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A B S T R A C T   

The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for 
diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical 
imaging helps to diagnose the disease accurately, where the label quality plays an important role in the clas
sification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the 
problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degra
dation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions 
and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have 
to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general 
classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery 
algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed al
gorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as 
principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest 
neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement 
are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence 
samples are further selected as the training set to improve the stability and accuracy of the classification 
framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct 
extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on 
three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively 
recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur 
dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art al
gorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the 
proposed algorithm also has certain scalability while ensuring data integrity.   

1. Introduction 

The Corona Virus Disease 2019 (COVID-19), which broke out at the 
end of 2019, has been recognized as a global pandemic by the World 
Health Organization. At present, the disease has involved more than 200 
countries and regions, infecting more than 600 million people world
wide. The main clinical symptoms of COVID-19 are fever, cough, and 
fatigue, and it may lead to fatal acute respiratory distress syndrome [1]. 
At the same time, statistics from the World Health Organization show 
that the average number of infected people spreading the virus to others 
in a population without immunity can reach 3.77. Therefore, without 
medical intervention, COVID-19 will spread rapidly. The main obstacle 

to controlling the spread of the disease is the lack of efficient detection 
methods. Although reverse transcription-polymerase chain reaction 
(RT-PCR) is considered to be the most sensitive method for detecting 
COVID-19, it takes about 4–6 h to obtain the results [2]. Moreover, RT- 
PCR has a relatively high false negative rate, requiring repeated tests at 
intervals of several days to confirm the diagnosis. According to the latest 
findings, up to 58 % of COVID-19 patients may have initial false negative 
RT-PCR results, which indicates the necessity to implement more 
appropriate diagnostic strategies to correctly identify high-risk cases 
and reduce the burden of disease in the population [3]. In addition, RT- 
PCR reagents are in short supply in many areas with severe epidemics. In 
contrast, chest imaging equipment has been widely used in major 
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hospitals. Therefore, experts recommend the diagnosis of suspected 
cases based on clinical symptoms, chest imaging manifestations, and 
etiological tests. Common chest imaging examinations include X-ray and 
computed tomography (CT). CT constructs a clear structure of the lung 
tissue by performing a three-dimensional tomography scan of the pa
tient’s chest, which demonstrates a mass or nodular lesion. X-rays 
project the three-dimensional structure onto a two-dimensional plane, i. 
e., the soft tissue of the chest wall and bony structures onto the lung 
field, and the shadows produced may be confused with the lesion. As a 
result, X-ray is often more difficult than CT in the diagnosis of disease. 
However, considering the disadvantages of CT, such as expensive and 
high radiation dose, X-ray has the advantages of low radiation dose, fast 
shooting speed, and low price [4]. In clinical practice, X-ray examina
tion can provide the necessary visual support and diagnostic basis for 
imaging studies and diagnosis of diseases such as COVID-19 [5]. For 
these reasons, we focus on the study of chest X-ray images. 

In the diagnosis of chest X-ray images for COVID-19, radiologists 
usually have to read dozens or even hundreds of X-rays per day due to 
the large number of patients to be screened and treated, which is a heavy 
workload. In addition, the quality of the chest X-rays is easily affected by 
factors such as the patient’s position and the depth of inspiration, which 
complicates the analysis of chest X-rays and may lead to misdiagnosis. 
Therefore, the diagnosis of COVID-19 can be carried out by chest X-ray 
images with the support of artificial intelligence technology. In recent 
years, deep learning methods represented by convolutional neural net
works (CNN) have been widely used in medical image processing and 
have made important progress in many fields [6,7], such as skin cancer 
[8,9], breast cancer [10], brain disease [11], pneumonia [12,13], and 
lung segmentation [14–18]. At present, many effective algorithms based 
on deep learning have been proposed, most of which are based on su
pervised learning strategies that require a large number of correctly 
labeled training samples to train a well-performing model. However, it is 
usually difficult to obtain a completely true and effective medical 
dataset due to insufficient label information, manual mislabeling, 
subjectivity in the labeling process, and data encoding problems [11]. 
Noisy labels usually have a negative impact on the performance of 
classification models [19–21], and manually correcting noisy labels not 
only requires consistent expert judgment but is also a time-consuming 
and impractical task. Although many approaches have been consid
ered to address the problem of noisy labels, it is still a major challenge to 
eliminate the interference of noisy labels in medical image analysis. 

Existing researches on training with noisy labels mainly focus on two 
directions. (1) Build a robust model for noisy environments [22]. Xue et 
al [23] proposed an iterative learning framework based on an online 
uncertainty sample mining method for medical image classification with 
noisy labels to address the lack of high-quality labeled medical data. Zhu 
et al [24] proposed a label quality evaluation strategy to select samples 
and designed an overfitting control module to allow the network to 
maximally learn from accurate labels during training. Xue et al [25] 
selected samples with correct labels by a model committee setting and 
designed a joint optimization framework with label correction to grad
ually correct noisy labels and improve the performance of the network. 
Ju et al [26] proposed a framework based on uncertainty estimation to 
deal with label noise of medical images and introduced a boosting-based 
curriculum training procedure for robust learning. Lin et al [27] fol
lowed the idea of the loss-value weighting strategy and designed a 
sample weight-adjustment scheme combined with an attention mecha
nism to evaluate the importance of each sample through the learning 
process and reduce the impact of noisy samples on the training of the 
network. Li et al [22] proposed an improved categorical cross entropy to 
reduce the effect of noisy labels on the training process and improve the 
robustness of the network. Although the above strategies can eliminate 
the influence of noisy labels to some extent, it is still necessary to 
manually specify the form of the weighting or correction functions in 
practical applications, and the hyper-parameters in the functions usually 
have to be adjusted by cross-validation, which may affect the stability of 

