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Purpose: Hypoxaemia is a significant adverse event during endoscopic retrograde cholangiopancreatography (ERCP) under mon-
itored anaesthesia care (MAC); however, no model has been developed to predict hypoxaemia. We aimed to develop and compare 
logistic regression (LR) and machine learning (ML) models to predict hypoxaemia during ERCP under MAC.
Materials and Methods: We collected patient data from our institutional ERCP database. The study population was randomly divid-
ed into training and test sets (7:3). Models were fit to training data and evaluated on unseen test data. The training set was further 
split into k-fold (k=5) for tuning hyperparameters, such as feature selection and early stopping. Models were trained over k loops; the 
i-th fold was set aside as a validation set in the i-th loop. Model performance was measured using area under the curve (AUC).
Results: We identified 6114 cases of ERCP under MAC, with a total hypoxaemia rate of 5.9%. The LR model was established by 
combining eight variables and had a test AUC of 0.693. The ML and LR models were evaluated on 30 independent data splits. The 
average test AUC for LR was 0.7230, which improved to 0.7336 by adding eight more variables with an l1 regularisation-based selec-
tion technique and ensembling the LRs and gradient boosting algorithm (GBM). The high-risk group was discriminated using the 
GBM ensemble model, with a sensitivity and specificity of 63.6% and 72.2%, respectively.
Conclusion: We established GBM ensemble model and LR model for risk prediction, which demonstrated good potential for pre-
venting hypoxaemia during ERCP under MAC.
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INTRODUCTION

Endoscopic retrograde cholangiopancreatography (ERCP) is 
an essential procedure for pancreato-biliary diseases. The an-
nual rate of ERCP in developed countries is 70–100 per 100000 
inhabitants,1 with more than 500000 and 50000 annual proce-
dures performed in the United States and South Korea, respec-
tively.2,3

ERCP requires proper sedation.4 However, sedation with an 
intermittent bolus of propofol, as well as the patient’s prone po-
sition, can increase cardiopulmonary instability.5-7 Therefore, 
the latest guidelines recommend anaesthesia provider-admin-
istered sedation for ERCP.8 Respiratory complications necessi-
tate meticulous respiratory monitoring of patients.9,10 The inci-
dence of hypoxaemia during sedative ERCP is reportedly 10%– 
28%.11-14 However, even with pulse oximetry, capnometry, and 
visual assessment, the ability to reduce hypoxaemia is debat-
able.9,15,16

Several risk factors for sedation-related adverse events 
(SRAEs) during advanced endoscopic procedures, including 
high body mass index (BMI), high American Society of Anes-
thesiologists (ASA) class, advanced age, and sleep apnoea, 
have been identified.17-21 A recent prospective randomised con-
trolled trial (RCT) compared SRAEs in two types of anaesthesia 
provider-administered sedations during ERCP in high-risk pa-
tients: general endotracheal anaesthesia (GEA) and monitored 
anaesthesia care (MAC) without intubation; the authors sug-
gested using GEA for high-risk patients as the incidence of 
SRAEs, mostly hypoxaemia, was lower in this group.13 Howev-
er, GEA for all patients undergoing ERCP is impractical, since 
GEA is more time-consuming, costly, and medically resource-
intensive than MAC.22,23 Therefore, the selection of GEA or MAC 
should depend on the precise prediction of hypoxemia risk. A 
model that can identify patients at an elevated risk of hypoxemia 
has not been well-established.

Machine learning (ML) approaches have outperformed con-
ventional methods in various tasks, such as logistic regression 
(LR). Several studies have introduced ML-based clinical predic-
tion models, which have outperformed conventional models.24-26 
In particular, the gradient boosting algorithm (GBM), which 
learns by boosting multiple weak learners, has delivered superior 
performance in regression tasks with tabular data.27,28

Here, we aimed to develop LR and ML models to predict hy-
poxaemia during ERCP under MAC and compare their perfor-
mance.

