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Abstract
1.	 The causative bacterium of Lyme disease, Borrelia burgdorferi, expanded from 

an undetected human pathogen into the etiologic agent of the most com-
mon vector-borne disease in the United States over the last several decades. 
Systematic field collections of the tick vector reveal increases in the geographic 
range and prevalence of B. burgdorferi–infected ticks that coincided with in-
creases in human Lyme disease incidence across New York State.

2.	 We investigate the impact of environmental features on the population dynam-
ics of B. burgdorferi. Analytical models developed using field collections of nearly 
19,000 nymphal Ixodes scapularis and spatially and temporally explicit environ-
mental features accurately explained the variation in the nymphal infection 
prevalence of B. burgdorferi across space and time.

3.	 Importantly, the model identified environmental features reflecting landscape 
ecology, vertebrate hosts, climatic metrics, climate anomalies and surveillance 
efforts that can be used to predict the biogeographical patterns of B. burgdorferi–
infected ticks into future years and in previously unsampled areas.

4.	 Forecasting the distribution and prevalence of a pathogen at fine geographic 
scales offers a powerful strategy to mitigate a serious public health threat.

5.	 Synthesis and applications. A decade of environmental and tick data was collected 
to create a model that accurately predicts the infection prevalence of Borrelia 
burgdorferi over space and time. This predictive model can be extrapolated to 
create a high-resolution risk map of the Lyme disease pathogen for future years 
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1  |  INTRODUC TION

Pathogens that naturally transmit among wildlife and are infec-
tious to humans persist as a recurrent threat to public health (Jones 
et al., 2008). The recent emergence and re-emergence of diseases 
ascribed to zoonotic pathogens is frequently connected to anthro-
pogenic activity and global climate change, but the mechanistic pro-
cesses are not well understood (Aguirre & Tabor,  2008; Aluwong 
& Bello,  2010; Chaves & Koenraadt,  2010; Lashley,  2004; Suzán 
et al.,  2008). Environmental impacts on the life cycle of patho-
gens have been proposed as mechanistic factors precipitating zoo-
notic disease outbreaks (Fouque & Reeder, 2019; Petrosillo, 2019; 
Sleeman et al.,  2009). Identifying the environmental features that 
promote changes in the geographic range or prevalence of patho-
gens can indicate ecological processes exacerbating disease risk. 
Importantly, these environmental features can then be used to pre-
dict the future range or increases in prevalence. This, in combination 
with the knowledge acquired about the ecology of the pathogen, 
can be crucial components of effective disease mitigation strategies 
(Diuk-Wasser et al.,  2010; Gage et al.,  2008; Guerra et al.,  2002; 
Kaplan et al., 2010; Khatchikian et al., 2011; Patz et al., 2008). We 
use a decade of spatio-temporal data to quantify the relationship 
between the environment and the medically relevant Borrelia burg-
dorferi bacterium in a predictive biogeographic model.

The emergence of Lyme disease in the United States over the 
last three decades has occurred in areas with rapid and dramatic en-
vironmental change (CDC, 2019). These environmental changes are 
thought to impact the ecology and geographic range of the causative 
pathogen, B. burgdorferi, leading to the observed changes in Lyme 
disease. As an obligate parasite vectored by the ectothermic black-
legged tick Ixodes scapularis between wildlife hosts, the pathogen 
life cycle involves the integration of multiple ecological processes, 
including the impacts of climate, landscape and human activity on 
the bacterium and its animal hosts.