the performance of the training model. (2) Remove or relabel noisy 
samples to obtain a more accurate dataset for training [28]. In [29], the 
information entropy was calculated based on the probability distribu
tion obtained by the Bayesian classifier, and samples with low entropy 
and incorrect prediction results were considered noisy samples. Guan et 
al [30] proposed a sequential ensemble noise filter that generated a 
noise score for each feature instance to identify noisy labels. Xia et al 
[31] defined relative density based on the idea that samples surrounded 
by heterogeneous points were more likely to be the noise than homo
geneous points to identify noise [10]. Samples with a relative density 
greater than or equal to the preset threshold were considered mis
labeled. Feng et al [32] proposed an ensemble method based on noise 
detection metrics that used three different classifiers, namely Bagging, 
AdaBoost, and k-nearest neighbor, to identify noisy labels. Yuan et al 
[33] borrowed ideas from co-training and generative adversarial net
works, using multiple neural networks that learn and cross-predict labels 
independently to iteratively update labels of the dataset. Ying et al [34] 
proposed that samples could be analyzed multiple times by supervised 
learning methods, and then the resulting predictions were counted and 
the sample was relabeled using the majority voting algorithm. However, 
the above methods focus on extracting and analyzing the global features 
of the images, ignoring the problem that the performance of the classi
fication model is limited when the noise level of the labels is high. 
Furthermore, COVID-19 chest X-ray images should be analyzed from a 
different perspective compared with other types of images. The specific 
features of chest X-ray images of COVID-19 patients are as follows: early 
on, the lungs (obvious in the outer lung zones) show multiple small 
patchy shadows and interstitial changes, which subsequently tend to 
develop into multiple ground-glass manifestations and infiltrative 
shadows in both lungs, and in severe cases, lung consolidation may be 
found. It can be noticed that the lesion areas of COVID-19 chest X-rays 
are smaller and the similarity between images is higher. Nevertheless, 
most of the algorithms commonly used currently to recover noisy labels 
usually have the part of interest located in the center of the image or 
occupying a larger portion of the image. In cases where the critical lesion 
areas are small, such algorithms may have difficulty capturing subtle 
differences between images and may be disturbed by the noise outside 
the lesion area, which will result in limited performance. In conclusion, 
there is an urgent need to address the challenge of classifying chest X-ray 
images with noisy labels to better control the spread of COVID-19. 

In this paper, we introduce a general classification framework for 
COVID-19 chest X-ray images with noisy labels and propose a noisy label 
recovery algorithm based on subset label iterative propagation and 
replacement (SLIPR). Firstly, the proposed algorithm randomly extracts 
some samples multiple times to form several subsets. Secondly, global 
and local features of chest X-rays are extracted and learned with the help 
of principal component analysis (PCA), low-rank representation (LRR), 
and neighborhood graph regularization. Then, the samples are analyzed 
and classified using the k-nearest neighbor (KNN) algorithm, and the 
iterative results are retained. Finally, multi-level weight distribution and 
replacement are performed on the label set of the samples, and the noisy 
labels are recovered according to the idea of label propagation. In 
addition, the proposed algorithm can also select samples with high 
confidence as the training set to further improve the stability and ac
curacy of the classification framework. In this paper, extensive experi
ments are conducted on three available COVID-19 chest X-ray image 
datasets and the proposed algorithm is compared with other state-of-the- 
art algorithms. The results show that SLIPR is effective in recovering the 
noisy labels and performs better than other algorithms in terms of 
objective metrics. 

This paper is organized as follows: Section 2 presents the introduced 
framework and the proposed algorithm. Section 3 illustrates the 
experimental setup. Section 4 details the results of our experiments. 
Section 5 concludes the paper. 
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2. Method 

2.1. Overview of the framework 

To reduce the interference caused by label noise, we take the 
approach of recovering noisy labels to improve label quality, which has 
the advantage of being directly applicable to subsequent classification 
models. Furthermore, the medical features of the chest X-ray images 
used to diagnose COVID-19 include distinct localized lesion features as 
well as scattered global features. However, most existing algorithms do 
not take into account both global and local sample features, which may 
result in label noise that is difficult to remove or even increase. 

To this end, we introduce a general framework for classifying 

COVID-19 chest X-ray images in the presence of noisy labels (shown in 
Fig. 1), and propose a noisy label recovery algorithm based on subset 
label iterative propagation and replacement (shown in Fig. 2). The 
framework first divides the dataset into the training set and the testing 
set, and then simulates the situation where the labels of the training set 
are noisy. To model the noise, we choose the most commonly used 
method, namely the random noise method [35]. This method is 
described in detail in Section 3.2, where the labels of a certain propor
tion of samples are exchanged randomly. After injecting the label noise, 
the noisy labels of the training set are recovered using the label recovery 
module (shown in the blue shaded part of Fig. 1), which is the core of 
this paper, i.e., the proposed SLIPR algorithm. Finally, the CNN is used 
to train the label-recovered training set, and the testing set is analyzed 
and classified. 

2.2. Proposed algorithm 

To correct the noisy labels of COVID-19 chest X-ray images, we 
propose a noisy label recovery algorithm based on subset label iterative 
propagation and replacement. As shown in Fig. 2, for the training set 
after injecting the random noise illustrated in Fig. 1, the proposed al
gorithm first randomly divides it into the training subset and the testing 
subset through multiple operations, and then the principal component 
analysis is used for dimensionality reduction of the training subset for 
subsequent data analysis [36]. Based on the idea that most of the sam
ples in the dataset have true labels, SLIPR can extract the sample fea
tures of the training subset and classify the samples of the testing subset, 
then propagate the correct labels among similar samples by random 
learning and updating, and finally cleanse the label noise of the whole 
training set effectively. Considering the problem of small lesion areas 
and high similarity between images in COVID-19 chest X-rays, the 
proposed algorithm adopts the strategy of analyzing both the global and 
local features of images, which enhances the ability of the algorithm to 
correct the noisy labels. In addition, during the training process of CNN, 
easy samples tend to have stable outputs in different learning epochs, 
while the outputs of hard samples tend to be unstable [37]. Therefore, 
the proposed algorithm can regard the staged results of its learning 
process as indicators to measure the confidence of the samples, and 
select samples with high confidence as the training set of CNN to 
improve the accuracy of the classification framework. 