MATERIALS AND METHODS 

Study cohort
We included patients who underwent ERCP at Severance Hos-
pital between May 2012 and September 2017. All procedures 
were performed by highly experienced endoscopists who have 

each performed over 5000 ERCPs (S.Y.S., S.W.P., S.B., J.Y.P., and 
M.J.C.). Patients were identified from our institutional data-
base of ERCPs. Then, we retrospectively abstracted 27 and 32 
relevant continuous and categorical variables, respectively, 
representing patient characteristics, laboratory data, and pro-
cedure-related characteristics (Supplementary Table 1, only 
online). Our exclusion criteria were as follows: 1) age <19 
years; 2) conversion to endoscopic procedures other than 
ERCP; 3) cancelled procedure owing to inadequate sedation; 
4) sedation conversion to endoscopist-administered sedation; 
and 5) ERCP under GEA. Our protocol adhered to the tenets 
of the Declaration of Helsinki and was approved by the Insti-
tutional Review Board of Severance Hospital (IRB number: 
4-2020-0257).

MAC protocol during ERCP
All anaesthesia procedures were performed by senior resident 
anaesthesiologists with at least 3 years of anaesthesia experi-
ence under specialist anaesthesiologists’ supervision. Patients 
were sedated using a standardised protocol of continuous pro-
pofol (Fresofol 1% MCT injection, Fresenius Kabi Korea, Seoul, 
Korea) infusion with intermittent fentanyl administration (fen-
tanyl citrate, Hana Pharm Co., Ltd., Seoul, Korea). Electrocar-
diography, pulse oximetry, non-invasive arterial blood pressure, 
and capnometry using a nasal prong were employed as stan-
dard monitoring methods. Oxygen was administered through a 
nasal prong at a 5-L/min flow rate. When blood oxygen satura-
tion (SpO2) decreased (<90%), the propofol infusion rate was 
reduced, and airway manoeuvres (e.g., increase oxygen flow, 
jaw thrust, chin lift, nasopharyngeal airway insertion, bag-mask 
ventilation) were performed.

Outcome measures and definitions
The primary endpoint was intraprocedural hypoxaemia (SpO2 
<90%) detected by pulse oximetry. Some continuous variables 
were transformed to categorical variables using cut-off values 
calculated by the Youden index method or selected with clini-
cal significance. The variables are defined as follows: Habitual 
snoring-snoring >3 nights/week29; same-session endoscopy 
with sedation before ERCP-any endoscopy (not ERCP) per-
formed under endoscopist-administered sedation immediately 
before ERCP; and comorbidities-presence of certain groups of 
International Statistical Classification of Diseases and Related 
Health Problems-10 codes on the electronic medical records. 
All ERCPs were categorised to have one most relevant indica-
tion after reviewing each case. Among ERCP indications, bili-
ary stricture was defined as biliary stenosis not only due to bili-
ary stone, such as malignant or benign stricture. Indications 
other than biliary stone or stricture included biliary leakage, 
pancreatic duct stricture/stone, and ampullary tumor. Detailed 
definitions of each comorbidity group are shown in Supple-
mentary Table 1 (only online).
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Statistical analysis
We randomly divided the study population into training and 
test sets (7:3 ratio), with the same proportion of patients with 
ASA class ≥3 in both sets. To compare the ML and LR models, 
the study population was randomly divided into training and 
test sets 30 times using the same ratio. The results were evalu-
ated by 30 different data splits, and the performances were 
measured by computing the area under the curve (AUC). All 
statistical analyses were performed using SAS version 9.4 (SAS 
Institute Inc., Cary, NC, USA), and R version 3.6.3 (http://www.
r-project.org/) with the “rms” package was used to construct 
the nomogram.

LR model
Univariable LR analysis was conducted to identify the factors 
associated with hypoxaemia. Multivariable analysis was con-
ducted using variables selected by considering clinical and 
statistical significances. The hypoxaemia prediction model 
and nomogram were established using these results, and the 
Hosmer-Lemeshow test was used to evaluate the fit of the LR 
model. Model performance was measured by computing the 
mean value of the AUC generated by 10000 times bootstrap 
resampling in both sets. A calibration plot was drawn to reflect 
the agreement between observed outcomes and predicted 
probabilities.

