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A B S T R A C T   

Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the 
presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are 
available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs 
that control gene expression through post-transcriptional regulation of their complementary target messenger 
RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of 
various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is 
actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them 
as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide 
tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. 
Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their 
altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as 
diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in 
their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs 
molecules as therapeutic tools and targets for fighting PCa.   
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Introduction 

Prostate cancer (PCa) is a multifactorial disease with several factors 
contributing to its pathophysiology [1]. According to the Global Cancer 
Statistics (GLOBOCAN) in 2020 produced by the International Agency 
for Research on Cancer (IARC), PCa accounts for 14.1% of cancer in 
men, with a mortality rate of 6.8% [2]. In more recent estimates by The 
American Cancer Society collected by the National Cancer Institute’s 

(NCI’s) Surveillance, Epidemiology, and End Results (SEER) program, 
PCa is the leading type of cancer in men (27% of incidence) and is 
responsible for 11% of cancer-related deaths in the United States [3]. 
This rise in incidence and mortality rate is linked with the depression of 
healthcare systems due to Corona Virus 2019 (CoVid-19), impeding 
diagnosis and treatment temporarily [4]. 

The classification of PCa is widely determined using the American 
Joint Committee TNM system, which takes into consideration both 

Fig. 1. Schematic representation of miRNA biogenesis. miRNA genes are transcribed by RNA pol II to generate long pri-miRNAs. The latter are cleaved by a 
Microprocessor complex, which includes DROSHA and DGCR8, and produce a 60–70-nucleotide pre-miRNAs. The pre-miRNAs are exported from the nucleus to the 
cytoplasm by XPO5 and further processed by DICER1 to produce mature miRNA duplexes. The mature guide strand is selected and loaded into RISC, which contains 
DICER1, TRBP, and AGO proteins. The guide strand directs RISC to the mRNA targets resulting in either mRNAs degradation or translational repression. Alterations 
at the level of miRNA gene itself or its promoter and the biogenesis core processing enzymes can occur resulting in a dysregulated miRNA expression profile. Ab-
breviations: miRNA; microRNA, RNA pol II; RNA polymerase II, pri-miRNAs; primary miRNAs, DGCR8; DiGeorge syndrome critical region 8, pre-miRNAs; precursor 
miRNAs, XPO5; exportin 5, RISC; miRNA-induced silencing complex, TRBP; transactivation-responsive RNA-binding protein, AGO; Argonaute, mRNA; 
messenger RNA. 
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clinical and pathological staging [5]. Clinical staging assesses the pri-
mary tumor using a digital rectal examination, a prostate-specific anti-
gen (PSA) test, and imaging modalities. Meanwhile, pathological staging 
takes into consideration the histological examination of a transrectal 
ultrasound (TRUS)-guided biopsy [6]. Determining both, the stage and 
grade, facilitate the therapeutic journey permitting the physician and 
patient to weigh out the risk and benefits of each therapeutic regimen. 
Traditionally, in localized PCa, with low to intermediate risk, watchful 
waiting, active surveillance, surgery (radical prostatectomy), and radi-
ation therapy are opted for. However, for locally advanced and meta-
static disease stages, androgen suppression and chemotherapeutic 
agents are considered [7]. Emerging novel therapeutic modes hold 
promise when it comes to both primary and metastatic PCa, owing to a 
better understanding of PCa oncogenesis, and advancements in the 
diagnosis and treatment personalization [8]. These include diagnosis, 
prognosis, predictive, and treatment monitoring response by human 
biofluid circulating microRNA (miRNA) [9], diagnosis using molecular 
imaging (PET-CT) [10], targeted radioisotopes for metastatic 
castration-resistant PCa (mCRPC) [11], and immunotherapy [12]. 
miRNAs are a class of single-stranded small non-coding RNA (~19-24 
nucleotides in length) that negatively regulate complementary 
messenger RNA (mRNA), ultimately affecting its protein expression 
[13]. Globally, miRNAs are a topic of interest as they play crucial roles in 
cell physiology and cancer pathophysiology, including PCa. There are 
several miRNA molecules implicated in the regulation of apoptosis, 
tumor growth, metastasis, and drug resistance. Thus, the initiation and 
progression of neoplastic diseases can be modulated by these small 
molecules [14,15]. This renders them targets for diagnostic, prognostic, 
and therapeutic agents, and developments in this field are surging [9, 
16–19]. 

Here we overview the implication of miRNAs in PCa tumorigenesis 
and the significance of their usage as biomarkers. Also, we discuss the 
high-throughput screening technologies and the promising therapeutic 
approaches that can be potentially used as tools against PCa. 

miRNAs biogenesis 

MiRNA molecules serve as guiding molecules for regulating gene 
expression. A single miRNA can target and regulate hundreds of mRNAs, 
which implicate them in almost all physiological and cellular processes 
[20]. The biogenesis of miRNAs is under tight temporal and spatial 
control. It is a rigorous processing pathway that ensures only RNAs with 
the correct structures and sequences can regulate gene expression [21, 
22]. The multistep miRNA biogenesis cascade includes miRNA gene 
transcription, primary miRNA (pri-miRNA) processing, pri-miRNA 
export to the cytoplasm, precursor miRNA (pre-miRNA) maturation, 
and transcript targeting (refer to Fig. 1). 

The first step in miRNA biogenesis involves the transcription of 
miRNA gene by RNA polymerase II, which generates a 5′ capped and 3′

polyadenylated pri-miRNA transcript [20,23]. The pri-miRNA is then 
cleaved inside the nucleus by a Microprocessor complex, releasing a 
small hairpin structure known as pre-miRNA [24,25]. The Micropro-
cessor complex comprises the RNase III enzyme DROSHA and its 
essential cofactor, the double-stranded RNA (dsRNA)-binding protein 
DiGeorge syndrome critical region 8 (DGCR8) [26]. 

Next, the pre-miRNA is exported to the cytoplasm by Exportin-5 
(EXP5), a RAN-GTP dependent nucleo/cytoplasmic cargo transporter 
[27]. In the cytoplasm, the type-III RNAse DICER further cleaves the 
pre-miRNA into a short dsRNA duplex of around 22 nucleotides. This 
duplex contains a mature guide miRNA strand and its complementary 
passenger strand [28]. To effectively cleave the pre-miRNA, DICER 
forms a complex with other proteins such as the protein kinase R-acti-
vating protein (PACT) and the Trans activating Response RNA-Binding 
Protein (TRBP) [29]. Afterward, the guide and passenger strands of 
the miRNA duplex are loaded into the Argonaute (AGO) proteins to 
create the RNA Induced Silencing Complex (RISC). Dicer, TRBP, PACT, 

and AGO proteins are all components of RISC [30]. The mature guide 
strand, with the lower thermodynamic stability at its 5′-end, is then 
selected and the corresponding passenger strand is discarded as part of 
an ATP-independent miRNA duplex unwinding process inside the AGO 
proteins [31,32]. After which, the miRNA directs this catalytic complex 
to a particular mRNA sequence to negatively regulate its expression. 
Depending on the base-pairing complementarity between the guide 
miRNA and its mRNA target, the latter is either cleaved and degraded or 
translationally inhibited [29]. 

miRNAs dysregulation in cancer 

Given the importance of miRNAs in regulating gene expression and 
modulating a plethora of cellular processes, it is not surprising that their 
dysregulation is associated with various pathological diseases. Aberrant 
expression patterns of miRNAs are reported in a wide spectrum of 
human cancers including PCa [33,34]. This dysregulation is triggered by 
several genomic anomalies including, chromosomal modifications, 
aberrant miRNA biogenesis, and altered epigenetic regulation (refer to 
Fig. 1). 