Feature extraction and classification. First, in order to get low- 
rank features of the samples, we refer to the method proposed by Yin 
et al [38] as the LRR-based feature extraction model and it can be 
defined as: 

min
Z,L

‖Z‖* + ‖L‖* s. t. X = LXZ (1)  

where X denotes the sample data matrix, Z stands for the row space of 
the matrix, L refers to the column information of the matrix, and ‖⋅‖* is 
the nuclear norm of the matrix, which is calculated as the sum of all 
singular values of the matrix. In this case, the low-rank projection matrix 
not only extracts the principal component information but also pre
serves the global representation structure of the data. 

To prevent the algorithm from converging to a trivial solution during 
iteration, we introduce two matrices P and Q to approximate L and 
constrain the range of solutions by imposing an orthogonal constraint. 
The matrix P can be regarded as the data reconstruction matrix and Q is 
the projection matrix that can accommodate the main energy of the 
data. Considering that in practical applications, large data have many 
redundant features that are not conducive to classification, it is desirable 
to select the most useful features from the redundant data for extraction. 
Due to the good row-sparsity property of l2,1 norm [39,40], to make the 
algorithm more flexible in the selection of feature dimensions and to 
have good interpretability, we also impose the following condition on 
the projection matrix, 

Input image dataset 

Training set Testing set

Output the classification results of the testing set

Inject random label noise

Train the CNN

Label recovery module

Fig. 1. COVID-19 chest X-ray image classification framework with noisy labels.  

t = t + 1

s = s + 1

Divide the training set into the 
training subset and the testing subset 

PCA

Build the LRR model

Construct the 
neighborhood graph

Compute the low-rank 
projection matrix 

Classify samples of the 
testing subset by KNN

t = T ?

Get the set of optional labels 
of the samples

Analyze data and perform the 
label propagation and replacement

Output the label-recovered training set 

N

N

Y

Y

Initialize the parameters

Sample selection module

Feature 
extraction and 
classification

Multi-level 
propagation and 
replacement of labels

s = S ?

Fig. 2. Flow chart of the proposed SLIPR algorithm.  
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L = PQT (2)  

PTP = I (3)  

min
P,Q,Z

λ1‖Z‖* + λ2‖Q‖2,1 (4)  

where λ1 and λ2 are the regularization parameters used to balance the 
importance of the corresponding terms, I is the unit matrix in the 
orthogonal constraint, and ‖⋅‖2,1 is the l2,1 norm defined as: 

‖Q‖2,1 =
∑N

i=1
‖qi‖2 (5)  

where N is the number of samples, or the number of rows of the matrix 
Q, qi denotes the ith row vector of matrix Q, and ‖⋅‖2 denotes the l2 norm. 

Although LRR can preserve the global representation structure of the 
data, it ignores the local relationships of the data and cannot obtain a 
compact representation of the data in low-dimensional space. In this 
case, learning a projection that preserves the local structure of the data is 
also necessary for feature extraction. Manifold learning is widely used in 
pattern recognition and computer vision owing to its success in 
revealing the local geometric structure of data [41–44]. The core idea of 
manifold learning is that any non-linear manifold can be approximated 
locally by linear subspaces. If two data points are adjacent in the 
manifold in which they are distributed, they are also adjacent in the 
reduced subspace of reconstructed points. Since the relationship be
tween a sample and its neighbors is linear, the local geometric properties 
of a given sample can be well described based on the linear coefficients 
of the reconstructed samples of its neighbors. Based on the preceding 
conclusions, we adopt the method based on neighborhood graph regu
larization to ensure that the reduced-dimensional data retains its orig
inal local structure. Specifically, for the data matrix X, the method based 
on neighborhood graph regularization first constructs the neighborhood 
graph W to represent the local relationships of the samples, and then 
performs projection learning by solving the following optimization 
problem, 

min
PTXXTP=I

∑N

i=1

∑N

j=1
‖PTxi − PTxj‖

2
2wi,j (6)  

where P is the projection matrix, and wi,j denotes the (i, j)th element of 
the graph W. Specially, each wi,j of graph W can be defined as: 

wi,j =

{
1, if xi ∈ Nk

(
xj
)

or xj ∈ Nk(xi)

0, otherwise (7)  

where Nk(xj) represents the set of k nearest neighbor samples of sample 
xj.wi,j = 1 means that sample xi is the nearest neighbor of sample xj in the 
data distribution. It can be considered that these samples are similar and 
have a large probability of belonging to the same class. 

Since the original samples and reconstructed samples have the same 
neighborhood relationship with those of the original samples, we 
impose a graph constraint on the reconstruction error between the 
original and reconstructed samples to preserve the local geometric 
structure as: 

min
P,Q,Z

∑N

i=1

∑N

j=1
‖xi − PQTXzj‖

2
2wi,j (8)  

where zj is the jth column vector of the matrix Z, and PQTXzj can be 
viewed as the reconstructed sample of the original sample xi. 

From the above, the low-rank projection matrix Q can be obtained by 
Eqs. (3), (4), and (8). Then we can calculate the low-rank representation 
matrices of the training and testing subsets through Eq. (9), and use the 
KNN algorithm to quickly predict the class labels of the samples of the 
testing subset [45]. In Eq. (9), X′ represents the low-rank representation 
matrix and X represents the original sample data matrix. 

X′

= QTX (9) 

Multi-level propagation and replacement of labels. After itera
tive learning of the algorithm, each sample will obtain multiple optional 
labels. T denotes the total number of iterations of label propagation and 
replacement per round, S denotes the total number of rounds of label 
propagation and replacement, then sample xi can obtain T labels in the 
sth round, and L(s)

i denotes the set of optional labels for sample xi in the sth 

round. Based on the idea that samples with correct labels are in the 
majority, we expect that each sample can not only retain the initial label 
information, but also be guided by sample relabelling based on the 
learning results of the algorithm. Therefore, the label of sample xi after 
the sth round of training can be updated according to Eqs. (10) and (11). 

F*(s)
i =

{

∪
T

t=1
L(s)

i,t

}

∪ l0
i (10)  

y(s)i = argmaxF*
i
(s) (11)  

where L(s)
i,t is the element of L(s)

i , l0i is the observed label of xi, and F* can 
be seen as a function that assigns the label for each sample. 