Suitable habitat conditions for both the pathogen and the tick 
vector have been described separately for multiple regions in North 
America and Europe (Johnson et al.,  2016; Medlock et al.,  2013; 
Slatculescu et al., 2020). Elevation, distance to water, precipitation, 
winter temperature and landscape are commonly identified as fac-
tors impacting pathogen abundance (Diuk-Wasser et al., 2012; Eisen 
et al.,  2016; James et al.,  2013; Ostfeld et al.,  2006; Slatculescu 
et al., 2020). For example, reforestation, land-use change and plant 
communities are thought to alter animal communities in ways 
that increase densities of B. burgdorferi reservoir hosts leading to 

increases in pathogen prevalence in the northeastern United States 
(Allan et al., 2003; Brownstein et al., 2005; Kilpatrick et al., 2017; 
Levi et al., 2012; LoGiudice et al., 2003; Ostfeld et al., 2006; Wood 
& Lafferty,  2013). Similarly, climatic features such as air tempera-
ture and snowfall are thought to affect tick survival rates (Diuk-
Wasser et al., 2012; Eisen et al., 2016; Linske et al., 2019; Slatculescu 
et al., 2020). Despite advances in knowledge of features impacting 
B. burgdorferi populations, the Lyme disease burden continues to in-
crease nationwide suggesting current management strategies may 
not adequately encompass pathogen ecology (Kilpatrick et al., 2017).

Analysing data collected during the dynamic phase of geographic 
expansion and prevalence increases, combined with environmen-
tal metadata, permit high-resolution modelling that incorporates 
environmental heterogeneity and ecological processes (Bunnell 
et al.,  2003; Cord & Rödder,  2011; He et al.,  2015; Nicholson & 
Mather,  1996; Slatculescu et al.,  2020). Ecological processes vary 
geographically due to environmental heterogeneity at both coarse 
and fine scales (Pickett & Cadenasso, 1995; Stein et al., 2014; Wiens 
et al., 1993). The accuracy and statistical power to identify and quan-
tify the effect of environmental features on population dynamics in-
creases with the temporal duration and spatial expanse of collected 
empirical data collected. The prevalence of B. burgdorferi (defined 
by nymphal infection prevalence, NIP) was measured annually using 
standardized field collections (2009–2019) from locations across 
New York State (NYS). This large geographic region has experienced 
recent and rapid changes in climate and landscape (NYS Department 
of Environmental Conservation,  2014; O'Connor et al.,  2021; 
USGCRP, 2018; USGS, 2018b) and is representative of B. burgdorferi-
endemic region in the northeastern US (CDC, 2019; US EPA, 2015). 
The aim of this study was to use fine-scale spatio-temporal data col-
lected during the dynamic phases of NIP increases and range expan-
sions to build and validate a predictive biogeographic model.

Ascertaining how spatio-temporal patterns of multi-host patho-
gens correspond with environmental features in a natural ecosys-
tem facilitates an understanding behind the mechanisms of potential 
drivers of population dynamics and realized geographic ranges. 
Identification of such features can guide experiments that iden-
tify causative relationships between the environment and patho-
gen populations. We acquired hundreds of environmental features 
that were previously suggested to be important to the B.burgdorferi 
transmission cycle. We developed spatio-temporal biogeographic 
models to investigate the potential effect of environmental features 
on NIP. Understanding the ecological processes underlying patho-
gen population dynamics during the emergence of zoonotic disease 

that offers an inexpensive approach to improve both ecological management 
and public health strategies to mitigate disease risk.
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can improve gaps of knowledge in current control strategies and in-
spire broadly applicable ecological management, while being used to 
predict future disease risk.

2  |  MATERIAL S AND METHODS

2.1  |  Data

Ticks were collected April–December from 2008 to 2019 and tested 
for B. burgdorferi with multiplex PCR by experienced NYSDOH person-
nel (Prusinski et al., 2014). Nymphal I. scapularis ticks were collected 
at 283 publicly accessible forested sites across 56 (of 62) counties in 
NYS. Tick abundance and occurrence generally increased throughout 
NYS as previously described (Tran et al.,  2020). NIP represents the 
prevalence of B. burgdorferi-infected nymphal I. scapularis as Lyme 
disease is caused almost exclusively by B. burgdorferi in the eastern 
United States and is most commonly transmitted to humans through 
this tick life stage (CDC, 2020). Tick sampling was heterogeneous over 
time and space, with some sites visited multiple times each year while 
other sites visited only every 2–3 years. Additional analyses were per-
formed on model residuals to ensure that the model accounted for 
any spatial and temporal correlations in the data (Tran et al.,  2020; 
see Appendix S1). Sampling protocol at all sites was independent of 
sampling success and consisted of standardized dragging, flagging and 
walking surveys using 1 m2 of white flannel or canvas along irregular 
transects (Prusinski et al., 2014). Varying numbers of ticks were tested 
from each site due to the variable number of ticks collected per site. 
Tick collections were conducted on public lands, thus generally not 
requiring licences nor permits, and ethical approval was not necessary 
for invertebrate vector species. Further information about tick collec-
tion and pathogen testing can be found in Appendix S1.