Chromosomal modifications 

Alterations in miRNA-containing genomic loci and their associated 
genes have been proved to be partly responsible for miRNA dysregula-
tion in cancer [35]. In a genome-wide systematic study for correlations 
between the genomic positions of miRNA genes and cancer, Calin et al. 
[36] showed that cancer-related miRNA genes are non-randomly 
distributed among the human chromosomes but concentrated in 
certain chromosomes. MiRNA genes preferentially reside in particular 
genomic regions that are prone to alteration in cancer cells, known as 
cancer-associated genomic regions (CAGRs). CAGRs can take the form of 
(i) minimal common regions of loss of heterozygosity (LOH), which are 
thought to harbor tumor-suppressor genes, (ii) minimal common regions 
of amplification (minimal amplicons), which are thought to have on-
cogenes, (iii) common breakpoint regions, and (iv) fragile sites (FRAs) 
for sister-chromatid exchange, translocation, or integration of plasmid 
DNA and tumor-associated viruses [37,38]. Moreover, single-nucleotide 
polymorphisms (SNPs) in miRNA genes also alter their expression levels 
and affect their functional role in mediating gene regulation, thereby 
affecting cancer risk [39–42]. 

Aberrant miRNA biogenesis 

As elaborated in the previous section, different components partici-
pate in miRNA biogenesis cascade and ensure the correct maturation of 
pri-miRNA. The level of expression and activity of the core processing 
enzymes, along with other regulatory factors, are often found dysregu-
lated in cancers. This dysregulation is accompanied by aberrant miRNA 
biogenesis and accordingly an altered miRNA expression profile [43, 
44]. As evidenced in the literature, described mutations in the micro-
processor components, DROSHA and its co-factor DGCR8, trigger im-
pairments in the pri-miRNAs nuclear processing [45–47]. Abnormal 
expression and/or activity of EXP5 protein interrupt the pri-miRNAs 
export to the cytoplasm [48]. Defects in the DICER/TRBP processing 
complex disrupt miRNAs maturation processing [47]. Changes in the 
stability and/or activity of AGO proteins, mainly AGO2, alter the 
post-translational modifications (PTMs) of miRNAs and critically affect 
miRNA gene-silencing function [49]. As well, aberrant expression of 
some key regulatory factors, such as RNA binding factors and tran-
scription factors (TFs; activators or repressors), significantly prompts 
faults in miRNA biogenesis and processing cascade [50–53]. Accord-
ingly, such defects alter the global miRNA expression level and increase 
the susceptibility to oncogenic shifts. 
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Altered epigenetic regulations 

Like other coding and non-coding genes, miRNAs are subjected to 
epigenetic regulations which control the DNA methylation and histone 
modification patterns at their genomic loci [54]. Impaired epigenetic 
regulations induce functional changes resembling that of genetic mu-
tations and result in aberrant miRNA expression in cancer [55,56]. 
Indeed, epigenetically regulated miRNAs are proved to be dysregulated 
in the pathogenesis of various cancers [57–59]. In an integrated review 
of 150 papers, 6.9 % of the total known mature miRNAs were shown to 
be regulated by DNA methylation in 36 different cancer types [60]. This 
is explained by the fact that one-third of human miRNAs have 
cytosine-phosphate-guanine (CpG) dinucleotides rich regions, or CpG 
islands, in their upstream promoter. These islands represent hotspots for 
methylation and tightly correlate miRNAs gene expression with the DNA 
methylation status [61,62]. The epigenetic silencing of 
tumor-suppressor miRNAs by promoter-associated CpG 
hyper-methylation is a common hallmark of human tumors [63]. For 
instance, the epigenetic disruption of the tumor suppressor miR-130a in 
PCa, mediated by the hypermethylation of its promoter region, is proved 
to promote key molecular and phenotypic features of prostate carcino-
genesis [64]. A similar miRNA-mediated epigenetic cross talk occurs 
with key histone modifications. The latter modulate the chromatin 
structure and accessibility at gene loci and hence regulate both the 
activation and repression of miRNA expression [65,66]. Altered histone 
modifications, such as those mediated by histone deacetylase (HDAC) 
and polycomb repressor complexes (PRC1 or PRC2) overexpression, 
have been identified in cancer in association with dysregulated miRNA 
profile. A combination of chromatin immune-precipitation (ChIP)-on--
chip and miRNA microarray analysis in PCa cells revealed that miRNA 
expression correlates positively with histone 3 lysine 4 tri-methylation 
(H3K4me3) and correlates inversely with histone 3 lysine 27 

tri-methylation (H3K27me3) in miRNA promoter regions [67]. For 
example, the overexpression of Enhancer Of Zeste 2 Polycomb Repres-
sive Complex 2 Subunit (EZH2), which tri-methylates H3K27, leads to 
the silencing of multiple tumor suppressive miRNAs in PCa [68]. 

MiRNAs implication in PCa hallmarks 

Dysregulated miRNAs have been shown to contribute to prostate 
tumorigenesis via the loss of tumor-suppressing miRNAs or amplifica-
tion of tumor-promoting/oncogenic miRNAs [69]. Numerous studies 
have validated the association between the dysregulated miRNAs and 
the initiation of PCa toward the acquisition of metastatic phenotype, by 
modulating crucial processes such as androgen receptor (AR) signaling, 
proliferation, apoptosis, epithelial to mesenchymal transition (EMT), 
and metastasis [70–72] (refer to Fig. 2). 

MiRNAs association with AR signaling 

It is well-established that alterations in AR signaling critically derives 
the growth and progression of both localized and advanced metastatic 
PCa. Several miRNAs are proved to interact with AR mRNA and regulate 
its expression, either by binding directly to the mRNA of AR itself or AR- 
associated factors, or indirectly by affecting the expression of AR co- 
regulators [73]. 

MiR-21 is one of the most widely studied miRNAs in cancer [74,75]. 
It is overexpressed in a variety of solid tumors, including PCa, and ex-
hibits predominantly an oncogenic role in disease occurrence and 
development [76,77]. MiR-21 itself is a direct transcriptional target of 
AR, which in turn, increases AR expression in PCa, thus suggesting the 
existence of a regulatory loop [78]. MiR-21 exerts its effect potentially 
by targeting and inhibiting several tumor suppressor genes, including 
transforming growth factor beta receptor 2 (TGFβR2) [79], phosphatase 

Fig. 2. Schematic representation of the most frequent dysregulated miRNAs in PCa. Dysregulated miRNA profile is associated with aberrant AR signaling, tumor 
development, progression, invasion, and metastasis in PCa. MiRNAs in red represent the up-regulated oncogenic miRNAs and those in green represent the down- 
regulated tumor suppressor miRNAs. Abbreviations: miRNA; microRNA, AR; androgen receptor, PCa: prostate cancer, MiR; microRNA. 
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and TENsin homolog (PTEN) [80], the translational inhibitor pro-
grammed cell death-4 (PDCD4) [81], and the membrane-anchored 
protease-regulator reversion-inducing cysteine-rich protein with kazal 
motifs (RECK) [82], thus supporting PCa promotion and progression. In 
addition, several studies evidenced miR-32 to be consistently dysregu-
lated miRNAs in PCa, with an overexpression being detected especially 
at the CRPC stage [83,84]. MiR-32 is an AR-regulated miRNA and it 
contributes to PCa cell growth and progression by blocking the expres-
sion of the tumor suppressor genes phosphoinositide-3-kinase interact-
ing protein 1 (PIK3IP1) and B-cell translocation gene 2 (BTG2), and 
favoring the PI3K/AKT/mTOR pathway [84]. Moreover, miR-125b-5p is 
a well-described oncogenic miRNA in PCa involved in AR signaling. 
MiR-125b-5p acts indirectly via modulating the AR nuclear receptor 
corepressor (NCOR2) [85]. 