At this point, the dataset has completed the label propagation and 
replacement for the current round. Since the subsets are randomly 
selected, we can perform multiple rounds of label propagation based on 
the current updated results, and replace the labels of the samples several 
times until the final results converge to obtain the recovered label set. 
Algorithm 1 is the pseudo-code of SLIPR.  

Algorithm 1: Label recovery algorithm based on subset label iterative propagation 
and replacement (SLIPR). 

Require: dataset X, noisy label set Y’, parameters γ, T, S. 
Ensure: recovered label set Y*. 
1: for s = 1 to S do 
2: for t = 1 to T do 
3: m = randperm(N)

4: l = round(N*γ)
5: YL’(t,s) = Y’(m(1 : l))
6: YU’(t,s) = 0 
7: XL

(t,s) = X(m(1 : l), :)
8: XU

(t,s) = X(m((l+ 1) : end), :)
// Construct the neighborhood graph 

9: W = construct(XL
(t,s))

10: while not converged do 
11: Update Q by Eqs. (3), (4) and (8) 
12: end while 
13: XU’(t,s) = QTXU

(t,s)

14: XL’(t,s) = QTXL
(t,s)

// Classify samples by KNN 
15: YU’(t,s) = knnclassify(XU’(t,s) ,XL’(t,s),YL’(t,s))
16: L = [YL’(t,s) ;YU’(t,s) ]
17: end for 
18: for i = 1 to N do 
19: Fi

*(s) = {
⋃T

t=1Li,t
(s)} ∪ l0i 

20: yi
(s) = argmaxF*

i
(s)

21: end for 
22: Y’ = {y1

(s) ; y2
(s) ;⋯; yN

(s)}

23: end for 
24:Y* = Y’ 
25: return Y*  

Selection strategy for high confidence samples. During the training 
process of CNN, the outputs of simple samples in different learning 
epochs are usually stable, while the outputs of hard samples tend to be 
unstable, leading to the degradation of the classification performance of 
the model. Therefore, as shown in the red shaded part in Fig. 2, without 
affecting the inherent performance of the classification framework, the 
proposed algorithm can select high confidence samples as the training 
set and obtain more stable and accurate samples by removing some hard 
samples. Specifically, the proposed algorithm draws on the idea of 
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majority voting [46], using the compositional structure of the sample’s 
optional labels as a reference. A sample is considered to be a high con
fidence sample if the majority result suggests that it should belong to the 
same type of label. Based on this mechanism, the performance of the 
classification model will be effectively improved. However, for different 
types of classification models, the minimum number of samples required 
for the training set is different, so the ratio ξ should be given to achieve 
the selection. The ratio ξ is defined as: 

ξ =
Nm

N
(12)  

where Nm represents the minimum number of samples required for the 
classification model. Fig. 3 is the flow chart of the sample selection 
module described in this section. Since the selection module is an 
optional part of the proposed algorithm, it is not shown in Algorithm 1. 

Computational Complexity. For the proposed algorithm, the main 
computational costs are the singular value decomposition (SVD) of the 
matrix and the inverse operation. Assuming that the total number of 
iterations of the algorithm is τ, the computational complexity is 
approximately O(τND2) for the data matrix of N × D. To reduce the 
training time of the proposed algorithm, the graphics processing unit 
(GPU) device can be used instead of the central processing unit (CPU) 
device for computation, thus allowing the algorithm to be applied to 
large-scale datasets. 

2.3. Convolutional neural network 

The CNN has excellent performance in image classification tasks. As 
shown in Fig. 4, the CNN used in this paper consists of an input, two 
block A, one block B, and a classification output. Block A consists of the 
convolutional (Conv) layer, the batch normalization (BN) layer, the 
rectified linear unit (ReLU) layer, and the max pooling layer. Block B, 
unlike block A, does not contain the max pooling layer. The 

classification output consists of the fully connected (FC) layer and the 
softmax layer. The network parameters of the CNN are shown in Table 1. 
In addition, as a label recovery module, the proposed SLIPR algorithm 
can be directly combined with CNNs of different structures. Therefore, 

we choose the CNN with a simple structure as the reference for subse
quent experiments and analysis, and the structure of the CNN can be 
changed flexibly according to the requirements. 

3. Experimental setup 

The experimental environment is an Intel® Core™ i7-10710U CPU 
@ 1.10 GHz on a Windows 10 PC with 16 GB RAM and an NVIDIA 
GeForce MX350 graphics card. The model is built and trained under 
MATLAB R2020a. The initial learning rate used is 0.0003, the optimi
zation algorithm used is the stochastic gradient descent with mo
mentum, and the batch size is 64. To decrease the contingency of the 
experimental results, the experiments are repeated 10 times and the 
average values are tabulated. 

3.1. Datasets 

Three publicly available COVID-19 chest X-ray image datasets are 
introduced in this paper. All datasets use posterior-to-anterior (AP)/ 
anterior-posterior (PA) images of chest X-rays, as radiologists use this 
perspective of radiography extensively in clinical diagnosis. 

Tawsifur [47,48] dataset includes 362 COVID-19 chest X-rays and 
569 normal chest X-rays from various publicly available datasets, online 
sources, and published articles. Furthermore, the images gathered were 
of varying sizes, depending on the resolution of the X-ray machine and 
the articles supplying the images. As a result, the dataset’s creators 
undertook the time-consuming task of uniformly processing the chest X- 
ray images and ensuring that no duplicates were present. 

Skytells1 dataset is comprised of 448 COVID-19 chest X-rays and 569 
normal chest X-rays. The dataset is primarily derived from examples in 

Initialize the proportion ξ of high confidence 
samples selected for the training of the CNN

Count the optional labels of the samples in each 
round of label propagation and replacement

Rank the confidence of the samples according 
to the majority voting principle

Select the required number of 
high confidence samples

Fig. 3. Flow chart of the sample selection module.  

Block A

Conv+BN+ReLU
Max 

pooling

Block B

Conv+BN
+ReLUInput

Classification Output

FC

...... COVID-19
NORMAL

Softmax

Fig. 4. Structure of the CNN.  

Table 1 
Network parameters of the CNN.  

