783 483.4 (103.5) 215.1 (72.3)

Note: P(reject) is the proportion of Monte Carlo data sets for which the null hypothesis was rejected; MC E(SS) is the Monte Carlo average of number of
subjects enrolled at the time the stopping boundary was crossed (SD); and MC E(Stop) is the Monte Carlo average stopping time (days) (SD). The standard
error for entries for P(reject) in (a) is ≈ 0.0016.

basing interim analyses on ̂
𝛽IPW (t), ̂𝛽AIPW1(t), and ̂

𝛽AIPW2(t) yields substantial reductions in expected sample size and
stopping time over ̂𝛽F (t) under the alternative, especially for the AIPWCC estimators.

The final simulation scenario involves a continuous outcome, with nmax = 300, Emax = 156 weeks, and F = 52 weeks,
so that enrollment takes place over 3 years, with K = 4 interim analyses planned at calendar times 104, 130, 156, 182
weeks and the final analysis at tend = 208 weeks. We generated treatment assignment A as Bernoulli with pr(A = 1) =
𝜋 = 0.5, where a = 0 (1) corresponds to placebo (active agent); and a categorical baseline covariate X1 was generated
with pr(X1 = j) = 0.4, 0.3, 0.2, 0.1 for j = 1, … , 4. With (s1, … , s5) = (0, 4, 12, 24, 52) weeks, 𝜎 = 4.5, D a (2 × 2) matrix
with vech(D) = (80,−0.5, 0.08), and 𝜉 = (𝜉1, 𝜉2)T , we generated longitudinal measurements for each subject i according to
the linear mixed effects model Zij = 65I(X1 = 1) + 60I(X1 = 2) + 55I(X1 = 3) + 49I(X1 = 4) + {𝜉1(1 − A) + 𝜉2A}sj + b0i +
b1isj + eij, where bi = (b0i, b1i)T ∼ (0,D) independent of eij ∼ (0, 𝜎2). The outcome for subject i is then Yi = Zi5, the
longitudinal measure at F weeks. As would be likely in practice, we included in X only the single baseline covariate
Zi1, the value of the longitudinal measure at time 0 and did not also include X1, and we took the single time-dependent
covariate L(u) at time u to be the most recently observed value of the longitudinal measurements Zij. Under the null
hypothesis, 𝜉 = (−0.3,−0.3)T ; under the alternative, 𝜉 = (−0.3,−0.18)T corresponding to 𝛽 = 𝛽0 = 𝛽A = 6.24, for which
nmax = 300 yields roughly 90% power at the final analysis. Results shown in the Supplemental Material demonstrate
that the independent increments property holds approximately for all estimators. Here, the estimators ̂𝛽F (t) and ̂

𝛽IPW (t)
are identical because T = F for all subjects, so that both are based only on subjects followed for at least F weeks. SEs
SE{̂𝛽F (t)} are obtained from the routine formula for a difference in sample means assuming common treatment-specific
variance, while SE{̂𝛽IPW (t)} follows from the IPWCC influence function; these SEs are asymptotically equivalent but differ
slightly for finite samples. Incorporation of the baseline covariate yields 10%-20% gains in efficiency; further incorporation
of the last outcome carried forward as a time-dependent covariate leads to efficiency gains for ̂𝛽AIPW2(t) of 34% to 47%.

Interim monitoring results are shown in Table 4 and are analogous to those in Tables 2 and 3. Under the null hypoth-
esis, the Monte Carlo rejection probability for ̂𝛽AIPW2(t) with Pocock boundaries exceeds slightly the nominal 0.025 level.
Again, under the alternative, the AIPWCC estimators result in earlier expected sample sizes and stopping times.

We remark that all scenarios reflect the general result that basing interim analyses on the proposed AIPWCC estima-
tors leads to not only more efficient inferences but also, because of the increased precision, to a greater proportion of the
total statistical information being available at each interim analysis time than would be available using the usual meth-
ods. This feature implies that O’Brien-Fleming boundaries will be less conservative for the proposed estimators, leading
to potential gains in expected sample size and stopping times.
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T A B L E 3 For Scenario 2 with binary outcome, interim analysis performance using each estimator with O’Brien-Fleming and Pocock
stopping boundaries under (a) the null hypothesis 𝛽 = 0 and (b) the alternative 𝛽 = log(0.247∕0.33) = −0.290, with maximum sample size
nmax = 900 and tend = 330 days

P(reject) MC E(SS) MC E(Stop) P(reject) MC E(SS) MC E(Stop)

(a) Null hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.024 900.0 (2.3) 329.4 (6.5) 0.022 896.3 (33.6) 327.4 (19.8)

̂
𝛽IPW (t) 0.024 898.8 (15.8) 328.0 (14.5) 0.023 894.3 (42.3) 326.5 (23.7)

̂
𝛽AIPW1(t) 0.023 899.0 (14.0) 328.1 (13.8) 0.025 894.1 (42.8) 326.3 (24.3)