Besides, a study on PCa cells identified binding sites for miR-185 in 
the 3′UTR of AR mRNA. Remarkably, the blockade of AR transcripts by 
miR-185 showed to compromise the interaction between AR and 
androgen response element (ARE) and decrease the level of AR target 
genes’ expression, hence suggesting miR-185 as a negative regulator of 
AR signaling [86]. MiR-let-7c is another tumor suppressor miRNA that 
antagonizes AR expression and activity indirectly by targeting c-Myc 
[87]. MiR-let-7c is found to be down-regulated in PCa specimens and to 
be associated with disease progression [88,89]. Moreover, Wan et al. 
showed that the androgen-induced miR-135a acts as a tumor suppressor 
in PCa mainly through modulating the expression of RB associated KRAB 
zinc finger (RBAK) and matrix metalloproteinase-11 (MMP-11). 
MiR-135a down-regulation causes loss in tumor-suppressive activities 
and mediates PCa progression in response to androgen deprivation 
therapy (ADT) [90]. Furthermore, miR-760 was proven recently to be 
expressed at low levels in PCa tissues compared to normal tissues. As an 
androgen-regulated tumor suppressor miRNA, the attenuation of 
miR-760 induces the proliferation and growth of PCa cell lines, pri-
marily by targeting and inhibiting the expression of interleukin-6 (IL-6) 
[91]. 

MiRNAs association with PCa development and progression 

Among promising miRNAs explored, miR-18a which belongs to the 
miR-17–92 cluster is upregulated in PCa and functions as a tumor pro-
moter [92,93]. MiR-18a-5p overexpression stimulates the proliferation 
of PCa cells by targeting the iron transporter Solute Carrier Family 40 
Member 1 (SLC40A1) [94]. Also, miR-18a-5p showed to attenuate the 
expression of the pro-apoptotic protein serine/threonine kinase 4 
(STK4), consequently resulting in an increased AKT phosphorylation 
and enhanced tumor cell survival [95]. As well, the miR-221/miR-222 
oncogenic cluster is found at high levels in PCa. One proposed mecha-
nism for miR-221/miR-222 involves attenuating the expression of 
p27kip1, and in turn affecting the expression of several genes involved 
in cell cycle and proliferation, including cyclin D1, cyclin A, and S-phase 
kinase-associated protein 2 (Skp2) [96,97]. 

Moreover, miR-122 serves as a tumor suppressor miRNA in PCa 
pathogenesis. Its downregulation is linked with increased proliferation 
and upregulation of Rho Associated Coiled-Coil Containing Protein Ki-
nase 2 (ROCK2) [98]. In another study, decreased levels of miR-122 
showed to be accompanied by increased proliferation, inhibited 
apoptosis, and PCa resistance to docetaxel, potentially through targeting 
the expression of enzyme pyruvate kinase M2 (PKM2) [99]. In addition, 
the loss of miR-15-a-miR-16-1 tumor suppressor cluster showed to affect 
PCa proliferation and survival by targeting multiple genes such as B-cell 
lymphoma 2 (BCL2), cyclin D1, cyclin E1, and cyclin-dependent kinase 6 
(CDK6) [100]. miR-204-5p is an additional well-documented tumor 
suppressor, which affects PCa growth by controlling the expression of 
the Homeobox A10 (HOXA10) and Meis Homeobox 1 (MEIS1), as well as 
the anti-apoptotic gene BCL2 [101,102]. 

MiRNAs association with PCa invasiveness 

Zhiping et al. reported the expression of miR-181a to be at higher 
levels in metastatic prostate tumor samples compared with primary 
prostate tumors. The overexpression of miR-181a showed to contribute 
to EMT phenotype by downregulating the expression of the epithelial 
marker E-cadherin and upregulating that of the mesenchymal markers 
N-cadherin, vimentin, and snail. MiR-181 overexpression was also 
shown to promote PCa cell migration and invasion by directly targeting 
transforming growth factor beta-induced factor 2 protein (TGIF2) [103]. 
As well, it contributes to the resistance of PCa cells to docetaxel and 
cabazitaxel, in part by modulating p53 phosphorylation and apoptosis 
[104]. As a member of the miR-106b-25 cluster, the expression level of 
miR-93 is also found up-regulated in PCa. Its role in disease progression 
involves increasing the expression levels of TGFβR2, Integrin Subunit 
Beta 8 (ITGB8), and Large Tumor Suppressor Kinase 2 (LATS2). More-
over, miR-93 significantly correlates with Gleason score, lymph node 
involvement, bone metastasis, and TNM stage in PCa [105,106]. 

Besides, the tumor suppressor miRNAs of miR-200 family are critical 
regulators of EMT. This family includes miR-200a/b/c, miR-429, and 
miR-141. In a study done to investigate the role of miR-200c-3p in PCa 
invasiveness, miR-200c-3p was found to be significantly down-regulated 
in human PCa cell lines (PC3 and DU145) compared with the normal 
prostatic epithelial cell line (RWPE1). MiR-200c-3p is proposed to 
inhibit cell migration and invasion via targeting the E-cadherin 
repressor and EMT inducer; Zinc Finger E-Box Binding Homeobox 2 
(ZEB2) [107]. In line, the downregulation of miR-200b in PCa showed to 
inhibit EMT, growth, and metastasis via a similar ZEB1-mediated 
pathway [108]. Similarly, miR-141-3p downregulation showed to 
participate in PCa metastasis and invasiveness via activating NF-κB 
signaling [109]., it showed to enrich the stemness characteristics of 
prostate cancer stem cells (PCSCs) by targeting a cohort of 
pro-metastasis genes including CD44, Enhancer of zest homolog 2 
(EZH2), and Ras homologous (Rho) GTPases [110]. In addition to its 
role in modulating growth and apoptosis, miR-204-5p downregulation is 
also associated with disease progression and metastasis. Wa et el. 
showed miR-204-5p to repress invasion, migration, and bone metastasis 
by inhibiting nuclear factor κB (NF-κB) signaling via simultaneously 
targeting Tumor necrosis factor receptor associated factor 1 (TRAF1), 
TGF-β Activated Kinase 1 (MAP3K7) Binding Protein 3 (TAB3), and 
Mitogen-Activated Protein Kinase Kinase Kinase 3 (MAP3K3) [111]. 
Moreover, multiple studies elucidated the critical role of miR-34a tumor 
suppressor in PCa invasiveness, and downregulated level of miR-34a has 
been observed in PCa tumors [112]. Liang et al. [113] found miR-34a to 
negatively regulate the Wnt signaling pathway and inhibit 
EMT-associated migration and invasion in PCa. Also, liu et al. [114] 
showed that miR-34a mediates the paclitaxel-based chemotherapy 
resistance in PCa cells via direct suppression of the JAG1/Notch1 axis. 
As well, Yan et al. [115] demonstrated the role of miR-34a in modu-
lating PCSCs and metastasis by directly repressing CD44 expression. 
Furthermore, a recent review discussed extensively the involvement of 
other miRNAs, including miR-145, miR-148, and miR-185, in regulating 
the behavior of PCSCs and contributing to PCa invasiveness and 
metastasis [116]. 

MiRNAs as potential biomarkers in PCa 

MiRNAs high-throughput detection methods 

As defined by the National Cancer Institute (NCI), a biomarker is a 
molecule detected in the body fluids or tissues indicating a normal or 
abnormal process, condition, disease, or even treatment response. A 
number of established biomarkers exist in the literature of which miR-
NAs emerged as potential candidates for cancer diagnosis, prognosis, 
and therapy selection and assessment [117–119]. MiRNAs are advan-
tageous due to their considerable stability, and high resistance to 
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ribonucleases as well as harsh physiochemical conditions that normally 
lead to RNA degradation [119–122]. Moreover, expression levels of 
miRNAs display an organ and tissue-specific profile. They are dysregu-
lated within specific cancer types and differentially expressed between a 
tumor and its corresponding normal tissue [123,124]. In addition, 
miRNAs may be extracted from various sources. For PCa, besides con-
ventional tissue biopsies (formalin-fixed, paraffin-embedded (FFPE), 
and fresh-frozen), samples may be collected less invasively and repeat-
edly from blood (serum, plasma, exosomes), urine, and semen 
[125–127]. 

These facts, among others, made miRNAs attractive molecules to 
explore as biomarkers and employ in routine clinical practice. To fulfill 
this purpose, miRNAs are being profiled using suitable and powerful 
technologies that were developed and enhanced over the years to 
overcome the challenges inherited by the nature of these molecules 
[128]. Here, we describe the current approaches for high-throughput 
detection of miRNAs in PCa with emphasis on their advantages and 
their limitations (refer to Fig. 2 and Table 1). 