Module Parameters 

Input 224 × 224 × 1 
Conv Layer 2-D convolutional layer with 16/32/64 filters of size [33] and 

padding of size 1 
BN Layer / 
ReLU Layer / 
Max Pooling Layer 2 × 2 max pooling with stride [22] 
FC Layer 2 hidden neurons 
Softmax Layer / 
Classification 

Output 
2 classes, "1" for COVID-19, 
and "2" for NORMAL  

1 https://github.com/skytells-research/COVID-19-XRay-Dataset 
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publications, as these images are already available with a high degree of 
certainty. Subjects in the Skytells dataset have differences in gender, 
age, ethnicity, and nationality. Furthermore, the dataset contains chest 
X-ray images of the same person at various stages of the disease, as 
symptoms differ at different levels of COVID-19 infection. 

CXRs dataset consists of 818 samples, including 304 COVID-19 chest 
X-rays from the COVID-19 collection2 and 512 normal chest X-rays from 
the Pneumonia collection3. Joseph Paul Cohen, Paul Morrison, and Lan 
Dao assembled the COVID-19 collection from published articles and 
online resources on GitHub. The images in the dataset were reviewed by 
trained radiologists, and the condition was confirmed by clinical history, 
vital signs, and laboratory tests. Chest X-rays from paediatric patients at 
the Guangzhou Women and Children’s Medical Centre who were be
tween the ages of one and five make up the Pneumonia collection, a 
publicly accessible Kaggle dataset. An initial quality control check was 
performed on each chest X-ray to eliminate any poor or illegible images. 
The chest X-rays were then evaluated and examined for diagnostic 
outcomes by two experienced doctors. The Pneumonia collection’s 
normal chest X-ray images were utilized to construct the CXRs dataset. 

All datasets are pre-processed to resize the chest X-rays to meet the 
requirement that the size of the input images for the CNN should be 224 
× 224 × 1. 

3.2. Label noise settings 

To simulate the noise, we select the most standard and widely used 
method, the random noise method [35,49], in which a given proportion 
of samples have their labels randomly exchanged. Specifically, X rep
resents the input image dataset, Y represents the corresponding true 
label set, and Y’ represents the observed noisy label set. The parameter ρ 
stands for the label noise level [50] indicating the probability that the 
label of a sample is flipped to another type, and the parameter ρj,k can be 
mathematically formalized as: 

ρj,k= P(Yi’ = k|Yi = j), ∀j ∕= k, and j, k ∈ {1, 2,⋯,C} (13)  

where Yi stands for the true label of the sample xi, Yi
′ is introduced to 

represent the noisy label observed for the sample xi, and C denotes the 
number of categories of the sample. For instance, when ρ = 0.2, it means 
that for a sample xi labelled as j, there is a 20 % probability of being 
labelled as another type k (k ∕= j). 

For the three datasets described in the previous section, we inject 
random noise with ρ values ranging from 0.05 to 0.4 at an interval of 
0.05 on the label sets of the datasets. In addition, the random number 
generator selects the same seeds to generate repeated random noise in 
different situations, which ensures a fairer and more effective experi
ment. 

3.3. Evaluation metrics 

To evaluate the effectiveness of the proposed algorithm, three met
rics are used in our experiment, including overall accuracy (OA), 
removal efficiency (RE), and false negative rate (FNR). True positive 
(TP), false positive (FP), true negative (TN), and false negative (FN) are 
the four main components involved in the calculating of the OA and FNR 
metrics. TP represents the number of samples correctly classified as 
COVID-19; FP represents the number of samples incorrectly classified as 
COVID-19; TN represents the number of normal samples correctly 
classified; FN represents the number of samples misclassified as normal. 

The overall accuracy which demonstrates the ability of the model to 
classify correctly is calculated as follows. 

OA =
TP + TN

TP + FP + TN + FN
(14) 

The removal rate which reflects the ability of the algorithm to 
recover noisy labels correctly is calculated as follows. 

RE =
NR

N
(15)  

where NR represents the number of removed noisy samples, and N 
represents the total number of samples. 

The false negative rate which measures the classification efficiency 
of the model is calculated as follows. 

FNR =
FN

TP + TN
(16)  

4. Results and analysis 

In this section, the performance of the proposed algorithm is quan
titatively measured and evaluated using metrics such as OA, RE, and 
FNR in three publicly available COVID-19 chest X-ray image datasets (i. 
e., Tawsifur, Skytells, and CXRs datasets). 

4.1. Performance analysis of COVID-19 chest X-ray image classification 
framework with noisy labels 

To illustrate the importance of the label recovery algorithm, we 
investigate the impact of noisy labels on the performance of the chest X- 
ray image classification framework (as shown in Fig. 1) in this section. 
The noisy-label-based algorithm (NLA) [50] is chosen as the label re
covery module (i.e., the blue shaded part in Fig. 1) in the image classi
fication framework. In short, the NLA method does not perform any 
processing on noisy labels. Fig. 5 shows the impact of noisy labels on the 
classification accuracy of the chest X-ray image classification frame
work, where the noise level ρ changes from 0 to 0.4 at an interval of 
0.05. Obviously, as the noise level increases, the performance of the 
image classification framework shows a significant downward trend. 
When the noise level ρ reaches 0.4, its classification accuracy has 
dropped from 90 % to about 50 %. The experimental results demonstrate 
the necessity of the label recovery algorithm and the large room for 
improvement of the algorithm. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
ρ

50

60

70

80

90

100

O
A(

%
)

Tawsifur
Skytells
CXRs

Fig. 5. Overall accuracy of the COVID-19 chest X-ray image classification 
framework at different noise levels. 

2 https://github.com/ieee8023/covid-chestxray-dataset  
3 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/ 
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4.2. Parameter analysis of the proposed algorithm 

According to the previous section, the proposed algorithm consists of 
a total of four parameters. (1) The parameter γ indicates the ratio of the 
number of samples in the training subset selected in each iteration to the 
total number of samples in the training set. (2) The parameter T in
dicates the total number of iterations used to perform one round of label 
propagation and replacement. (3) The parameter S indicates the total 
number of rounds of label propagation and replacement. (4) The 
parameter ξ indicates the proportion of high confidence samples 
selected for the training of the CNN. 