Environmental data predicted to influence pathogen prevalence 
were compiled from multiple public databases including: climatic 
data from PRISM Climate Group (2018); biodiversity indices and hy-
drographical features data from the NYS Geographical Information 
Systems (GIS) Clearinghouse (New York State, 2014); vertebrate an-
imal and fire history from the NYS Department of Environmental 
Conservation (2021); bird data from the North American Breeding 
Bird Survey (BBS) (USGS,  2018a); landscape data from the USGS 
National Land Cover Database (USGS, 2018b); elevation data from 
the USGS National Elevation Dataset (USGS, 2022); and road data 
and human population data from the US Census Bureau (2022).

Many of the included environmental features impact multiple 
biotic processes that can affect pathogen prevalence. That is, many 
features are likely to indirectly impact NIP. For example, anthropo-
genic land use practices impact the vertebrate community compo-
sition which affect the availability of tick bloodmeals and behaviour 
(Burtis et al., 2016; Ostfeld et al., 2006). Environmental features can 
be classified into the following general categories (see Table S1):

•	 Landscape factors: It includes natural features such as elevation, 
recent fire history, measures of forest patches within a certain 

radius around sampling locations, biodiversity indices, ecolog-
ical zone classification, landcover, man-made features such as 
distance to roads and hydrological features, the nearest road 
classification, designation as a critical environmental area and 
proportion of urban, forest, shrub or other.

•	 Vertebrate hosts: It includes annual counts for turkey, bear, deer 
and human population at the county level and annual counts for 
bird at the state level.

•	 Surveillance conditions/efforts: It includes relative humidity and 
ambient air temperature that are specific to a location at the time 
of sampling, and hours spent collecting and distance surveyed.

•	 Climate measures: It includes monthly temperature, precipitation, 
humidity proxies, cumulative degree days (degrees above 0°C 
during different seasons and tick life stages—larval (Jan–Aug) and 
nymphal (Jan–May)), degree days below 0°C in the winter (Dec–
Feb). These climate features were also calculated for 1 and 2 years 
prior to nymphal collection for each location. Climatic anomalies, 
the difference between a climate measure and the 1981–2010 av-
erage (observation − mean [time series]), were also calculated.

2.2  |  Statistical methods

Models were built relating the number of infected and uninfected 
nymphal ticks at each collection site to the collection of environ-
mental features using a binomial regression model with a logistic 
link function (see Appendix S1). Logistic regression modelling per-
mits interpretable model parameters. Uncertainty in the estimates 
of NIP due to differences in sample sizes among sites is accounted 
for in the model by incorporating the binomial distribution parame-
ters into the development of the statistical model. Interaction terms 
were not included in this model to limit the ratio of predictors to 
observations as there was not enough data to include higher-order 
terms. The model was trained on data collected from 2009 to 2018 
with data from 2019 reserved for out-of-sample model validation. 
Training data consisted of more than 16,700 ticks that were tested 
for B. burgdorferi collected from 238 different sites in 55 counties 
of NYS. More than 4,500 ticks were tested for B. burgdorferi at 158 
different sites in 47 counties in 2019. A bi-directional stepwise al-
gorithm was applied for variable selection. The different combina-
tions of features were assessed using k-fold cross-validation. Data 
subsets for cross-validation were based on the training data with a 
single year being rotated as the hold-out year for a total of k = 10 
folds. Based on Akaike's information criterion (AIC) and root-mean-
square-error (RMSE), the final model was selected and refitted on all 
the training data and then externally validated using 2019 data. The 
stepwise search strategy is sensitive to multicollinearity such that 
highly correlated predictors are unlikely to be included in the final 
model (Chowdhury & Turin, 2020).

