Skip to main content
. 2023 Jan 8;77:102370. doi: 10.1016/j.displa.2023.102370
Algorithm 1: Label recovery algorithm based on subset label iterative propagation and replacement (SLIPR).
Require: dataset X, noisy label set Y', parameters γ, T, S.
Ensure: recovered label set Y.
1: fors = 1 to Sdo
2:   fort = 1 to Tdo
3:    m=randperm(N)
4:    l=round(Nγ)
5:    YL'(t,s)=Y'(m(1:l))
6:    YU'(t,s)=0
7:    XL(t,s)=X(m(1:l),:)
8:    XU(t,s)=X(m((l+1):end),:)
     // Construct the neighborhood graph
9:    W=construct(XL(t,s))
10:    while not converged do
11:     Update Q by Eqs. (3), (4), (8)
12:    end while
13:    XU'(t,s)=QTXU(t,s)
14:    XL'(t,s)=QTXL(t,s)
     // Classify samples by KNN
15:    YU'(t,s)=knnclassify(XU'(t,s),XL'(t,s),YL'(t,s))
16:    L=[YL't,s;YU'(t,s)]
17:   end for
18:   fori = 1 to Ndo
19:    Fi(s)={t=1TLi,t(s)}li0
20:    yi(s)=argmaxFi(s)
21:   end for
22:   Y'={y1s;y2s;;yN(s)}
23: end for
24:Y=Y'
25: returnY