In order to measure the influence of parameters on the noise 
reduction performance of the algorithm more intuitively, for parameters 
γ, T and S, we compare the proposed algorithm with NLA under the 
image classification framework shown in Fig. 1. As for the parameter ξ, 
we only compare whether the proposed algorithm includes the sample 
selection module under the image classification framework shown in 
Fig. 1. OA and RE are used to evaluate the algorithms. The experiments 
in this section only test the performance of the algorithms whenρ = 0.3. 
In fact, similar conclusions can be drawn at other noise levels. 

Table 2 shows the RE and OA scores of the proposed algorithm under 
different values of γ. Here the parameter T is 5, S is 4, and ξ is 0.8. The 
experimental results of NLA used for comparison are described in the 
note below Table 2. It can be seen from the table that although the 
optimal value of the parameter γ differs for different datasets. But in 
general, SLIPR can make the classification framework perform better 
when γ ∈ [0.1,0.25], with the RE scores up to 90.70 % and the OA scores 
up to 30.82 %. 

Table 3 shows the RE and OA scores of the proposed algorithm under 
different values of T. Here the parameter γ is 0.2, S is 4, and ξ is 0.8. The 
experimental results of NLA used for comparison are described in the 
note below Table 3. From the table, we can find that the proposed 

algorithm performs better when T = 4. At this point, its RE can reach up 
to 87.91 % and its OA can increase to 29.18 %. 

Table 4 shows the RE and OA scores of the proposed algorithm under 
different values of S. Here the parameter γ is 0.2, T is 4, and ξ is 0.8. The 
experimental results of NLA used for comparison are described in the 
note below Table 4. Obviously, the performance of SLIPR generally 
shows an upward trend as S increases and has a significant advantage 
over NLA. When the value of S is 8, the RE scores of the proposed al
gorithm can reach up to 93.49 % and the OA scores can increase up to 
32 %. 

Table 5 shows the OA scores of the proposed algorithm under 
different values of ξ. Here the parameter γ is 0.2, T is 4, and S is 8. To 
compare the performance of the algorithms more intuitively, we use 
SLIPR-c to represent the proposed SLIPR algorithm that includes the 
sample selection module. It is not difficult to find that the sample se
lection module allows for more accurate training of the classification 
framework. In particular, SLIPR-c performs best when the value of ξ is 
0.8. Compared with the SLIPR algorithm without the sample selection 
module, its OA score can be improved by 1.83 %. 

4.3. Experimental results and analysis 

To verify the effectiveness of the proposed algorithm, we compare it 
with other state-of-the-art label recovery algorithms in the chest X-ray 
image classification framework shown in Fig. 1 at the typical noise level 
ρ ∈ [0.05,0.4]. All algorithms are described as follows:  

• Noisy-label-based algorithm (NLA) [50]: the algorithm does not 
deal with noisy labels, but trains the classification model directly on 
the noisy dataset.  

• Iterative cross learning (ICL) [33]: the algorithm selects multiple 
neural networks to learn independently and cross-predict the labels 
to identify the learned differences, and then iteratively updates the 
labels of the samples. 

• Multi-class relative density noise filtering (mRD) [31]: the al
gorithm calculates the relative density and sets a threshold to iden
tify the noise. 

Table 2 
Performance of the proposed algorithm under different values of γ.  

Dataset Metric 0.1 0.15 0.2 0.25 0.3 

Tawsifur Noise number 21 21 38 56 118 
RE (%) 89.18 89.18 80.41 71.13 39.18 
OA (%) 99.36 99.50 97.86 96.79 91.86 

Skytells Noise number 20 26 36 53 108 
RE (%) 90.70 87.91 83.26 75.35 49.77 
OA (%) 99.48 98.82 97.25 95.41 94.36 

CXRs Noise number 91 70 60 58 120 
RE (%) 47.09 59.30 65.12 66.28 30.23 
OA (%) 80.57 82.86 85.14 89.55 76.57 

Note: bold numbers represent the best results. Experimental results of NLA are as 
follows: Noise number = 194, OA = 71.36 % (Tawsifur dataset); Noise number 
= 215, OA = 68.66 % (Skytells dataset); Noise number = 172, OA = 60.82 % 
(CXRs dataset). 

Table 3 
Performance of the proposed algorithm under different values of T.  

Dataset Metric 2 3 4 5 6 

Tawsifur Noise number 63 29 41 38 30 
RE (%) 67.53 85.05 78.87 80.41 84.54 
OA (%) 93.43 99.36 97.86 98.07 99.07 

Skytells Noise number 72 28 26 36 35 
RE (%) 66.51 86.98 87.91 83.26 83.72 
OA (%) 90.95 97.77 97.84 97.18 97.25 

CXRs Noise number 43 73 37 60 48 
RE (%) 75.00 57.56 78.49 65.12 72.09 
OA (%) 84.18 79.10 85.14 81.55 83.92 

Note: bold numbers represent the best results. Experimental results of NLA are as 
follows: Noise number = 194, OA = 71.36 % (Tawsifur dataset); Noise number 
= 215, OA = 68.66 % (Skytells dataset); Noise number = 172, OA = 60.82 % 
(CXRs dataset). 

Table 4 
Performance of the proposed algorithm under different values of S.  

Dataset Metric 4 5 6 7 8 

Tawsifur Noise number 41 38 36 31 29 
RE (%) 78.87 80.41 81.44 84.02 85.05 
OA (%) 97.86 98.07 98.14 98.43 98.57 

Skytells Noise number 26 19 16 16 14 
RE (%) 87.91 91.16 92.56 92.56 93.49 
OA (%) 97.84 98.62 98.75 98.75 99.48 

CXRs Noise number 37 29 34 31 27 
RE (%) 78.49 83.14 80.23 81.98 84.30 
OA (%) 85.14 90.69 89.63 89.88 92.82 

Note: bold numbers represent the best results. Experimental results of NLA are as 
follows: Noise number = 194, OA = 71.36 % (Tawsifur dataset); Noise number 
= 215, OA = 68.66 % (Skytells dataset); Noise number = 172, OA = 60.82 % 
(CXRs dataset). 

Table 5 
OA (%) of the proposed algorithm under different values of ξ.  