The model was trained on sites with more than 10 ticks tested. 
NIP estimate accuracy improves with increasing number of ticks 
tested, which better captures the underlying tick infection rates by 
accounting for stochasticity associated with tick sampling. Limiting 
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the 2009–2019 dataset to sites where more than 10 ticks were 
tested resulted in 18,972 nymphal ticks over 158 sites in 49 coun-
ties included in model training and testing. Model accuracy was as-
sessed by comparing model estimates of NIP versus the observed 
proportions of infected ticks at each site in 2019. NIP estimated by 
the model for each site was considered accurate if the estimate was 
within the 95% binomial confidence interval around the observed 
number of infected and uninfected ticks collected from that site. The 
confidence interval was calculated using the Clopper–Pearson exact 
binomial interval with the observed proportion of infected ticks at 
each site. The statistical significance of the environmental features 
in the model were determined using Wald tests. Predictive accuracy 
of the model was determined by out-of-sample predictions to 2019 
data, which was not used in the model fitting described above. Using 
out-of-sample model evaluation protects against model overfitting 
(Lever et al., 2016). The purpose of this model is to predict NIP in the 
future. Although features in the model could be used to generate 
hypotheses about causative ecological drivers, their inclusion in the 
model should not be considered as evidence of causation.

2.3  |  Nymphal infection prevalence of Borrelia 
burgdorferi across New York State

The model was used to create a predictive B. burgdorferi NIP map for 
2019 across NYS (Appendix S2.2), except over hydrological features 
and New York City (NYC), at a resolution of approximately 0.5 km 
(0.00513 degrees at the equator). Pathogen infection rates (B.b.) 
were categorized as follows: low (B.b. < 0.1 proportion of ticks in-
fected), medium (0.1 < B.b. < 0.2), high (0.2 < B.b. ≤ 0.5) and very high 
(B.b. > 0.5).

3  |  RESULTS

Nearly 19,000 nymphal ticks were tested from more than 550 visits 
to 158 unique sites between 2009 and 2019. More than 10 nymphal 
ticks were collected and tested from all 550 site visits included in 
the analyses. B. burgdorferi was detected in at least one nymphal tick 
from 155 of the 158 sites. NIP increased between 2009 and 2019 in 
many sites although the rate of increase varied considerably among 
sites and among regions (Figure 1). The rate of increase in NIP was 
greatest in regions with few infected ticks in 2009 (south-central 
and western NYS) and considerably less pronounced in regions with 
initially greater numbers of infected ticks (Hudson Valley and central 
NYS). However, NIP in some sites with relatively high NIP in 2009 
increased at greater rates and there was considerable variation in 
the change in NIP among sites and year-to-year (see Appendix S2.1). 
Changes in annual median NIP across the state are only weakly cor-
related with changes in annual median tick densities (r = 0.02).

The regression model with the greatest predictive accuracy 
correctly estimated NIP with 93.7% of the training data (Figure 2a). 
Model accuracy improved with more ticks tested per site, with 

inaccurate predictions generally at sites where 15 or fewer ticks were 
tested. Inaccurate predictions were not biased toward over or un-
derpredictions (2.8% vs. 3.5%). Model residuals exhibited no depar-
ture from normality nor autocorrelation indicating that any spatial or 
temporal autocorrelation inherent in the dataset was accounted for 
by model covariates (see Appendix S1). Model predictions to sites 
visited in 2019, data not used in model training, were accurate but 
slightly lower than training data accuracy (Figure 2b). Nevertheless, 
the accuracy of model predictions to the out-of-sample dataset indi-
cates that the environmental features included in this model capture 
the spatial and interannual heterogeneity necessary to accurately 
predict NIP into future years. Furthermore, NIP predictions were as 
accurate for sites visited for the first time in 2019 as for those sam-
pled previously, demonstrating the spatial and temporal predictive 
power of the environmental features included in the model.