Quantitative real-time reverse-transcription-polymerase chain reaction 
(qRT-PCR) 

qRT-PCR is considered a gold standard technique for the quantifi-
cation of miRNAs expression [129–132]. In fact, this method has been 
widely used in PCa to detect miRNAs from tissues and/or bodily fluids 
[130–132]. It is a temperature-dependent target amplification-based 
method where the miRNA is first reverse transcribed into its comple-
mentary DNA (cDNA), which is subsequently exponentially amplified 
and quantified by PCR allowing real-time fluorescence detection. Since 
mature miRNA are not polyadenylated, cDNA synthesis is performed 
mostly using the stem-loop primer, poly(T) adapter, or gene-specific 
primer (GSP). Following RT step, miRNA quantification may be 
commonly achieved using either SYBR Green fluorescent dye or TaqMan 
probe. SYBR Green dye is cost-effective, while TaqMan probe is more 
specific [128,133–137]. qRT-PCR is a convenient, simple, rapid, and 
inexpensive technique with a relatively easy data analysis. It is highly 
specific and sensitive capable of detecting a very low target copy num-
ber, which is important given the low abundance of some miRNAs in the 
clinical samples [138–140]. In addition, qRT-PCR may be scaled up and 
thus, used as a high-throughput method allowing the screening of up to 
384 miRNAs in one run [141–143]. It can also be employed to validate 
results from other genome-wide profiling techniques [144–146]. How-
ever, this methodology presents some limitations when it comes to 
miRNAs quantification, noting some in the following section. MiRNAs in 
bodily fluids are in general scarce compared to the genomic DNA 
(gDNA), thus, eliminating all gDNA contaminants from the clinical 
samples prior RT is very crucial. Designing suitable primers for miRNAs 
detection is challenging since the pre-miRNAs are in the form of a stable 
hairpin, while the mature miRNAs are of short length almost the size of 
the PCR primers. Moreover, miRNAs belonging to the same family may 
differ by only one nucleotide making it hard to discern them. Also, 
Choosing the right endogenous reference genes, allowing data normal-
ization, remains contentious with no widely accepted inner control 
genes [128,147–149]. Since qRT-PCR is a multi-step technique, it is 
more prone to error and false positive results. Its output depends highly 
on the quality of the input RNA from the clinical samples. Also, laborious 
experimental conditions related to the nature of miRNAs or to the 
technique itself such as target elongation, cDNA synthesis, and ampli-
fication steps all form potential sources of bias [150,151]. In general, 
qRT-PCR is best used to validate screening results from other 
genome-wide approaches (Fig. 3). 

Microarrays 
Microarray-based technique is widely used for the profiling of 

identified miRNAs and is commonly employed in PCa studies [88, 
152–154]. It is a high-throughput method that allows large-scale 
detection of miRNAs along the changes in their expression levels in 
one experiment. Microarray is a multistep hybridization-based tech-
nique whereby target molecules bind to their complementary probes 
that are fixed on impermeable solid supports. Extracted miRNAs in a 
particular sample are labeled with one of the various fluorescent dyes 
that may be used such as Alexa dyes, Cy3, and Cy5. As previously 
mentioned, miRNAs lack a poly(A) tail, thus, in contrast with the 
mRNAs, they cannot be labeled using the poly(T) RT protocol. Rather, 
miRNAs may be conjugated directly with the fluorescent dye or indi-
rectly whereby the miRNA transcripts or their corresponding RT-PCR 
products may be labeled instead of the miRNAs. The labeling step al-
lows the miRNAs that bind to their corresponding probes to emit fluo-
rescence at precise recorded locations on the solid chip. Accordingly, the 
detected fluorescence signal intensity reflects the presence of particular 
miRNAs and their relative expression levels in the tested sample. This 
method may also be used to compare the miRNAs profile between two 
samples using two different fluorescent dyes with different emission 
wavelengths (two-color microarray) [155–157]. Microarray-based 
method is particularly attractive for several factors. It is rapid and 
easily standardized. Most importantly, it allows high-throughput 

Table 1 
Main high-throughput approaches for miRNAs profiling, comparing their fea-
tures and limitations in detecting these molecules.  

Detection 
methods 

Principle/Main 
functions 

Advantages Limitations 

qRT-PCR  - Amplification- 
based  

- Best used for 
validation of 
targets obtained 
by large-scale 
approaches  

- Convenient/ 
simple  

- Relatively fast  
- Relatively 

inexpensive  
- Relatively easy 

data analysis  
- High sensitivity 

and specificity  
- Absolute and 

relative 
quantification  

- Challenges in 
primers design  

- Controversial 
reference genes  

- Difficulty to 
discern subfamily 
targets  

- Sensitive to 
gDNA 
contaminants 

Microarrays  - Hybridization- 
based  

- Best used for 
preliminary 
screening  

- Relatively fast  
- Easily 

standardized  
- Biochips readily 

available  

- Low sensitivity  
- Low specificity 

for targets in the 
same subfamily  

- Cross- 
hybridization and 
background noise 
issues  

- Restricted to 
array content  

- Relatively 
expensive 
custom-made 
chips 

Deep 
sequencing  

- Sequencing-based  
- Best used for 

large-scale novel 
biomarkers 
identification  

- Detection of 
novel targets  

- High dynamic 
range, 
sensitivity, and, 
specificity  

- No prior 
sequence 
knowledge 
required  

- Absolute 
quantification  

- Relatively high 
cost  

- Complex data 
processing and 
interpretation  

- Requirement of 
specialized 
personnel and 
equipment  

- Sequencing bias  
- Time-consuming 

Nanostring’s 
nCounter  

- Hybridization- 
based  

- No 
amplification 
steps  

- Relatively fast  
- Absolute 

quantification  
- High accuracy  

- Only available in 
specialized 
facilities with 
limited 
accessibility  

- Reduced 
sensitivity 

Abbreviations: qRT-PCR; quantitative real-time reverse-transcription-polymer-
ase chain reaction, gDNA; genomic DNA. 
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genome-wide screening of miRNAs from different samples simulta-
neously. Consequently, it offers the benefit of comparing miRNAs pro-
files between different conditions, organs, and tissues. In fact, using 
microarray-based method, miRNA profiles from hundreds of tumors 
and normal tissues were established, presenting a global miRNAs 
signature for several types of cancer [156,158]. Besides custom-made 
microarrays, some chips are readily available as miRNA commercial 
platforms are designed by many companies. Thus, biochips are attrac-
tive tools to be employed for biomarkers detection for clinical applica-
tions [128,159]. On the other hand, microarray-based method presents 
some drawbacks. MiRNAs with a very short length, low abundance, and 
similar sequences may not be detected since this technique is limited by 
the low sensitivity, low specificity for miRNAs in the same subfamily, 
cross-hybridization, and background noise problems. This technique 
requires prior knowledge of the miRNA sequences and is restricted by 
the array content; thus, discovery of novel miRNAs using this method is 

not feasible. In general, microarray-based technique is best used for 
preliminary screening of miRNAs [133,147,149,160]. 

