Skip to main content
. Author manuscript; available in PMC: 2024 Jan 1.
Published in final edited form as: Ann Epidemiol. 2022 Nov 1;77:24–30. doi: 10.1016/j.annepidem.2022.10.010

Table 2.

Population size estimation results from five different simulation scenarios and four capture-recapture modeling frameworks.

Scenario 1: L1=20%; L2=25%; L3=30%
Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width
1. Independence 0.3 52.8 332 (66.4) 475 (95) 205.7
2. L1*L2 −0.2 61.3 50 (10) 470 (94) 235.0
3. L1*L3 0.3 61.0 50 (10) 479 (95.8) 245.3
4. L2*L3 −3.9 66.6 43 (8.6) 476 (95.2) 266.7
5. L1*L2, L1*L3 −1.6 76.3 6 (1.2) 472 (94.4) 302.1
6. L1*L2, L2*L3 −9.3 88.9 7 (1.4) 473 (94.6) 347.3
7. L1*L3, L2*L3 −11.4 92.9 12 (2.4) 479 (95.8) 386.4
8. L1*L3, L2*L3, L1*L2 −30.2 195.0 0 469 (93.8) 752.8
9. DGA 0.7 54.9 NA 481 (96.2) 225.6
10. SparseMSE 0.5 53.0 NA 475 (95) 298.9
11. N^0 −18.8 196.5 NA 489 (97.8) 1117
12. N^ −1.1 52.5 NA 473 (94.6) 211.9
13. N^1 −0.1 69.6 NA 481 (96.2) 281.3
Scenario 2: L1=20%; L2=25%; L3=24% + (30%*L1)
Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width
1. Independence 193.5 196.9 0 3 (0.6) 134.0
2. L1*L2 232.5 235.4 0 1 (0.2) 130.8
3. L1*L3 −0.6 66.2 371 (74.2) 479 (95.8) 271.7
4. L2*L3 275.3 277.3 0 0 124.8
5. L1*L2, L1*L3 −3.4 87.8 56 (11.2) 471 (94.2) 355.8
6. L1*L2, L2*L3 333.8 335.0 6 (1.2) 0 99.4
7. L1*L3, L2*L3 −17.7 120.6 67 (13.4) 482 (96.4) 517.7
8. L1*L3, L2*L3, L1*L2 −30.1 195.8 0 475 (95) 789.0
9. DGA 0.2 71.0 NA 487 (97.4) 332.1
10. SparseMSE 0.2 67.8 NA 166 (33) 206.5
11. N^0 −22.7 154.1 NA 492 (98.4) 716.7
12. N^ 191.5 194.9 NA 4 (0.8) 136.7
13. N^1 136.8 146.1 NA 173 (34.6) 201.5
Scenario 3: L1=20%; L2=25%; L3=25% + (45%*L1) + (20%*L1*L2)
Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width
1. Independence 249.3 251.6 0 0 98.0
2. L1*L2 297.4 299.1 0 0 89.9
3. L1*L3 −1.6 70.5 27 (5.4) 478 (95.6) 267.6
4. L2*L3 286.4 288.5 0 0 81.0
5. L1*L2, L1*L3 −6.5 101.0 8 (1.6) 476 (95.2) 347.2
6. L1*L2, L2*L3 356.6 357.8 0 0 58.6
7. L1*L3, L2*L3 −9.70e+9 1.39e+11 465 (93) 134 (26.8) ND**
8. L1*L3, L2*L3, L1*L2 −6.32e+11 8.29e+12 0 120 (24) ND**
9. DGA 225.1 316.4 NA 499 (99.8) 869.3
10. SparseMSE −661.7 2,539.3 NA 473 (94.6) 254.7
11. N^0 −1,054.2 1,290.1 NA 236 (47.2) 16,677.2
12. N^ 219.4 222.4 NA 2 (0.4) 136.7
13. N^1 32.1 68.2 NA 448 (89.6) 235.7
Scenario 4: U=50%; L1=40%*U; L2=50%*U; L3=30%
Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width
1. Independence 183.8 187.6 0 7 (1.4) 137.5
2. L1*L2 −9.8 66.3 372 (74.4) 481 (96.2) 266.9
3. L1*L3 237.9 240.9 0 0 133.5
4. L2*L3 266.0 268.4 0 0 128.9
5. L1*L2, L1*L3 −16.8 95.0 61 (12.2) 479 (95.8) 379.3
6. L1*L2, L2*L3 −22.3 116.8 66 (13.2) 477 (95.4) 464.0
7. L1*L3, L2*L3 347.1 348.3 1 (0.2) 0 92.5
8. L1*L3, L2*L3, L1*L2 −42.5 185.7 0 481 (96.2) 771.7
9. DGA −10.8 72.4 NA 488 (97.6) 320.2
10. SparseMSE −9.8 66.3 NA 498 (99.6) 248.2
11. N^0 −30.7 162.6 NA 490 (98) 479.9
12. N^ 196.7 200.0 NA 5 (1) 135.3
13. N^1 139.3 148.3 NA 168 (33.6) 204.5
Scenario 5: U=50%; L1=2% + (20%*U); L2=3% + (20%*U); L3=6%
Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width
1. Independence 257.7 273.0 76 (15.2) 168 (33.6) 356.6
2. L1*L2 −67.0 287.2 253 (50.6) ND** ND**
3. L1*L3 300.9 314.5 42 (8.4) ND** ND**
4. L2*L3 306.9 320.6 41 (8.2) ND** ND**
5. L1*L2, L1*L3 −7.11e+9 1.59e+11 28 (5.6) ND** ND**
6. L1*L2, L2*L3 −3.53e+10 4.96e+11 27 (5.4) ND** ND**
7. L1*L3, L2*L3 365.9 377.1 33 (6.6) ND** ND**
8. L1*L3, L2*L3, L1*L2 −2.09e+11 2.69e+12 ND** ND**
9. DGA 312.7 319.7 NA 0 338.7
10. SparseMSE 258.6 296.1 NA 144 (28.8) 359.1
11. N^0 −454.6 3,373.5 NA 411 (82.2) 67,275.0
12. N^ 206.8 229.4 NA 279 (55.8) 426.2
13. N^1 175.4 217.4 NA 382 (76.4) 536.6

L1= List 1; L2= List 2; L3= List 3; U= binary third variable; CI= confidence interval; DGA= Decomposable Graph Approach; N^0= Sample Coverage model assuming independence; N^ = Sample Coverage model allowing list dependence and sufficient sample coverage fraction (>=55%); N^1= Sample Coverage model estimating lower(upper) bound estimate due to insufficient sample coverage fraction (<55%); RMSE = Root Mean Squared Error

N=1,000 (the true population size)

Indicates the correct log-linear model for each scenario

ND**=Not Defined. Upper limit of confidence interval not defined in simulations; therefore, average confidence interval width could not be calculated.

Bias = (EN^iN); RMSE = 1mi=1m(NN^i)2); where N^i is the estimated population size from simulation i, m is the number of simulations, and N is the true population size.