The regression covariates in the statistical model included 
temporal, geographic, seasonal, climatic and landscape features 
(Table 1). Most of the 47 covariates included in the model were sta-
tistically significant (X  =  40, p < 0.05). Several competing models 
investigated during feature selection exhibited accuracy compara-
ble with that of the final best-fitting models. Each competing model 
differed from the best-fitting model by substituting features in the 
best-fitting models with highly correlated features. The coefficients 
estimated for these correlated features were nearly identical among 
these models, suggesting that the cross-validated features selected 
are robust and issues of collinearity were eliminated during the 
feature selection procedure. Features measuring climate (X =  33), 
including both absolute measures and deviations from a 30-year av-
erage (1981–2010), and landscape features (X = 11) comprised the 
majority of the model covariates. Only rarely were both features 
measuring the absolute values of local climate and deviations from 
the baseline average from the same seasonal and temporal period 
included in the model. However, in the three cases where both the 
absolute and deviation measures were included, the regression co-
efficients had different signs.

The accuracy of model predictions to data that are out-of-sample 
both temporally (data from 2019 were not used to train models) and 
spatially (sites sampled for the first time in 2019) suggest that en-
vironmental features can predict NIP at previously unvisited sites 
across NYS (Figure 3). NIP varies over geographic space and is heav-
ily influenced by landscape topography. Three broad regions charac-
terized by higher elevation are predicted to have lower B. burgdorferi 
NIP, likely due to shared environmental features. These predicted 
results are corroborated by the field collection data showing gradual 
changes in pathogen infection rate over the study period (Figure 1).

4  |  DISCUSSION

The causative pathogen of human Lyme disease, B. burgdorferi, was 
not detected in North America for centuries (Hoen et al.,  2009; 
Marshall III et al.,  1994) before becoming the etiologic agent of 
the most common vector-borne disease in the United States 
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(CDC,  2019). Increases Lyme disease incidence observed in NYS 
over the last several decades coincided with a general increase in 
B. burgdorferi prevalence in nymphal ticks (Figure 1). Data from field 
collections revealed that the median annual NIP increased from 
5.0% [0%–11.1%] in 2009 to 25.3% [20.0%–28.0%] in 2019. This 
change in NIP cannot be attributed to changes in tick population 
sizes as tick population size dynamics are poorly correlated with NIP 
(r = 0.02). A statistical model developed using spatio-temporal varia-
tion in environmental features and field data collected during recent 
pathogen population growth and range expansion (2009–2018) pre-
dicts the variation in pathogen prevalence patterns across the state 
and among years. Importantly, this environmental model accurately 
predicted the prevalence of B. burgdorferi in future years (2019) and 
in previously unsampled areas (Figure 2b). The identification of en-
vironmental features and development of a powerful predictive tool 
is useful in mitigation strategies to address this public health threat.

The statistical model relating environmental features to NIP suc-
cessfully predicted to sites that are outside the range of data used 
to train the model. That is, the model accurately predicted NIP in 
2019, data not used to train the model. Furthermore, prediction ac-
curacy was similar for sites that were visited prior to 2019 as well 
as sites that were not. The model also accurately predicted NIP in 

sites sampled in 2019 with environmental feature values outside of 
the training data range in some cases. For example, the model accu-
rately predicted to sites at elevations that exceeded the range of the 
training data (5–560 m, median 170 m). However, some inaccurate 
predictions can be attributed to environmental feature values be-
yond the range observed in the training data (i.e. temperature and 
precipitation). This limitation highlights the importance of long-term 
data collection to increase the environmental variability observed in 
the training dataset for model development. The overall accuracy of 
the out-of-sample predictions suggests that the environmental fea-
tures can be used to account for B. burgdorferi population dynamics.