l1 regularisation-based feature selection
Additional features to those selected for the LR model by uni-
variable analysis were chosen by fitting populations with whole 

features to the LR with l1 regularisation; this added l1-norm of 
the model parameters to the original loss of LR.30 As a result, 
the model reduced loss function and learned how parameters 
could be made sparsely non-zero. As model parameters re-
ferred to the coefficient of each feature in LR, l1 regularisation 
played a role in removing the relatively insignificant features 
by making their coefficients zero. We singled out the more rel-
evant features that affected the occurrence of hypoxaemia by 
applying l1 regularisation to all features and deciding on the 
number of features to add based on the validation AUC score 
in the order of the highest coefficient. After the dataset was ran-
domly divided into two sets, the training set was further divided 
into k folds (k=5). From these folds, k combinations of training 
and test sets were constructed for ensembling by reserving 1 
fold as the test set. For each feature set, k models learned k dif-
ferent training sets, and the validation AUC score of each mod-
el was computed with each test set. The averaged k validation 
scores became the criteria for determining the feature sets.

Gradient boosting ensemble
The GBM first trains one weak learner on the dataset and calcu-
lates the residual error; then, another weak learner trains this 
residual error. By repeating this process and combining weak 
learners, the GBM can make more accurate predictions. We 
used Extreme Gradient Boosting (Xgboost), which frequently 
shows better performance than conventional GBM models.31 
In addition, the ensemble method, which considers predic-
tions of different models through voting or averaging, was ad-
opted to enhance the accuracy of prediction. The ensembled 

Anesthesiologist-administered 
sedation ERCP database in 

Severance Hospital 
May 2012–Sep 2017 

(n=6199)

Excluded (n=85)

     • Age <19 years (n=41)
     • Endoscopist-administered sedation (n=7)
     • Gerneral anesthesia (n=4)
     • ‌�Cancelled procedure due to inadequate sedation 

(n=12)
     • ‌�Procedure conversion to other endoscopic 

procedure than ERCP (n=21)

Included in analysis 
(n=6114)

Random split in 7:3 ratio with 
same ASA class rate

Training set (n=4280) Test set (n=1834)

Fig. 1. Flow chart for patient selection and random split. ERCP, endoscopic retrograde cholangiopancreatography; ASA, American Society of Anes-
thesiologists.

http://www.r-project.org/
http://www.r-project.org/
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model of Xgboost and LR was trained by k-fold cross validation 
(k=5) and used to predict hypoxaemia by averaging the predic-
tion logits of each unit ensembled model.

RESULTS

Patients
We identified 6114 cases of ERCP under MAC and divided them 
into training (n=4280) and test (n=1834) sets (Fig. 1). The total 

hypoxaemia rate was 5.9% (n=359), and most were successfully 
managed by adjusting the propofol infusion rate and perform-
ing airway manoeuvres. Interruption or premature termination 
of ERCP due to hypoxemia was required in 110 (1.8%) cases, 
and emergent endotracheal intubation or conversion to GEA 
was performed in four of these patients (0.06%). No difference 
was observed between training and test sets in hypoxaemia 
rates (5.9% vs. 5.9%, p=0.970) and other baseline characteris-
tics (Table 1).

Table 1. Baseline Characteristics of Training and Test Sets (Summarised)

Variables Training set (n=4280) Test set (n=1834) p value
Age >74 years 933 (21.80) 393 (21.43) 0.7474
Sex, male 2528 (59.07) 1095 (59.71) 0.6406
BMI ≥25 kg/m2 1098 (25.72) 447 (24.51) 0.3186
Current smoker 636 (15.44) 281 (16.07) 0.5460
Never drinker 2175 (51.47) 912 (50.39) 0.4417
ASA classification, III–IV 1549 (36.19) 664 (36.21) 0.9920
Habitual snoring 348 (8.13) 141 (7.69) 0.5587
Nutritional risk: high 477 (12.74) 191 (11.93) 0.4119
History of hypoxaemia during sedation endoscopy 139 (3.25) 45 (2.45) 0.0959
Baseline O2 administration 92 (2.16) 28 (1.53) 0.1070
Comorbidities