Dataset Method 0.5 0.6 0.7 0.8 0.9 

Tawsifur SLIPR  99.21  99.21  99.21 99.21  99.21 
SLIPR-c  99.21  99.93  99.93 100  99.93 

Skytells SLIPR  97.84  97.84  97.84 97.84  97.84 
SLIPR-c  99.21  99.41  99.41 99.67  99.02 

CXRs SLIPR  92.82  92.82  92.82 92.82  92.82 
SLIPR-c  92.89  92.90  92.90 93.06  87.84 

Note: bold numbers represent the best results. 
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• Subset-divided iterative projection bagging (SIPB) [34]: subsets 
are extracted several times for supervised learning, and all labels are 
selected and updated according to the majority voting algorithm.  

• SLIPR: the proposed label recovery algorithm based on subset label 
iterative propagation and replacement extracts both global and local 
features of the samples for analysis and classification, and then 
performs multi-level weight distribution and replacement of the la
bels to correct the noisy labels.  

• SLIPR-c: the algorithm can be regarded as an extension of SLIPR. It 
counts the training results of SLIPR and selects samples with high 
confidence as the training set of the CNN to improve the stability and 
classification accuracy of the framework. 

In this section, we set the parameters of SLIPR and SLIPR-c according 
to the findings of the previous section, i.e., γ is 0.2, T is 4, S is 8, and ξ is 
0.8. 

Firstly, Table 6 shows the RE scores of all algorithms at each noise 
level on the three datasets. From the table, it can be seen that the pro
posed SLIPR algorithm generally outperforms the other algorithms in 
cleansing noise as the noise level gradually increases. In terms of the 
average RE, SLIPR is 42.23 %, 40.59 %, and 39.19 % higher than ICL, 
49.09 %, 48.70 %, and 57.73 % higher than mRD, and 17.04 %, 13.62 %, 
14.18 % higher than SIPB respectively on the Tawsifur dataset, the 
Skytells dataset, and the CXRs dataset. 

Secondly, Table 7 shows the OA and average OA scores of the 
different algorithms at each noise level on the three datasets. From the 
results, we can conclude that the proposed algorithm enables the clas
sification framework to show better performance than other algorithms 

in almost all situations (especially when the noise level is high). In terms 
of average OA, the gains of SLIPR over NLA are very impressive on the 
three datasets, e.g., 18.05 %, 18.46 %, and 15.98 %. Compared with ICL 
and mRD, the average OA of SLIPR is improved by the range of 10.71 
%-18.64 %. Compared with SIPB, the gains of SLIPR can reach 7.85 %, 
7.21 %, and 6.97 % in average OA respectively on the Tawsifur dataset, 
the Skytells dataset, and the CXRs dataset. In addition, SLIPR-c has also 
improved the classification performance of the framework. Compared 
with the method using only SLIPR to deal with noisy labels, the average 
OA of the image classification framework after selecting samples using 
SLIPR-c can be improved by 0.85 %, 1.46 %, and 0.74 % respectively on 
the three datasets. 

Then, Fig. 6 shows the detection results of different algorithms for 
some samples with label noise of the Tawsifur dataset. Specifically, all 
samples shown are COVID-19 chest X-ray images with label noise, which 
means that their observed labels are “NORMAL” and their true labels are 
“COVID-19′′. Fig. 6 (a) to Fig. 6 (g) represent samples with label noise 
that ICL, MRD, and SIPB may not be able to detect, but the proposed 
algorithm is able to accurately identify and correct the label noise. Fig. 6 
(h) shows the noisy samples that are correctly detected by all algorithms. 
The COVID-19 chest X-ray image in Fig. 6 may be difficult to read due to 
the lack of annotation indicating the location of the lesion. However, 
even a non-expert can notice that some of the samples contain large and 
distinct shadows, whereas others can hardly be considered abnormal as 
they have relatively small and fuzzy areas. Based on the experimental 
results shown in Fig. 6, it can be seen that the ICL, mRD, and SIPB are 
relatively ineffective in detecting label noise, while the SLIPR success
fully detects and corrects label noise for all of the images presented. In 

Table 6 
Comparison of RE (%) for different methods at different noise levels.  

Dataset Method 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Average 

Tawsifur ICL 37.04  46.43  64.13  4.51  44.72  50.00  19.09  9.20  37.99 
mRD 55.56  44.64  34.78  33.08  22.98  15.98  10.91  7.20  31.13 
SIPB 92.59  89.29  73.91  69.92  58.39  44.85  36.82  25.20  63.18 
SLIPR 92.59  89.29  97.83  96.24  93.79  85.05  74.09  61.60  80.22 

Skytells ICL 50.00  34.92  43.27  46.98  55.87  26.05  29.80  15.58  40.98 
mRD 46.67  42.86  42.31  32.89  27.93  22.33  15.10  14.49  32.87 
SIPB 86.67  84.13  81.73  71.81  60.34  51.16  39.59  26.09  67.95 
SLIPR 63.33  90.48  95.19  96.64  91.06  93.49  72.65  58.70  81.57 

CXRs ICL 8.70  10.20  34.18  17.39  21.58  25.00  29.44  31.42  20.93 
mRD 0  6.12  5.06  4.35  2.16  0.58  − 1.52  − 0.44  2.39 
SIPB 39.13  55.10  62.03  44.35  42.45  37.21  31.47  15.49  45.94 
SLIPR 8.70  42.86  58.23  80.87  73.38  84.30  78.68  75.22  60.12 

Note: bold numbers represent the best results. 

Table 7 
Comparison of OA (%) for different methods at different noise levels.  