Interpretation of both the model predictions and environmental 
drivers should be approached with caution. For example, there is 
inherent temporal and spatial autocorrelation in NIP as the propor-
tion of infected ticks is related to NIP in prior years and in nearby 
locations (Kitron & Kazmierczak,  1997; Schauber et al.,  2005). 
Such autocorrelation can be challenging when applying the model 
to extrapolate outside of the training data. Although autocorrela-
tion could have influenced prediction accuracy during model vali-
dation, it cannot account for the out-of-sample predictive accuracy 
to sites that were sampled for the first time in 2019. This out-of-
sample accuracy suggests that the model successfully accounted 

F I G U R E  1  The prevalence of Borrelia 
burgdorferi-infected nymphs increased 
non-uniformly across NYS between 2009 
and 2019. Five representative collection 
sites from different counties (each 
depicted by a unique colour and shape) 
illustrate the disparate temporal patterns 
of NIP among sites. NIP increased in these 
sites over the decade in which collections 
were made, but at different rates based 
on the slope of best-fit line. Sites with 
initially low NIP increased at the fastest 
rates (south-central and western NYS). 
In contrast, NIP generally increased 
at moderate rates in regions with 
established pathogen populations. These 
representative sites were sampled almost 
every year of the study period and thus 
capture pathogen population dynamics 
at each site most accurately. Points 
represent the observed annual median 
infection rate for each site.
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for any temporal or spatial autocorrelation and did not suffer from 
overfitting to the data despite the large number of model predic-
tors. Furthermore, cross-validation during model development also 
girds against overfitting and demonstrates the predictive accuracy 
to out-of-sample years (Wenger & Olden, 2012). Lastly, the lack of 
autocorrelation in the model residuals increases confidence in the 
regression model (see Appendix S1). Although the predictors in sta-
tistical models cannot be interpreted as causal drivers, the identified 
features can be used to guide future hypothesis-driven experiments 
to determine causation.

The model identified many environmental features that col-
lectively predict the spatio-temporal dynamics of B. burgdorferi 
prevalence. Pathogen prevalence is contingent upon the complex 
network of ecological interactions between the environment, ver-
tebrate hosts and vector populations but only first-order terms 
were considered in the model. Identifying the relationship between 

these environmental features and NIP is further complicated as 
many features likely indirectly impact B. burgdorferi. While envi-
ronmental features impact tick population dynamics, the spatio-
temporal variation in NIP cannot be attributed to the impacts of 
the identified environmental features on tick populations as (a) the 
spatio-temporal variation in NIP is only weakly correlated to the 
spatio-temporal variation in nymphal tick densities (r  =  0.02) and 
(b) nymphal density has been accounted for by including it as a 
model predictor (Khatchikian et al.,  2012; Tran et al.,  2020). The 
variance explained by the environmental features included in the 
model likely impact populations of vertebrate hosts that amplify or 
dilute NIP (Brisson et al., 2008; LoGiudice et al., 2003; Randolph & 
Dobson, 2012). The environmental features included in this model 
can serve to generate macroscale hypotheses about how anthro-
pogenic impacts on the environment affects the emergence of dis-
eases. Including the geospatial patterns and ecological processes 
that affect both the pathogen as well as the tick vector will improve 
models and assessment of Lyme disease risk.

Climatic features from multiple timepoints within and across 
years suggest multiple ecological processes affecting B. burgdorferi 
population dynamics. For example, total monthly precipitation from 
different times of the year and from years prior to sampling cap-
ture short-term interannual and seasonal climatic effects (Table 1d). 
Climatic anomalies (site-specific deviations from the long-term aver-
age at that location) permit comparisons of present conditions rel-
ative to the past that give insight into historical effects caused by 
climate change. The climatic anomaly features included in the model 
suggest that both climate change, in addition to the absolute val-
ues of climatic features, affect B. burgdorferi population dynamics. 
For example, the extent of the increase in summer temperatures at 
collection sites compared with past temperatures (1981–2010) at 
those sites is associated with an increase in NIP (Table 1e). The use 
of abiotic features was particularly advantageous, despite the ex-
pectation that they indirectly affect NIP, because such features are 
readily measurable and permit predictive models. Of note, climate 
likely impacts biotic systems beyond 2 years preceding tick collec-
tions, an important question for future studies. A comprehensive 
understanding of the ecological consequences of climate change can 
guide future research using short-term climatic forecasts to predict 
pathogen population dynamics.