Malignancy 2163 (50.54) 921 (50.22) 0.8190
Chronic heart disease 390 (9.11) 186 (10.14) 0.2066
Cerebrovascular disease 192 (4.49) 100 (5.45) 0.1044
Chronic respiratory disease 161 (3.76) 77 (4.20) 0.4184
Chronic liver disease (other than cirrhosis) 331 (7.73) 139 (7.58) 0.8353
Liver cirrhosis 246 (5.75) 109 (5.94) 0.7644
ESRD on dialysis 60 (1.40) 23 (1.25) 0.6473

Laboratory test
Haemoglobin, g/dL 12.1 (10.6–13.4) 12.1 (10.7–13.5) 0.5624
Haematocrit, % 36.3 (31.9–40) 36.3 (31.9–40.1) 0.6421
CRP, mg/dL 22.9 (4.8–68.0) 21.0 (4.5–63.6) 0.4891
Total bilirubin, mg/dL 1.4 (0.6–4.2) 1.3 (0.6–3.9) 0.1398
Creatinine, mg/dL 0.71 (0.58–0.89) 0.73 (0.58–0.89) 0.0676
eGFR ≥30 mL/min/1.73 m2 4166 (97.66) 1790 (97.87) 0.6117

Baseline inotropes administration 64 (1.50) 17 (0.93) 0.0749
Opioids prescription <7 days 496 (11.59) 198 (10.8) 0.3706
Psychotropics prescription <7 days 113 (2.64) 49 (2.67) 0.9439
ERCP indication: biliary stricture 1822 (42.57) 751 (40.95) 0.2393
ERCP indication: biliary stone 1578 (36.87) 703 (38.33) 0.2786
Same-session endoscopy with sedation before ERCP 782 (18.27) 349 (19.03) 0.4840
Propofol used for same-session endoscopy 779 (99.62) 347 (99.43) 0.6470
Propofol dose for same-session endoscopy, mg 60 (50–100) 60 (50–100) 0.8590
Duration of MAC for ERCP, min 20 (15–30) 20 (15–27) 0.3390
Propofol dose used during MAC, mg 130 (100–220) 130 (100–220) 0.9840
Fentanyl dose used during MAC, mcg 75 (50–100) 75 (50–100) 0.4700
BMI, body mass index; ASA, American Society of Anesthesiologists; ESRD, end-stage renal disease; CRP, C-reactive protein; eGFR, estimated glomerular filtra-
tion rate; ERCP, endoscopic retrograde cholangiopancreatography; MAC, monitored-anaesthesia care.
All categorical variables are presented as n (%). All continuous variables are presented as median (interquartile range). 
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LR model
Univariable LR analysis of the training set is summarised in 
Table 2. A combination of variables was selected by consider-
ing clinical and statistical significances. Before performing 
multivariable analysis, patients with missing values of estimat-
ed glomerular filtration rate (eGFR) were excluded from both 

sets. All selected variables in multivariable analysis, including 
1) age >74 years; 2) ASA class; 3) habitual snoring; 4) BMI ≥25 
kg/m2; 5) ERCP indication: biliary stone; 6) baseline adminis-
tration of inotropes; 7) same-session endoscopy with sedation 
before ERCP; and 8) eGFR ≥30 mL/min/1.73 m2, were inde-
pendently associated with hypoxaemia (Table 3). Based on 
these results, the risk probability for the prediction model was 
calculated using the following equation:

Risk probability=exp(LP)/[1+exp(LP)], 
where

LP (linear predictor)=-3.5346+0.3667*age>74 years (yes, 1; 
no, 0)+0.7274*BMI ≥25 kg/m2 (yes, 1; no, 0)+0.2386*ASA (I, 1; 
II, 2; III, 3; IV, 4)+2.0060*snoring (yes, 1; no, 0)-0.9450*eGFR 
≥30 mL/min/1.73 m2 (yes, 1; no, 0)+1.4166*inotropes (yes, 1; 
no, 0)+0.4314*indication: biliary stone (yes, 1; no, 0)+0.7844* 
same-session endoscopy (yes, 1; no, 0).