Deep sequencing 
Next-generation sequencing (NGS)-based methods are powerful tools 

to screen whole-genome miRNAs and are being extensively used in 
various systems including PCa [161–163]. These are high-throughput 
methods that can produce millions of reads in parallel allowing the 
profiling of known miRNAs as well as the discovery of new ones. In fact, 
NGS-driven techniques led to the identification of most of the miRNAs 
[128,164]. These methods start with a wet experiment part whereby 
RNAs are extracted, then miRNAs are isolated from the total RNAs pool. 
Subsequently, sequencing adaptors are ligated at the 5’ and 3’ ends of 
the miRNAs. The latter are then subject to RT and PCR amplification. 
These steps are followed by the sequencing part that depends on the 
platform used (Illumina Genome Analyzer, SOLiD™, and Ion Torrent). 
Consequently, millions of short reads are obtained. The dry experiment 
part i.e. data processing starts with the alignment of all resulting reads to 
the latest corresponding genome (human genome) or miRNA sequences 
represented on miRBase (the microRNA database; https://www.mirbas 
e.org/). Accordingly, bioinformatics analysis allows the identification 
and quantification of established and novel miRNAs and their variants 
such as isomers [164–167]. The main feature of NGS is its very 
high-throughput sequencing and sample multiplexing where large 
numbers of targets are pooled and sequenced in parallel using individual 
“barcodes” (indexes) that flag the sources of the samples [167]. Deep 
sequencing-based methods present several advantages compared to 
other high-throughput techniques such as microarrays. As previously 
mentioned, these methods allow the detection of not only known miR-
NAs but also unexplored ones. Problems with background noise and 
cross-hybridization are less pronounced in NGS techniques. Moreover, 
the latter has a high dynamic range allowing precise quantification of 
the abundant miRNAs as well as the ones with low expression levels 
simultaneously in one run. In fact, NGS-based methods are 
highly-accurate due to the high depth of coverage of each base by the 
aligned short reads. They are highly sensitive and specific; capable of 
detecting differences in 1 bp of miRNA allowing the discrimination 
between miRNAs in the same subfamily. Finally, NGS-based methods 
can give an absolute quantification of the miRNAs [165,168–170]. 
Nevertheless, these techniques are still limited by several factors. The 
cost of performing deep sequencing is still relatively high impeding its 
use in routine lab work. Data processing and interpretation are complex 
requiring time along with specialized personnel and equipment. For 
these reasons, sequencing is not yet suitable for rapid clinical tests. 
Despite remarkable improvements, sequencing bias, which may be 
introduced at different experimental steps, still exists such as issues 
inherited by the PCR amplification and adapters’ ligation [150,170, 
171]. In general, NGS-based techniques are best used for large-scale 
novel miRNAs discovery and new biomarkers identification [150]. 

NanoString nCounter 
nCounter Analysis Systems by Nanostring are newly developed, 

digital-quantification, amplification-free methods that are being 
increasingly used in PCa [172–174]. These platforms allow the direct 
quantification of native miRNAs from their sources with no need for RT, 
amplification, or technical replicates. They are suitable for multiplex 
analysis of more than 800 targets. Since miRNAs are short with variable 
sequences, proper multiplexing is ensured by adding and ligating miR-
Tags to the miRNAs. This unifies the melting temperature (Tm) of all 
targets where subsequently the hybridization is performed at the same 
temperature regardless of miRNAs sequence. Following these steps, 
capture and reporter probes are hybridized to the corresponding miR-
NAs of interest forming unique target-probe complexes or codesets. The 
capture probes immobilize the codesets on the imaging surface in the 
nCounter Cartridge, whereas the reporter probes allow the identification 
of the miRNAs of interest through specific barcodes (color codes) of 6 

Fig. 3. Schematic representation of the different high-throughput tools for 
miRNAs detection in PCa. MiRNAs may be extracted from various sources such 
as tissue biopsies, blood, urine, and semen. Several high-throughput strategies 
exist to detect miRNAs. They range from qRT-PCR, microarray, and next- 
generation sequencing to NanoString nCounter-based methods. These tools 
are useful to identify the miRNAs with a dysregulated profile which may 
consequently serve as biomarkers for PCa diagnosis, prognosis, and response to 
therapy. Abbreviations PCa; prostate cancer, FFPE; formalin-fixed paraffin- 
embedded, miRNA; microRNA, qRT-PCR; quantitative real-time reverse-tran-
scription-polymerase chain reaction. 
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molecules formed by the combination of 4 fluorophores. Subsequently, 
the sample is scanned by a digital analyzer and the targets are directly 
counted and identified by their unique color codes [147,169]. nCounter 
platforms have several features. This technique is devoid of amplifica-
tion or cloning steps which may reduce the possibility of bias. Moreover, 
it is a relatively fast technique. It enables the measurement of a wide 
range of targets in parallel and provides absolute quantification of the 
miRNA levels. Also, it has a high accuracy being able to differentiate 
between similar miRNAs. However, nCounter platforms are not yet 
suitable for routine clinical practices and are only available in special-
ized facilities with limited accessibility. They also showed reduced 
sensitivity compared to other platforms such as NGS [169,175,176]. 

Third-generation sequencing platforms such as nanopore single- 
molecule technology and its variants are novel, rapidly evolving stra-
tegies that are reported in few studies working on PCa. Based on recent 
work that validated the efficiency of nanopore-based techniques to 
detect particular miRNAs, these approaches seem promising in 
screening these molecules noninvasively while avoiding any sample 
processing and amplification steps. Interestingly, these can be engi-
neered allowing the detection of multiple miRNAs targets at the same 
time. Consequently, future studies may validate the feasibility of 
implementing these approaches for high-throughput screening, partic-
ularly in clinical practices [177–180]. 

In a conclusion, no definitive technique for miRNA detection that is 
suitable for routine clinical practices exists yet. All current, as well as 
new emerging approaches, have advantages and limitations that need to 
be considered for the study design. Obtained results require meticulous 
analysis and assessment since conclusions may differ depending on the 
platform used. 

miRNAs as biomarkers for diagnosis, prognosis, and therapy response 

MiRNA translation into clinical practice can be a convenient tool in 
the determination of PCa diagnosis, prognosis, and therapeutic 
response. PSA remains the primary diagnostic test for PCa, however, its 
specificity is limited which often leads to over-diagnosis [181]. Its 
diagnostic accuracy can be improved by miRNA analysis as their dys-
regulation has been shown to be indicative of pathology and can 
differentiate between non-malignant pathophysiology, such as benign 
prostatic hyperplasia, and malignant disease [182]. 

Numerous miRNAs have been correlated with PCa diagnosis, how-
ever, only a few have been identified in more than one study. In this 
regard, Porzycki et al. reported that miR-106b, miR-141-3p, miR-21, 
and miR-357 were significantly overexpressed in the serum levels of 
PCa patients when compared to healthy control patients with 93% 
sensitivity and 63% specificity in the prediction of PCa [183]. In another 
study by Haldrup et al., the overexpression of serum miR-141-3p and 
miR-357 was noted in PCa patients compared to patients with benign 
prostatic hyperplasia (BPH) [184]. In a study analyzing miR-21, 
miR-141, and miR-221 levels in the blood circulation of healthy in-
dividuals, patients diagnosed with local PCa, and patients with bone 
metastatic PCa, an increase in the levels of miR-21 and -221, and no 
variation in miR-141 levels was noted. However, an increase in miR-141 
levels was the most significant indication of metastatic PCa [185]. 
Therefore, miR-21 has been identified as a more convenient PCa 
biomarker while miR-141 has been more applicable in discerning 
localized or locally advanced PCa from metastatic PCa as a prognostic 
tool, supported by other studies [186–188]. Early detection of PCa was 
shown to be potentially facilitated through the use of a plasma miRNA 
panel demonstrated by Matin et al. The panel comprising four miRNAs 
(miR-98-5p, miR152-3p, miR-326, and miR-4289) was shown to be 
overexpressed in PCa patients compared to healthy controls. This panel 
was shown to improve the early detection of PCa [189]. Liu et al. 
developed a score depending on serum levels of a panel consisting of 3 
miRNAs, miR-223, miR-24, and miR-375, to compare PCa patients that 
require active surveillance from patients that require treatment due to 

disease progression [190]. The analysis of PCa and non-cancerous tis-
sues revealed the deregulation of >100 miRNA in PCa as compared with 
non-cancerous prostate tissue. After the selection of 4 miRNAs to be 
analyzed in urine samples, in both cohorts, miR-148a and miR-375 were 
identified as specific biomarkers of PCa enhancing the diagnostic value 
of the PSA test [191]. 