B. burgdorferi prevalence is associated with landscape features 
that measure habitat disturbance (i.e. recent fires and roads). Prior 
studies demonstrate a positive association between human Lyme 
disease risk and habitat fragmentation, which alter vertebrate com-
munity composition and subsequently increases pathogen popu-
lation sizes (Allan et al., 2003; Simon et al., 2014). In contrast, the 
model indicates that NIP is negatively associated with landscape 
features representing habitat disturbance like recent wildfire, patch 
connectivity, human population size and critical environment desig-
nations. However, some features like wildfire affect the continuity 
of fauna and can increase the abundance of small mammal and gen-
eralist species, which are thought to provide more optimal pathogen 
conditions (Roberts et al., 2015). This apparent contradiction may be 

F I G U R E  2  Nymphal infection prevalence is accurately predicted 
by the statistical model. (a) The model accurately predicts NIP 
across space and time for 457 visits to 129 sites between 2009 
and 2018. The distance to the 1:1 line denotes the predictive 
accuracy, with closer distances being more accurate. The number 
of ticks tested per site ranged from 11 to 80 (median = 33). (b) 
The statistical model can predict NIP into a future year across 
geographic space. The model accurately predicts to an out-of-
sample dataset (2019), to both new sites and into a future year 
across 111 visits to 97 sites. The predictive accuracy of the model 
to the 29 sites sampled for the first time in 2019 (n = 867 ticks) was 
comparable with sites represented in the training dataset despite 
fewer ticks tested at these new sites (medians of 19 and 50 ticks 
tested, respectively).

(a)

(b)
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explained by the positive association between habitat fragmentation 
and tick population sizes (Khatchikian et al., 2012; Talbot et al., 2019; 
Tran et al.,  2020). Tick abundance has significantly increased 

TA B L E  1  Environmental factors of Borrelia burgdorferi 
prevalence

B. burgdorferi NIP model 
[X = 47] Directionality p-value

(a) Surveillance efforts [1]

Nymph density per person-
hour of collection

(+) **

(b) Landscape ecology [11]

Latitude (−) ***

Elevation (−) ***

Ecological zone 
classificationa

***

Watershed biodiversity 
score

(−) ***

Indicator of critical zonea (+) ***

Number of fires (previous 
year)

(−) ***

Other landcover (not forest, 
urban, shrub)

(+) ***

Forest patch connectivity 
within 500 m radius

(+) **

Distance to nearest 
hydrographical feature

(+) **

Road type of nearest roada (+) *

Patch density within 50 m 
radius (edge length per 
unit area)

(−)

(c) Vertebrate hosts [2]

Human population (−) ***

Bird population (migrant/
non-breeder status)

(−) *

(d) Climatic measures (raw values)b [17]

Monthly maximum 
temperature

Jun (previous year) (−) ***

Oct (2 years prior) (−) ***

Monthly mean temperature

Jun (current year) (+) ***

Mar (previous year) (−) ***

Oct (previous year) (+)

Monthly total precipitation

Jan (current year) (+)

Mar (previous year) (+)

Oct (previous year) (+) **

Mar (2 years prior) (−) ***

Monthly maximum vapour 
pressure deficit

Mar (previous year) (+)

Oct (2 years prior) (+) ***

Monthly minimum vapour 
pressure deficit

(Continues)

B. burgdorferi NIP model 
[X = 47] Directionality p-value

Mar (current year) (+) ***

Jun (current year) (−) ***

Mar (previous year) (−) ***

Degree days below 0°C 
(winter)

Winter (current year) (−) ***

Winter (previous year) (+) ***

Winter (2 years prior) (+) ***

(e) Climatic anomalies (deviations from historical mean from 1981 to 
2010 baseline) [16]

Monthly maximum 
temperature anomalies

Oct (2 years prior) (+) ***

Monthly mean temperature 
anomalies

Jun (2 years prior) (+) ***

Monthly minimum 
temperature anomalies

Oct (current year) (+) **

Jan (2 years prior) (−) *

Jun (2 years prior) (−) ***

Monthly total precipitation 
anomalies

Jan (current year) (−) ***

Mar (current year) (−) ***

Jun (2 years prior) (+)

Monthly max. vapour 
pressure deficit anom.