The model showed adequate Hosmer-Lemeshow statistics 
(p=0.836). A nomogram was developed with these eight sig-
nificant variables (Fig. 2A). The sum of the points obtained 
from each variable was visually matched with the risk proba-
bility line. The LR model delivered good prediction perfor-
mance with an AUC of 0.762 [95% confidence interval (CI): 
0.727–0.795] in the training set and 0.670 (95% CI: 0.614–0.723) 
in the test set (Table 4). The optimal cut-off of the nomogram 
score for discriminating the high-risk group was 70, which was 
calculated from the training set by the Youden index, with a 
sensitivity and specificity of 65.20% and 75.46%, respectively. In 
the training set, the high-risk group (≥70 points, n=1146) had a 
significantly higher rate of hypoxaemia compared to the low-
risk group (n=3109) (14.22% vs. 2.80%, p<0.001). With the same 
threshold, the sensitivity and specificity of the test set were 
49.07% and 75.84%, respectively. Patients in the test set were 
further divided into two groups with a significantly distinct rate 
of hypoxaemia (11.28% vs. 4.03%, p<0.001). The calibration 
plot of the training set indicated optimal correlation between 

Table 2. Univariable Logistic Regression Using Training Set (Summarised)

Variables OR (95% CI) p value
Age >74 years 1.543 (1.164–2.045) 0.0025
Sex, male 0.837 (0.648–1.082) 0.1753
BMI ≥25 kg/m2 2.497 (1.926–3.236) <0.0001
Current smoker 0.707 (0.472–1.058) 0.0921
ASA classification

II vs. I 1.085 (0.703–1.674) 0.7121
III vs. II 1.731 (1.123–2.669) 0.0130
IV vs. III 2.860 (1.427–5.735) 0.0031

Habitual snoring 8.348 (6.267–11.119) <0.0001
History of hypoxaemia during sedation 
  endoscopy

0.980 (0.474–2.024) 0.9560

Baseline O2 administration 2.493 (1.34–4.638) 0.0039
Comorbidities

Malignancy 0.518 (0.397–0.676) <0.0001
Chronic heart disease 1.272 (0.846–1.912) 0.2469
Cerebrovascular disease 1.600 (0.956–2.678) 0.0737
Chronic respiratory disease 1.308 (0.716–2.389) 0.3823
Chronic liver disease (other than cirrhosis) 0.428 (0.218–0.841) 0.0138
Liver cirrhosis 0.524 (0.256–1.073) 0.0774
ESRD on dialysis 3.723 (1.911–7.252) 0.0001

Laboratory test
Haemoglobin 1.068 (1.002–1.139) 0.0425
Haematocrit 1.022 (1.000–1.045) 0.0540
CRP 1.000 (0.998–1.003) 0.7985
Total bilirubin 0.952 (0.918–0.987) 0.0072
Creatinine 1.235 (1.113–1.371) <0.0001
eGFR ≥30 mL/min/1.73 m2 0.340 (0.194–0.598) 0.0002

Baseline inotropes administration 3.840 (2.023–7.291) <0.0001
Opioids prescription <7 days 0.435 (0.252–0.752) 0.0029
Psychotropics prescription <7 days 0.431 (0.136–1.367) 0.1530
ERCP indication: biliary stricture 0.492 (0.371–0.654) <0.0001
ERCP indication: biliary stone 1.643 (1.272–2.122) 0.0001
Same-session endoscopy with sedation 
  before ERCP

2.087 (1.577–2.762) <0.0001

Propofol as sedative for same-session 
  endoscopy

0.771 (0.025–23.765) 0.8819

Propofol dose for same-session endoscopy 1.000 (0.996–1.005) 0.8850
Duration of MAC for ERCP 1.021 (1.013–1.028) <0.0001
Propofol dose used during MAC 1.001 (0.999–1.002) 0.3660
Fentanyl dose used during MAC 1.006 (1.004–1.008) <0.0001
OR, odd ratio; CI, confidence interval; BMI, body mass index; ASA, American 
Society of Anesthesiologists; ESRD, end-stage renal disease; CRP, C-reactive 
protein; eGFR, estimated glomerular filtration rate; ERCP, endoscopic retrograde 
cholangiopancreatography; MAC, monitored-anaesthesia care.