As mentioned previously, miRNA dysregulation can also describe 
disease progression. They have been shown to possess the potential to 
differentiate between localized and advanced disease, determine Glea-
son score, cancer metastasis, and biochemical recurrence post-radical 
prostatectomy. A study by Brase et al. identified miR-141 and miR- 
375 as the most distinct markers for tumor progression after analysis 
of sera from individuals with metastatic PCa and localized tumors [188]. 
The diagnostic and discriminatory potential of miR-21 in urinary sam-
ples of PCa patients compared to patients with BPH was identified in a 
study by Stuopelyte et al. This study also identifies a panel, consisting of 
miR-21, miR-19a, and miR-19b, having higher diagnostic potential than 
that of the PSA test [191]. The elevated serum expression in a combi-
nation of 4 miRNAs (miR-20a, miR-21, miR-145, and miR-221) was 
shown to significantly differentiate between low-risk from 
intermediate/high-risk score patients [192]. Another signature consist-
ing of miR-20a, as well as miR-17, miR-20b, and miR-106a was identi-
fied to differentiate between high and low-risk PCa. An elevation in the 
panel was correlated with advanced tumor stage and shorter time to BCR 
in PCa patients who have undergone post-radical prostatectomy [193]. 
In a recent systematic review and systematic reanalysis of public data by 
Rana et al., two miRNAs (miR-148a-3p and miR-582-5p) were demon-
strated to be constantly prognostic of BCR [194–196]. In a study by Suer 
et al., an analysis of serum from 20 recurrent and 20 non-recurrent PCa 
patients associated the downregulation of miR-424 and the upregulation 
of miR-527 with recurrent PCa, emphasizing their prognostic potential 
[197]. A study by Bidarra et al. analyzed the plasma miRNA content of a 
cohort of 252 PCa patients and 52 asymptomatic controls. Findings 
correlate miR-182-5p and miR-375-3p with more advanced pathological 
stages, with miR-375-3p more significantly predicting metastatic 
development with 48.72% sensitivity and 75.59% specificity [198]. 

MiRNA levels have been shown to describe PCa patients’ response to 
therapy. The serum levels of miR-21 in docetaxel chemotherapy- 
resistant hormone-refractory PCa patients were found to be elevated 
[199]. Another study by Liu et al., associated an increase in serum 
miR-200 and a decrease/maintained miR-17 level pre-docetaxel treat-
ment with higher rates of no-response and shorter survival [200]. 
MiRNA levels detected in peripheral blood mononuclear cells (PBMS) 
can also be predictive of side effects such as acute genitourinary (AGU) 
radiotoxicity. A cohort of PCa patients monitored before, during, and a 
month after RT demonstrated the overexpression of three miRNAs, 
miR-21, miR-146a, and miR-155, suggesting their radio-sensitivity. 
MiR-21 levels increase during RT and then significantly decrease a 
month after in PCa patients who experienced AGU radiotoxicity and 
those who did not. miR-146a and miR-155 levels also increased during 
RT, however they did not significantly change a month after RT in those 
with AGU radiotoxicity. This suggests the use of miR-21 as an indicator 
of higher apoptosis rates and radiosensitivity while miR-146a and 
miR-155 could potentially be associated with higher inflammatory re-
sponses [201]. 

Clinical efforts are aiming at evaluating the diagnostic and prog-
nostic powers of miRNAs in PCa patients. Two ongoing clinical trials 
NCT04662996 and aim to determine the predictive capacity of miRNAs. 
NCT04662996 is expected to enroll a cohort of 50 castration-resistant 
PCa patients anticipated to undergo chemotherapy or novel hormonal 
therapy, and assess miRNA expression in blood samples before and after 
therapy. While NCT02366494 intends to enroll 60 PCa patients and 
validate the capacity of 200–300 exosomal miRNAs, identified by RNA 
sequencing, in predicting the response to ADT. Subsequently, the top- 
five most prevalent miRNAs will be reported [202,203]. Moreover, an 
observational study NCT04835454 that anticipates to enroll 120 
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participants aims to examine the diagnostic role of miR-194 as well as its 
potential in being a target for cancer treatment [204]. 

In summary, determining miRNAs that could be used as biomarkers 
for PCa diagnosis and prognosis is still a necessity and an ongoing work. 
The latter is instrumental in the therapeutic route of PCa deliberated to 
each patient (Tables 2 and 3). 

MiRNAs as therapeutic agents in PCa 

MiRNAs can be used not only for diagnosing PCa but also for 
developing therapeutics against it. MiRNA-based therapeutics aim to 
reverse the pathological miRNA alterations that enhance the prolifera-
tion, invasion, and metastasis of tumors. Since oncogenic miRNAs 
repress the translation of mRNA of tumor suppressor genes and tumor 
suppressor miRNAs repress those of oncogenes, inhibiting upregulated 
oncogenic miRNAs and restoring downregulated tumor suppressor 
miRNAs can be effective for treating PCa (refer to Fig. 4). 

Oncogenic miRNA inhibition therapy 

The loss-of-function modulation of miRNA can be achieved through 
different methods. The most common one is using anti-miRNA oligo-
nucleotides (AMOs) which are synthetic, about 17–22 nucleotide-long, 
anti-sense oligonucleotides that are designed to be complementary to 
their target miRNA especially at the seed region [213,214] (refer to 
Fig. 4A). They act as miRNA antagonists that anneal to the mature 
miRNA inhibiting the miRNA-guided action of RISC on the tumor sup-
pressor mRNA resulting in the inhibition of tumor cells proliferation and 
metastasis [215]. Since their unmodified forms are inefficient in inhib-
iting miRNAs in vitro and in vivo, chemical modifications can be intro-
duced mainly in at the C2’ position of the sugar ring and/or in the 
backbone to increase their potency [213]. One example of chemically 
modified AMOs used to treat PCa are Antagomirs, designed by Krutzfeldt 
et al. [216]. These were the first modified AMOs used in vivo [216], and 
they are widely used to inhibit miRNAs in vivo in PCa. In these AMOs, the 
3’ end is conjugated to cholesterol, thiol moieties replace the 
non-bridging oxygen of few phosphate groups at the 3’ and 5’ ends, and 
O-methyl modification on the C2’ of ribose sugar (2’OMe) is applied to 
the whole strand. For example, the intratumoral injection of 
anti-miRNA-221 and anti-miRNA-222 antagomirs resulted in the 

knockdown of the corresponding oncogenic miRNAs and the restoration 
of tumor suppressor p27, reducing the growth of PC3 cells-derived 
subcutaneous xenografts in mouse [97]. 2’OMe modification of AMOs 
is used alone in some studies such as in the one done by Li et al. where 
using 2’OMe-modified anti-miRNA21 increased the sensitivity of pros-
tate tumor cells to apoptosis and decreased their motility and invasion 
[217]. Locked nucleic acid (LNA) and peptide nucleic acid (PNA) are 
also among the modifications applied to AMOs used for targeting PCa. 
LNA is a modified ribonucleic acid in which the 2’hydroxyl group and 
4’carbon of the ribose ring are connected by a methylene bridge which 
locks it in a C3′-endo conformation and makes it bicyclic [213]. PNA is a 
ribonucleic acid in which the ribose phosphate is replaced by 
N-(2-aminoethyl) glycine; these nucleic acids are connected by peptide 
bonds [213]. In a study conducted by Kim et al., LNA- and PNA- 
modified anti-miRNA21 strands showed an anti-tumor effect as they 
inhibited the survival of DU145 PCa cells in vitro and reduced tumor 
proliferation in the mouse subcutaneous tumor xenograft 
pre-transfected with this inhibitor [205]. In addition, the intravenous 
injection of PNA-type anti-miRNA21 significantly reduced the meta-
static tumors in the mouse bone metastasis model. 