̂
𝛽AIPW2(t) 0.024 899.0 (14.9) 328.0 (14.2) 0.026 894.1 (42.7) 326.2 (24.4)

(b) Alternative hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.770 887.5 (44.3) 285.9 (44.0) 0.690 827.2 (122.4) 264.4 (67.2)

̂
𝛽IPW (t) 0.767 808.3 (121.4) 241.3 (61.3) 0.700 744.9 (157.6) 228.3 (76.7)

̂
𝛽AIPW1(t) 0.806 801.8 (122.5) 236.1 (59.6) 0.746 733.2 (157.3) 221.4 (74.7)

̂
𝛽AIPW2(t) 0.809 799.9 (123.4) 235.5 (59.7) 0.748 731.6 (157.3) 220.6 (74.7)

Note: Entries are as in Table 2. The standard error for entries for P(reject) in (a) is ≈ 0.0016.

T A B L E 4 For Scenario 3 with continuous outcome, interim analysis performance using each estimator with O’Brien-Fleming and
Pocock stopping boundaries under (a) the null hypothesis 𝛽 = 0 and (b) the alternative 𝛽 = 6.24, with maximum sample size nmax = 300
and tend = 208 days

P(reject) MC E(SS) MC E(Stop) P(reject) MC E(SS) MC E(Stop)

(a) Null hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.026 299.9 (3.1) 207.4 (5.5) 0.025 298.6 (11.3) 206.2 (12.7)

̂
𝛽IPW (t) 0.026 299.8 (3.4) 207.4 (5.8) 0.025 298.6 (11.5) 206.1 (12.9)

̂
𝛽AIPW1(t) 0.025 299.9 (2.6) 207.5 (5.0) 0.026 298.6 (11.2) 206.2 (12.7)

̂
𝛽AIPW2(t) 0.026 299.8 (4.0) 207.0 (7.4) 0.029 298.1 (13.2) 205.7 (14.5)

(b) Alternative hypothesis

O’Brien-Fleming Pocock

̂
𝛽F
(t) 0.875 286.3 (26.0) 167.8 (30.6) 0.823 259.9 (45.2) 151.9 (41.9)

̂
𝛽IPW (t) 0.876 286.0 (26.4) 167.4 (30.7) 0.826 259.1 (45.4) 151.1 (41.9)

̂
𝛽AIPW1(t) 0.930 286.5 (25.5) 165.5 (28.9) 0.896 255.9 (45.2) 146.0 (39.6)

̂
𝛽AIPW2(t) 0.930 265.9 (37.3) 146.7 (31.2) 0.892 239.8 (45.3) 133.5 (37.8)

Note: Entries are as in Table 2. The standard error for entries for P(reject) in (a) is ≈ 0.0016.

6 APPLICATION

To demonstrate how use of the methods would proceed in practice as a trial progresses, we consider the setting of TESICO
with ordinal categorical outcome, where the treatment effect of interest is the log odds ratio 𝛽 in an assumed proportional
odds model as in (2). Because this trial is ongoing, we cannot base this demonstration on data from the trial; accordingly,
we present use of the methods for a simulated data set generated according to the first simulation scenario in Section 5
with 𝛽 = log(1.5), which is based on this study. As in Section 5, the planned maximum sample size is nmax = 602, with
full enrollment reached by Emax = 240 day. Interim analyses are planned at 150, 195, 240, and 285 days, with the final
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T A B L E 5 Interim analysis results for analyses at time (t1, … , t5) = (150,195, 240,285, 330) for the simulated TESICO trial; n(tj) is the
number of subjects enrolled at tj

̂
𝜷F
(t) ̂

𝜷IPW (t)

tj n(tj) Est (SE) T p(tj) bj Est (SE) T p(t) bj

150 368 0.730 (0.292) 2.496 0.257 4.265 0.547 (0.230) 2.380 0.408 3.318

195 487 0.619 (0.224) 2.765 0.432 3.218 0.476 (0.193) 2.473 0.581 2.733

240 602 0.457 (0.187) 2.445 0.611 2.657 0.423 (0.166) 2.551 0.785 2.313

285 602 0.459 (0.162) 2.828 0.809 2.277 - - - -

330 602 - - - - - - - -
̂
𝜷AIPW1(t) ̂

𝜷AIPW2(t)

tj n(tj) Est (SE) T p(t) bj Est (SE) T p(t) bj

150 368 0.565 (0.218) 2.586 0.382 3.444 0.590 (0.199) 2.966 0.462 3.099

195 487 0.497 (0.182) 2.739 0.564 2.777 0.532 (0.167) 3.185 0.670 2.521

240 602 0.409 (0.156) 2.615 0.757 2.362 - - - -

285 602 - - - - - - - -

330 602 - - - - - - - -

Note: For each of the estimators ̂𝛽F
(t) (the ML estimator based on data from all subjects followed for at least the maximum follow-up period F at t), the