Table 3. Multivariable Logistic Regression for Selected Variables Using 
Training Set

Variables OR (95% CI) p value
Age >74 years 1.443 (1.060–1.964) 0.0198
ASA classification 1.269 (1.045–1.543) 0.0165
Habitual snoring   7.433 (5.514–10.020) <0.0001
BMI ≥25 kg/m2 2.070 (1.570–2.728) <0.0001
ERCP indication: biliary stone 1.539 (1.169–2.027) 0.0021
Baseline inotropes administration 4.123 (2.050–8.293) <0.0001
Same-session endoscopy with sedation 
  before ERCP

2.191 (1.619–2.966) <0.0001

eGFR ≥30 mL/min/1.73 m2 0.389 (0.209–0.723) 0.0029
OR, odd ratio; CI, confidence interval; ASA, American Society of Anesthesiol-
ogists; BMI, body mass index; ERCP, endoscopic retrograde cholangiopancre-
atography; eGFR, estimated glomerular filtration rate.
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the predicted and observed probability; however, overall over-
estimation was shown in that of the test set (Fig. 2B and C).

Gradient boosting ensemble
Eight features in addition to the eight variables in the LR model 
were selected using l1 regularisation: chronic liver disease (other 
than cirrhosis), chronic heart disease, chronic respiratory dis-
ease, propofol as sedative for same-session endoscopy, base-
line O2 administration, current smoker, haematocrit, and total 
bilirubin. Sixteen features were used to train the Xgboost-LR 
ensemble model. We noted that experimental model com-
parison is possible through approximate confidence intervals. 

We calculated the confidence intervals from 30 random data 
splits in both the GBM ensemble and LR models. Table 4 lists 
the performance parameters and thresholds to discriminate 
the high-risk group, and Fig. 3 presents the receiver operating 
characteristic curves of both models in the test set. The test 
AUC of the GBM ensemble model was 0.7336 (95% CI: 0.7267–
0.7404), surpassing the result of the LR model [0.7230 (95% CI: 
0.7152–0.7308)]. As a result of measuring the difference in AUC 
scores between the models for each split, a more direct com-
parison of the models revealed an average improvement of 
0.0106 (95% CI: 0.0074–0.0137). The GBM ensemble model 
had an enhanced AUC compared to the LR model. The GBM 
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plots in the (B) training set and the (C) test set. BMI, body mass index; ASA, American Society of Anesthesiologists; eGFR, estimated glomerular filtra-
tion rate; ERCP, endoscopic retrograde cholangiopancreatography; ROC, receiver operating characteristic.
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ensemble model output is scaled between 0 and 1; a value 
closer to 1 means a higher risk of hypoxaemia. The calculated 
threshold of the GBM ensemble model output by the Youden 
index in the training set was 0.09. When this threshold was ap-
plied in the test set, the high-risk group showed a significantly 
higher average rate of hypoxaemia than the low-risk group 
(13.14±2.32% vs. 3.03±0.61%, p<0.001) with a sensitivity and 
specificity of 63.60% and 72.21%, respectively.

DISCUSSION

We established an LR-based nomogram model and an ML-
based model for predicting hypoxemia risk during ERCP under 
MAC. The LR-based nomogram distinguished the high-risk 
group for hypoxemia in the training set, but the test set had a 
less significant AUC than the training set. The GBM ensemble 
model delivered good prediction performance and risk strati-
fication in the training and test sets, with performance param-
eters superior to those of the LR-based model.

Various risk factors have been identified for SRAEs during 
ERCP. In a retrospective study including 650 ERCPs, diagnos-
tic indication and female gender were related with SRAEs in 
the MAC group.32 Conversely, a prospective study with 799 ad-
vanced endoscopies under MAC reported that male gender 
was associated with airway modifications.17 Higher ASA class 
and BMI are well-known risk factors that were identified in 
multiple studies; sleep apnoea and emergent ERCP have also 
been proposed.18-21 Although anaesthesia provider-adminis-
tered sedation is increasingly used for ERCP, the decision be-
tween MAC and GEA may vary between institutions because of 
the doctor’s preference, institutional policy, and lack of data.33-35