Another strategy to silence oncogenic miRNA is using miRNA 
sponges (refer to Fig. 4A). MiRNA sponges are long RNA transcripts that 
are stably encoded by an expression vector with a strong promoter 
[218]. These long nucleic acids sequester miRNAs through tandem 
complementary target sites hence providing multiple binding sites for 
the miRNAs to prevent them from binding to their actual tumor sup-
pressor mRNA targets [219]. For example, Jung et al. designed a mul-
tipotent miRNA sponge that have multiple perfect and bulged-matched 
miRNA-binding sites for miRNA-155, miRNA-21, miRNA-221/222 
which are overexpressed oncogenic miRNAs in prostate and other 
types of cancer [220]. This sponge successfully reduced these 4 miRNAs 
simultaneously in breast and pancreatic cancer cells resulting in sensi-
tizing them to cancer drugs and reducing their migration, and it might 
have the same effect on PCa cells. Studies have shown the presence of 
natural endogenous RNAs, long noncoding RNA (lncRNA) and circular 
RNA (circRNA), which can act in the same way as synthetic sponges 
[221]. For example, Zhendong Xiang et al. showed that CircRNA-UCK2 
has binding sites for miRNA-767-5p and that inhibiting PCa cells pro-
liferation and invasion ex vivo can be achieved by expressing this 
circRNA in PCa cells through lentiviral expression plasmids which leads 
to the sponging and inhibition of miRNA-767-5p and hence increases the 
expression of - the target gene of this miRNA- TET1 [207], a tumor 
suppressor that one of its functions in PCa is inhibiting matrix metal-
loproteinases - enzymes required in cell invasion and 
epithelial-mesenchymal transition - by promoting the expression of their 
inhibitors TIMP2 and TIMP3 (tissue inhibitors of metalloproteinases 2 
and 3) [222]. Zhendong Xiang et al. showed that knocking down TET1 in 
PCa cells reverses the effects of overexpressing CircRNA-UCK2 and re-
stores PCa cells proliferation and invasion which highly suggests that 
TET1 overexpression is what inhibits cell proliferation and invasion 
[207]. 

Several other promising strategies of inhibiting oncogenic miRNAs 
have been employed for other types of cancers. MiRNA masks are 
chemically modified antisense oligonucleotides (refer to Fig. 4A). 
Opposite to an AMO which has a sequence complementary to the 
miRNA, a miRNA mask has a sequence complementary to the mRNA and 
similar to the miRNA. Therefore, while an AMO can undergo base 
pairing with the oncogenic miRNA and inhibit it directly, a miRNA mask 
can undergo base pairing with the mRNA - of the tumor suppressor gene 
- that is targeted by the oncogenic miRNA. Hence, by this way, a miRNA 
mask prevents the access of the oncogenic miRNA-directed RISC to the 
mRNA of the tumor suppressor gene allowing normal translation of 
these tumor suppressor proteins [223]. Another strategy is genome 
editing using CRISPR (clustered regularly interspaced short palindromic 
repeats)-Cas 9 (CRISPR-associated protein 9). This method can be used 
can to delete oncogenic miRNA genes or mutate them such that the 

Table 2 
List of miRNAs with diagnostic, prognostic, and therapeutic potential in PCa.  

MiRNAs Specimen Usage Refs. 

miR-106b Serum D [183] 
miR-141-3p Serum D, P [183.184] 
miR-21 Serum, 

Urine 
D, P, T [183,185, 

199] 
miR-375 Serum D [183] 
miR-141 Blood D, P [185–188] 
miR-98-5p, miR-326, miR-152-3p, miR- 

326, miR-4289 
Plasma D [189] 

miR-223, miR-24, and miR-375 Serum D, P [190] 
miR-148a Urine D [191] 
miR-375 Urine, 

serum 
D, P [188] 

miR-21, miR-19a, and miR-19b Urine D [191] 
miR-20a, miR-21, miR-145, and miR-221 Serum D, P [192] 
miR-20a, miR-17, miR-20b, and miR- 

106a 
Blood D, P, T [193] 

miR-148a-3p and Tissue D, P [194–196] 
miR-582-5p Tissue D, P [197] 
miR-424 Serum D, P [197] 
miR-527 Serum D, P [197] 
miR-182-5p, miR-375-3p Plasma D, P [198] 
miR-200, miR-17 Serum D, P, T [200] 
miR-21, miR-146a, miR-155 Plasma T [201] 

Abbreviations: miRNAs; MicroRNAs, miR; microRNA, D; diagnosis, P; prognosis, 
T; therapy. 
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miRNA precursors cannot be recognized by the miRNA biogenesis ma-
chinery, which gives longer lasting effects than transiently transfecting 
the cells with the miRNA inhibitors [224]. 

Tumor suppressor miRNA replacement therapy 

MiRNA replacement therapy aims to restore the normal physiolog-
ical levels of downregulated tumor suppressor miRNAs. The main 
strategy is using miRNA mimics which are chemically modified syn-
thetic miRNA-like RNA duplexes (refer to Fig. 4B). They simulate the 
action of endogenous miRNA and can be loaded and processed by RISC 
to inhibit oncogenic mRNAs [225]. Single-stranded miRNA mimics that 
simulate the mature guide miRNA can be used, however, these 
double-stranded mimics are 100–1000 more effective [225]. To further 
improve their efficacy, modifications such as 2’-O-methylation are 
applied, yet they should be limited because the mimic needs to be loaded 
in RISC [226]. Transfecting LNCaP cells with 2’O-Methylated 
miRNA-185 mimic successfully restored the level of the tumor sup-
pressor miRNA-185 and suppressed their tumor formation ability in vivo 
[208]. MiRNA replacement-based treatments, as well as miRNA inhi-
bition, can be also used to sensitize the tumor cells to tumor. Gong et al. 
succeeded in sensitizing LNCaP- and PC3- derived tumor xenografts to 
radiotherapy through treating them with pre-miRNA-145 mimics, and 
the tumor growth was significantly reduced [212]. 

MiRNA inhibition and replacement strategies have shown a prom-
ising therapeutic potential to treat tumors, yet there are some serious 
problems that need to be addressed. Unmodified miRNA mimics and 
inhibitors are prone to rapid degradation by serum nucleases and rapid 
clearance by renal excretion, which causes a very short systemic circu-
lation time [227]. Moreover, unmodified nucleic acids delivered sys-
temically can activate the innate immune response and induce 
immunotoxicity [227]. In addition, one of the main concerns is deliv-
ering the mimics and inhibitors to the target cancer tissues with effective 
penetration to avoid any side effects [228]. Some of these issues can be 
addressed by chemical modifications such as those discussed earlier. 
PNAs, LNAs, C2’ moieties and other modifications show increased 
nuclease resistance, reduced immunotoxicity and enhanced binding af-
finity to their targets [229]. Yet, despite these improved properties, 
carriers are needed to improve the efficacy of these therapeutics in vivo. 

Delivering miRNA therapeutics 

Many viral and non-viral delivery systems that enhance the stability, 
decrease the side effects, and increase the accuracy and cellular uptake 
of miRNA-based therapeutics have been reviewed [230]. Viral vectors 
are efficient carriers, however, their immunotoxicity and other side ef-
fects limit their applicability [231]. On the other hand, non-viral vectors 
were considered less efficient, however, with recent advances in nano-
technology, nanoparticles are showing promising characteristics in 
delivering miRNA inhibition and replacing therapeutics in PCa [231]. 

Many recent studies show the efficiency of polymeric nanoparticle- 
based vectors in delivering miRNA therapeutics in vivo. One of these is 
the cationic polymer nanoparticle polyethyleneimine (PEI), yet it exerts 
cytotoxic effects [232]. Conte et al. synthesized Poly 
(3-hydroxybutyrate) (PHB) nanoparticles complexed with low molecu-
lar PEI [232]. PHB is a biodegradable polymer with no immunotoxicity 
and is degraded by nonspecific lipases and esterases which makes it a 
good delivery system for miRNA, however, its negative charge limits its 
application. Combining PEI with PHB created cationic nanoparticles 
with very minimal cytotoxicity that protected miRNA-124 mimics from 
nuclease degradation for extended duration. miRNA-124-complexed 
nanoparticles showed an enhanced transfection efficiency compared to 
a commercial transfection agent and impaired PC3 cells tumorigenicity 
by suppressing the translation of CPT1A oncogene mRNAs. In another 
study, Zhang et al. reduced the immunotoxicity and increased cell 
biocompatibility of PEI by the introduction of a disulfide linkage 
(SSPEI), and they added a cell permeable peptide poly-arginine (R11) as 
targeting ligand to enable PCa cells-specific interaction only [210]. The 
resulting R11-SSPEI nanoparticles showed no significant cytotoxicity, 
increased stability of miRNA-145 mimics, enhanced cellular specificity 
and uptake. After systemic delivery of SSPEI/miRNA-145 complex via 
intravenous injections, the prostate tumor showed high uptake value in 
prostate tumor but low uptake in the major clearance organs, and the 
complex inhibited the peritoneal prostate tumor growth. This R11 
peptide was used also to deliver the pre-miRNA145 mimics in the study 
by GONG et al. previously described [212]. Kunz et al. also used PEI 
nanoparticles to deliver LNA and 2’-OMe modified AMOs to successfully 
inhibit tumor proliferation and metastasis in in-vivo prostate carcinoma 
and melanoma mouse models [206]. 