IPWCC estimator ̂𝛽IPW (t), and the AIPWCC estimators ̂𝛽AIPW1(t) and ̂
𝛽AIPW2(t), Est (SE) are the estimate ̂𝛽(tj) (standard error SE{̂𝛽(tj)}) at tj, T is associated the

Wald test statistic, p(tj) is the proportion of information at tj, and bj is the O’Brien-Fleming stopping boundary. Entries are boldfaced at the interim analysis at
which the trial would be stopped using the indicated estimator.

analysis to be conducted at tend = 330 days, at which time all nmax participants will have completed the trial with their out-
comes ascertained. For definiteness, we use O’Brien-Fleming stopping boundaries and focus on the null and alternative
hypotheses H0 ∶𝛽0 = 0 vs HA ∶𝛽0 > 0, with overall level of significance 𝛼 = 0.025.

Table 5 shows how the trial would proceed if the analyses were conducted at each interim analysis time t using each
of the estimators ̂𝛽F (t), ̂𝛽IPW (t), ̂𝛽AIPW1(t), and ̂

𝛽AIPW2(t). For each estimator, the proportion of information at each of the
interim analysis times was calculated as described in Section 4.2 and was used to obtain the stopping boundary. At the
first interim analysis at 150 days, the proportion of information for the ML estimator ̂𝛽F (t), which uses only those subjects
among the n(t) enrolled who have been followed for at least the maximum follow-up time F , is 0.257, whereas that for
̂
𝛽AIPW2(t) is 0.462, almost twice as large. This striking difference is reflected in the corresponding stopping boundaries: at
the first interim analysis at 150 days, the test statistic based on ̂

𝛽F (t) is 2.496, far from the boundary of 4.265, whereas that
based on ̂

𝛽AIPW2(t) is 2.966, almost reaching the boundary of 3.099. Basing the analyses on ̂
𝛽AIPW2(t) results in sufficient

evidence to stop the trial at the second interim analysis at 195 days with 487 subjects enrolled, while sufficient evidence
to stop using ̂

𝛽F (t) does not emerge until the fourth interim analysis at 285 days, with all nmax = 602 subjects enrolled.
Basing the analyses on ̂

𝛽IPW (t) and ̂
𝛽AIPW1(t) results in stopping the trial at 240 days, with again all 602 planned subjects

enrolled.

7 DISCUSSION

We have proposed a general framework for design and conduct of group sequential trials in the common situation where
the outcome is known with certainty only after some time lag. The methods account for censoring at the time of an
interim analysis and incorporate baseline and time-dependent evolving covariate information to improve efficiency over
standard analyses, facilitating earlier stopping with potentially smaller numbers of enrolled subjects. We have demon-
strated analytically and empirically that the proposed test statistics possess the independent increments structure, so
that standard methods and software for specifying stopping boundaries can be used. The methods can be applied under
both information-based monitoring and fixed-sample monitoring strategies. For the latter, we have proposed the idea of
effective sample size to characterize the proportion of information available at an interim analysis. Simulation studies
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demonstrate that the methods preserve the operating characteristics of a monitored trial and that substantial reductions
in expected sample size and stopping time can be achieved.

As noted above, the proposed methodology is relevant in the large class of problems where the outcome would be
known with certainty for all subjects at the final analysis. For some trials with possibly censored time-to-event outcome,
interest may focus on the hazard ratio under the assumption of proportional hazards. Here, there is no prespecified,
maximum follow-up time F at which the outcome is known with certainty, so that the proposed framework is not
applicable.

We have defined generically T as the lag time in ascertaining the outcome Y . In practice, there may be an adminis-
trative delay between the time an event related to the outcome has occurred and when that information is available in
the trial database; for example, in TESICO, if a subject dies, there may be a delay before the time of death appears in the
database. Our definition of lag time T should be taken to include such administrative delays.

The methods as presented are based on the assumption (12) that entry time is independent of all other vari-
ables, including baseline covariates X , which implies that at any interim analysis time t, C(t) ⟂⟂ {X ,A,T,Y ,L(T)}. This
assumption is made tacitly in any clinical trial that focuses on inference on an unconditional treatment effect parameter.
If the distribution of X changes over the course of a trial, then (12) is violated, and, intuitively, subjects enrolled at the
time of an interim analysis may not be representative of the population of interest at the final analysis. This is a general
phenomenon and not unique to our methodology. If (12) is violated in this way, then the treatment effect parameter may
not be static over time. Under these circumstances, conditional (on X) inference may be more appropriate; for example, as
in the case of the conditional proportional odds model for ordinal categorical outcome in Section 2.1. Under the modified
assumption E ⟂⟂ {A,T,Y ,L(T)}|X (independence conditional on X), the proposed methods can be extended to support
such conditional inference through incorporation of relevant influence functions and modeling of the censoring distri-
bution as a function of X . In the Supplemental Material, we report on a simulation study based on Scenario 1 of Section 5
in which entry times are taken to be associated with X that suggests that the methods may enjoy some robustness to
violations of (12).
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