A prospective study that evaluated 438 ERCPs reported no 
difference in hypoxaemia between MAC and GEA.36 In con-
trast, another prospective study with 528 ERCPs reported that 
respiratory events were more common in MAC than those in 
GEA, but cardiovascular events occurred more frequently in 
GEA than those in MAC.18 Patients with high ASA class and BMI 
were more common in the GEA group of both studies as they 
were not RCTs, and these factors made the anaesthesiologist 
choose GEA, which may have resulted in selection bias. A re-
cent RCT comparing ERCP in high-risk patients between MAC 
and GEA showed higher incidence of SRAEs in the MAC group 

Table 4. Performance Parameters of the LR Model and the GBM Ensemble Model for Predicting Hypoxaemia

Model
AUC 

calculation
AUC

(95% CI)
Threshold

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

LR

Training
1 random split,

bootstrap resampling

0.762
(0.727–0.795) Nomogram 

score 70

65.20
(59.30–71.10)

75.46
(74.12–76.79)

74.85
(73.55–76.16)

14.22
(12.20–16.25)

97.20
(96.62–97.78)

Test 0.670
(0.614–0.723)

49.07
(39.65–58.50)

75.84
(73.82–77.86)

74.26
(72.26–76.26)

11.28
(8.42–14.14)

95.97
(94.92–97.01)

LR

Training
30 random splits,

average value

0.7313
(0.7280–0.7345) Model output

0.06

57.22
(54.10–60.33)

76.85
(73.90–79.81)

75.70
(73.09–78.30)

14.07
(13.18–14.97)

96.69
(96.55–96.83)

Test 0.7230
(0.7152–0.7308)

54.58
(51.81–57.35)

76.83
(73.84–79.81)

75.52
(72.85–78.19)

13.74
(12.67–14.81)

96.43
(96.27–96.59)

GBM ensemble

Training
30 random splits,

average value

0.7924
(0.7899–0.7948) Model output

0.09

70.94
(69.92–71.96)

73.44
(72.34–74.53)

73.29
(72.31–74.27)

14.58
(14.22–14.94)

97.62
(97.56–97.68)

Test 0.7336
(0.7267–0.7404)

63.60
(60.13–67.07)

72.21
(69.01–75.42)

71.70
(68.88–74.52)

13.14
(12.33–13.96)

96.97
(96.76–97.19)

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; GBM, gradient boosting 
algorithm.
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Fig. 3. ROC curves of each model for predicting hypoxia during ERCP in 
test sets. GBM, gradient boosting algorithm; LR, logistic regression; ROC, 
receiver operating characteristic; ERCP, endoscopic retrograde cholangi-
opancreatography.
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than that in the GEA group (51.5% vs. 9.9%, p<0.001), including 
that of hypoxaemia (19.2% vs. 0%, p<0.001).13 These data sug-
gest that GEA should be chosen for ERCP in patients at an ele-
vated risk of SRAEs, which seems more suitable in practice than 
performing GEA on every patient undergoing ERCP. Providing 
anaesthesia, particularly GEA, in the endoscopy unit has many 
hurdles, such as anaesthesiologist’s unfamiliarity and resourc-
es, including equipment and a post-anaesthesia care unit.23,35,37 
Moreover, conflicting results on whether GEA negatively im-
pacts efficiency metrics in an endoscopy unit have been re-
ported.4,13

The aforementioned RCT classified patients as high risk if 
they had at least one risk factor for SRAEs.13 However, ERCP 
has a broad spectrum of procedural difficulties, expected pro-
cedure times, and patient conditions. For example, a simple 
follow-up ERCP for an obese patient may not need general an-
aesthesia, but a young adult in good physical condition may 
experience severe hypoxemia under MAC due to a prolonged 
procedure resulting from difficulty in cannulation. Therefore, 
a prediction model for a more precise risk stratification may be 
especially useful.18 Our risk prediction model for hypoxaemia 
during ERCP under MAC can help distinguish potential can-
didates for GEA before the procedure. Among the eight vari-
ables in the LR model, advanced age, higher ASA class, habitual 
snoring, and increased BMI are well-known factors associated 
with increased SRAEs.17-21,37 Regarding biliary stone as ERCP 
indication, we speculate that our institution may have a large 
proportion of difficult biliary and intrahepatic stones classified 
as grade 2–3 difficulty that require prolonged procedure times, 
as we are a large-volume university hospital.3,38 However, a study 
from a smaller volume centre showed no difference in predict-
ing procedure failure, even for ERCPs with biliary stones.20 Same-
session endoscopy with sedation before ERCP may require 
prolonged sedation and procedure times. The eGFR criteria in-
dicated that stage IV or V chronic kidney disease was signifi-
cantly associated with hypoxaemia, which might be related to 
the alteration of pharmacokinetics due to the impaired renal 
excretion of sedative agents.39 Baseline administration of ino-
tropes indicates cardiovascular insufficiency, mostly as a result 
of septic shock in a patient with an indication of ERCP. More-
over, sedative agents that inhibit sympathetic activity can cause 
disorders in blood circulation and oxygen exchange in these 
patients.40