Jan (2 years prior) (−) ***

Mar (2 years prior) (−) ***

Jun (2 years prior) (−) ***

Monthly minimum vapour 
pressure deficit anom.

Jan (previous year) (−) **

Mar (previous year) (+) ***

Jan (2 years prior) (−)

Monthly mean dew point 
temperature anomalies

Jan (current year) (+) **

Oct (previous year) (−) **

Notes: t-test *** < 0.001, ** < 0.01, * < 0.05; (−) = negative relationship; 
(+) = positive relationship.
aCategorical variable.
bFor temperature, vapour pressure deficit and mean dew point 
temperature, monthly refers to the daily value averaged over all days in 
the month.

TA B L E  1  (Continued)



2786  |   Journal of Applied Ecology TRAN et al.

throughout NYS which is a strong predictor of human Lyme disease 
risk regardless of B. burgdorferi prevalence (Tran et al., 2020).

The historical and current geospatial trends in B. burgdorferi 
populations mirrors many of the dynamic geographical patterns of 
Lyme disease cases in NYS (CDC, 2021). Field collections from 2009 
to 2019 revealed that large regional increases in tick infection rates 
(Figure 1) parallel dramatic increases in Lyme disease cases and the 
range expansion into western NYS (CDC, 2021). For example, NIP 
and Lyme disease cases increased rapidly in areas where B. burgdor-
feri was only recently detected and remained high where B. burg-
dorferi populations have existed for decades (CDC, 2019). Although 
both NIP and the density of infected nymphs (DIN) have been used 
as indicators for Lyme disease risk, our predictive model specifi-
cally focused on NIP predictions (LoGiudice et al., 2003; Ogden & 
Tsao,  2009). Using NIP instead of DIN avoids the compound un-
certainty inherently involved in estimating the population size of 
ticks, which requires accounting for day-of-collection factors (e.g. 
weather), and offers the advantage of using observed tick density as 
a model predictor (Tran et al., 2020). This qualitative association be-
tween the distribution of pathogen populations and human disease 
demonstrates the value of investigating the ecological processes 
driving pathogen population growth.

Discerning the environmental impacts on pathogen prevalence 
and disease risk can guide public health strategies. The influence of 
environmental factors on NIP suggests that land management strat-
egies and preventative behaviour, in addition to methods targeting 
transmission in animal hosts, can be important mitigation strate-
gies (70). For example, acorn production correlates with Lyme dis-
ease incidence but estimating acorn abundance over a large scale 
for landscape management is challenging even with the advances 
in remote sensing techniques (Ostfeld et al.,  2006). Accurate NIP 
models that incorporate easily accessible data such as climate and 
landscape geography facilitate the production of annual risk maps at 
high spatial resolution. Public health warnings can be provided near 
high-risk areas or specifically managing critical environmental areas 

that are within a certain distance from a body of water, roads or a 
fragmented forest habitat. Furthermore, fire management to reduce 
tick population sizes is a commonly proposed landscape manage-
ment technique but poorly understood (Guo & Agusto, 2022). Given 
that the impact of fire is likely additive and indirect, multivariate re-
gression models encompassing landscape type and distance to fire 
provide further insight into possible relationships between different 
environmental features. Importantly, it is possible that the results 
could be extrapolated to collect ticks in regions with similar climate 
and landscape outside NYS. This method affords an inexpensive and 
rapid approach to address a future forecasted with more frequent 
zoonotic disease outbreaks (Jones et al., 2008).
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