Dataset Method 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Average 

Tawsifur NLA 95.93  92.50 90.72 84.43  75.36 71.36  70.29  62.29  80.36 
ICL 96.79  95.43 94.14 76.36  88.50 85.79  75.29  62.43  84.34 
mRD 97.71  94.93 92.29 90.43  79.86 70.00  74.50  59.57  82.41 
SIPB 99.21  99.17 97.50 96.29  93.14 86.86  79.14  73.14  90.56 
SLIPR 99.64  99.36 99.64 99.43  98.93 98.57  96.64  95.07  98.41 
SLIPR-c 100  99.64 100 100  99.93 100  97.36  97.14  99.26 

Skytells NLA 95.74  92.13 87.34 80.39  78.16 68.66  60.39  55.93  77.34 
ICL 99.02  93.77 87.41 87.01  85.57 81.12  77.05  69.77  85.09 
mRD 97.90  95.54 90.82 87.87  84.92 81.97  63.87  60.72  82.95 
SIPB 99.34  98.69 98.43 96.53  89.84 81.44  75.44  68.98  88.59 
SLIPR 98.82  98.75 98.82 99.08  97.97 99.48  91.41  82.10  95.80 
SLIPR-c 99.54  99.02 99.48 99.02  99.61 99.67  94.43  87.28  97.26 

CXRs NLA 95.02  91.76 90.37 75.59  74.04 60.82  60.82  61.80  76.28 
ICL 95.51  91.18 92.74 78.20  75.1 74.69  70.61  66.45  80.56 
mRD 95.51  94.04 84.90 78.20  70.37 55.35  56.98  53.63  73.62 
SIPB 96.57  93.39 93.55 90.49  89.39 82.78  72.25  63.92  85.29 
SLIPR 93.88  92.82 90.69 95.02  91.84 92.82  90.78  90.20  92.26 
SLIPR-c 94.29  94.37 89.39 95.59  92.33 93.06  91.43  93.55  93.00 

Note: bold numbers represent the best results. 
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summary, the proposed algorithm has the best detection capability for 
samples with label noise, which contributes to the classification accu
racy of the image classification framework. 

Finally, to evaluate the performance of the proposed algorithm in 
improving the diagnostic efficiency of COVID-19, Table 8 compares the 
FNR scores of NLA and the proposed algorithm at different noise levels. 
Compared with the FNR of RT-PCR, which is about 58 %, the FNR of 
SLIPR and SLIPR-c are only about 2 %, which is 23 %-34 % better than 
NLA. It can be seen that the proposed algorithm has a lower FNR, which 
can improve the diagnostic efficiency of COVID-19 and effectively 

reduce the risk of missed diagnosis. 
In summary, the proposed algorithm has the best overall perfor

mance for label recovery, which can effectively improve the robustness 
and stability of the image classification framework. As a label recovery 
module in the image classification framework, the proposed algorithm 
can be directly combined with other types of CNNs. Therefore, we 
choose the CNN with a simple structure as the reference for experi
mental analysis, and similar conclusions can be drawn in practice with 
the combination of other CNNs. It is worth mentioning that although 
SLIPR-c can be considered as an extension of SLIPR, it requires 

(b)(a)

(d)(c)

(f)(e)

(g) (h) 
Fig. 6. Detection results of different algorithms for samples with label noise in the Tawsifur dataset. (a) Samples with false detection by ICL; (b) Samples with false 
detection by mRD; (c) Samples with false detection by SIPB; (d) Samples with false detection by ICL and mRD; (e) Samples with false detection by mRD and SIPB; (f) 
Samples with false detection by ICL and SIPB; (g) Samples with false detection by ICL, mRD and SIPB; (h) Samples detected correctly by all algorithms. 
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specifying the proportion of high confidence samples to be selected to 
ensure that the inherent performance of the classification framework is 
not affected, which makes it more complicated in practical applications. 
And this strategy has the potential to lead to noise in training, which in 
some cases may instead lead to a loss of classification accuracy. More
over, when the noise level is small, the initial labels of the samples ac
count for a relatively small proportion of the label recovery process of 
the proposed algorithm, resulting in a comparatively insignificant per
formance advantage of SLIPR compared to other algorithms. This also 
motivates us to further improve the design of the algorithm in future 
work. 

5. Conclusion 

The combination of CNN and medical image processing is extremely 
beneficial for the diagnosis of COVID-19, and label quality is particularly 
important in the classification of chest X-rays. Existing classification 
models tend to assume that the labels of the samples are completely true 
and effective. However, due to the lack of information, the subjectivity 
of human judgment or human mistakes, and data encoding problems, 
the existing COVID-19 chest X-ray image datasets inevitably suffer from 
label noise. Noisy labels will mislead the training of the model, and 
severely affect its classification performance, potentially leading to 
misdiagnosis. Moreover, as COVID-19 chest X-rays contain medical 
features that distinguish them from general images, existing generic 
label recovery algorithms will be limited. To reduce the interference 
caused by label noise, we introduce a general training framework for 
COVID-19 chest X-ray image classification with noisy labels and propose 
a label recovery algorithm based on subset label iterative propagation 
and replacement (SLIPR). Firstly, the SLIPR randomly extracts a certain 
number of samples to form a subset several times. Secondly, since the 
medical features of COVID-19 chest X-rays include localized lesion 
features and scattered global features, the SLIPR employs a combination 
of PCA, LRR, neighborhood graph regularization, and other techniques 
to extract both global and local features of the samples. Then, the 
samples are classified quickly by KNN. Finally, the concept of label 
propagation is used to select and replace the labels of the samples at 
multiple levels to recover the noisy labels. Furthermore, the proposed 
algorithm can also select high confidence samples as the training set of 
CNN to achieve more accurate and stable classification results. Experi
mental results on three publicly available datasets demonstrate that the 
proposed algorithm can effectively recover the noisy labels, and improve 
the accuracy of the classification framework by 18.9 % on Tawsifur 
dataset, 19.92 % on Skytells dataset, and 16.72 % on CXRs dataset. 
Compared with the state-of-the-art algorithms, the proposed algorithm 
also has a significant advantage with a classification accuracy of 8.67 
%-19.38 % higher on the three datasets. In addition, as a novel data 
processing module, the proposed algorithm is scalable and of great 
practical value as it can be directly integrated into existing image clas
sification frameworks. 

In this paper, we simply utilize random noise to simulate noisy sit
uations. However, in practical situations, the form and number of noisy 

labels may be unpredictable, and how to deal with such label noise 
needs further exploration. The selection of subsets and iterative training 
increase computational complexity. Studying the adaptive selection 
mechanism of subsets and iterative thresholds should also be our future 
work. In addition, the proposed algorithm is theoretically applicable to 
recovering noisy labels from other types of images, but its efficiency 
remains to be investigated. 
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