The GBM ensemble model, which showed better prediction 
performance, was developed with eight additional variables 
selected by ML, which might indicate increased comorbidity, 
higher ASA class, prolonged sedation time, and decreased re-
spiratory capacity. However, some of these variables showed no 
significance in univariate analysis. Although feature selection 
was performed by ML to construct the most-fitted model, a de-
tailed explanation of how these variables are related to hypox-
aemia is not possible due to the nature of ML. Considering the 
characteristics of the current datasets, GBM was selected among 

the advanced ML models. GBM is suitable for relatively small 
tabular datasets,28 and can effectively approximate nonlinear 
functions using the model boosting method.27 A suitable deep-
learning architecture to improve the predictive power may be 
found if more patient datasets become available in the future. 
Deep-learning models typically require more training data than 
GBM models and could exhibit enhanced performance by 
training large-scale data with little performance saturation.

Our prediction models can serve as auxiliary tools for facili-
tating safety and efficiency and effective tools for communi-
cation between anaesthesiologists and endoscopists to select 
the appropriate type of anaesthesia. The LR-based nomogram 
is easier to calculate; however, the GBM ensemble model can 
yield more accurate predictions, although it requires computer-
aided calculation. If a patient is distinguished as the high-risk 
group of hypoxaemia during ERCP by our models, ERCP under 
GEA, rather than MAC, could be a better option. In addition, 
institutional experience, patient safety, available resources, and 
cost should all be considered.32

Our study had several limitations. First, our endpoint was 
hypoxaemia alone, since major differences in hypoxaemia be-
tween MAC and GEA were reported in previous RCTs.13 We fo-
cused on hypoxaemia, which can be prevented in GEA with a 
secured airway. Second, some factors, such as patient position 
and expected procedure difficulty were not evaluated; evalu-
ating these factors may improve the prediction accuracy. The 
duration of MAC and the dose of propofol and fentanyl were 
intentionally left out from the establishment of the model. This 
was because these variables did not show a strong association 
with hypoxaemia in univariable analysis; and most important-
ly, they can only be obtained after the procedure, not before. 
Third, our total rate of hypoxaemia was 5.9%, which was less 
than that in previous studies (10%–28%),11-14 since all MAC pro-
cesses were implemented by an experienced anaesthesiolo-
gist. Immediate airway manoeuvres in response to a detected 
apnoea or a decrease in SpO2 may have resulted in our low rate 
of hypoxaemia. In many hospitals, sedation for ERCP is pro-
vided by not only anaesthesiologists but also nurse anaesthe-
tists or endoscopists. Thus, the predicted risk should be inter-
preted in consideration of each institution’s situation. Fourth, 
since our study was conducted at a single institution, external 
validation is required. There are two limitations of applying the 
current dataset to the ML models. First, the size of the dataset is 
small, so performance variance depends considerably on how 
the dataset is split into the training and test sets; therefore, ad-
ditional training data are required to make the ML models 
more robust. Second, the dataset has an imbalanced label ra-
tio; therefore, techniques, such as oversampling and weighted 
loss function, should be applied to prevent ML models from 
biased training. 

In conclusion, we established an easily applicable LR-based 
nomogram with acceptable accuracy and an ML-based GBM 
ensemble model that showed statistically better performance 
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than the LR model in predicting the risk of hypoxaemia during 
ERCP under anaesthesiologist-administered MAC. Our results 
suggest that the GBM ensemble model has a good potential to 
prevent hypoxaemia during ERCP under MAC.
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