Table 3 
Various miRNAs-based therapeutic strategies investigated in PCa.  

Therapeutic Strategy MiRNA Setting Delivery route Delivery vector Effect 

MiRNA 
Inhibition 

AMOs Antagomir miR-221/222 In-vivo Intratumoral 
injection 

- Restoring p27/ Inhibiting PC3 tumor cells proliferation 
[97] 

LNA MiR-21 Ex- 
vivo 

- - Restoring PTEN/ Inducing DU145 tumor cells apoptosis 
[205] 

PNA MiR-21 In-vivo Intravenous 
injection 

- Restoring PTEN/ Inducing DU145 tumor cells apoptosis 
[205] 

- miR-141/ 
miR-375 

In-vivo Intraperitoneal PEI nanoparticles Reducing PC3-derived tumor growth [206] 

- miR-150/ 
miR-638 

In-vivo Intraperitoneal PEI nanoparticles Suppressing MDM4/ Reducing melanoma tumor growth 
and inhibition of metastasis [206] 

miRNA sponge miRNA-767- 
5p 

Ex- 
vivo 

- - Restoring TET1/ Inhibiting human enzalutamide resistant 
prostate cells proliferation and invasion [207] 

MiRNA 
replacement 

miRNA mimics MiR-185 Ex- 
vivo 

- - Inhibiting AR and repressing CDC6/ Inhibiting migration, 
invasion, and tumor formation ability of LNCaP cells [208] 

MiR-34a In-vivo Tail vein Chitosan nanoparticles Suppressing MET and Axl/ Deceasing growth of PC3- 
derived bone-metastatic PCa and inducing autophagy 
[209] 

MiR-145 In-vivo Intravenous 
injection 

Polyarginine- 
conjugated PEI 

Decreasing PC3 peritoneal prostate tumor growth and 
increasing survival time [210] 

MiR-15a and 
MiR-16-1 

In-vivo Intravenous 
injection 

Aptamer-conjugated 
ATE 

Decreased growth and increased survival time in human 
PCa bone metastasis mice model [211] 

MiR-145 In-vivo Intravenous 
injection 

Mimic conjugated with 
polyarginine 

Radiosensitizing PC3 and LNCaP tumors [212] 

Abbreviations: miRNA; microRNA, miR; microRNA, AMOs; anti-miRNA oligonucleotides, LNA; Locked nucleic acid, PNA; peptide nucleic acid, PEI; polymer nano-
particle polyethyleneimine, ATE; Atelocollagen, PTEN; Phosphatase and TENsin homolog, MDM4; MDM4 Regulator of P53, TET1; Tet methylcytosine dioxygenase 1, 
AR; androgen receptor, CDC6; Cell Division Cycle 6, MET; mesenchymal to epithelial transition, Axl; AXL Receptor Tyrosine Kinase, PCa; prostate cancer. 
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In addition to PEI, Chitosan is a natural biodegradable poly-
saccharide with no immunogenicity and toxicity that can easily complex 
with miRNA due to its cationic character [233]. Systemic delivery of 
tumor suppressor miRNA-34a encapsulated in chitosan polymeric 
nanoparticles induced apoptosis and inhibited the growth of subcu-
taneous and bone metastatic PCa mouse models [209]. 

Lipid nanoparticle-based vectors are used to deliver miRNA-based 

therapeutics too. Among these are cationic niosomes which are bio-
degrabale vectors made up of non-ionic surfactants for improved sta-
bility, neutral lipids for improved cellular uptake, and cationic lipids for 
charging the nucleic acid [234]. Ghaffari et al. delivered miRNA-15a 
and miRNA-16–1 mimics through cationic niosomes conjugated with 
polyethylene glycol (PEG) to PC3 cells which induced their apoptosis by 
downregulating the Bcl-2 [235]. Moreover, other biomaterials like 

Fig. 4. Schematic representation of the potential therapeutic strategies that can be used to treat miRNA dysregulation in PCa. 4A. Strategies used to inhibit 
upregulated oncogenic miRNA include: AMOs that bind to miRNAs directly, miRNA sponges that have multiple binding sites for miRNAs, and miRNA masks that bind 
to the mRNA target of miRNA. 4B. One strategy used to restore downregulated tumor suppressor miRNAs is miRNA mimics that act in the same manner as tumor 
suppressor miRNAs by binding to the mRNAs of oncogenic genes and inhibiting their expression. Abbreviations: miRNA; microRNA, mRNA; messenger RNA, AMOs; 
anti-miRNA oligonucleotides, circRNA; circular RNA, PCa; Prostate cancer. 
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Atelocollagen (ATE) have been reported as delivery systems. In a study 
done by Hao et al., delivering miRNA-15a and miRNA-16-1 mimics 
using ATE conjugated with RNA aptamer that targets prostate-specific 
membrane antigen (PSMA) expressed by some PCa types inhibited the 
growth of bone-metastatic prostate tumor mouse model [211]. 

Despite the advancements in miRNA-based therapeutics and their 
delivery strategies, further preclinical studies are needed to verify the 
efficacy and safety of these methods. Currently, there are no miRNA 
treatments being tested clinically for PCa [236]. 

Conclusion 

It is well established that the expression of some miRNAs is dysre-
gulated in diverse types of cancer including PCa. Several mechanisms 
may lead to an aberrant profile of miRNAs that may range from chro-
mosomal modifications, altered epigenetic regulations, and abnormal 
miRNA biogenesis. As such, prostate cells with dysregulated miRNA 
expression may have a shifted balance between tumor-suppressing and 
tumor-promoting/oncogenic miRNAs. Consequently, crucial cellular 
processes may be affected such as AR signaling, proliferation, apoptosis, 
EMT, and invasion; all leading to PCa development and progression. 

Interestingly, the dysregulated profiles of miRNAs form signatures 
that have been exploited to determine specific biomarkers for early 
diagnosis, prognosis, and prediction of treatment efficacy against 
several cancer types together with PCa. The latter is unique in the sense 
that blood, urine, and semen may be used as sources for biomarkers 
detection. This is of particular interest for clinical use since miRNAs are 
present in these samples which may be extracted non-invasively and 
repeatedly from the patients. To detect and determine specific miRNA 
biomarkers, different high-throughput tools evolved and were employed 
over the years. Mainly, qRT-PCR, microarray, NGS, and nCounter-based 
methods are being used. Each technique involves advantages and pitfalls 
whereby employing one over the other depends on many factors such as 
the research question/targets, sample types, and resources. To date, an 
ideal miRNA high-throughput detection technique that combines the 
following characteristics does not yet exist. In summary, this method 
should have high sensitivity to detect low levels of miRNAs, high spec-
ificity to confidently discriminate one nucleotide difference between the 
targets, the ability to provide quantitative outputs of miRNAs expression 
levels, steps that are easy/simple to perform, and equipment/reagents 
that are readily available [1]. Taking the lack of a best suitable detection 
method into consideration, along with the fact that PCa studies were 
carried out on a limited number of patients, in addition to the incon-
sistency of data obtained between the different studies, few published 
work presented one particular miRNA described clearly as a biomarker 
for PCa. Thus, more efforts are required to profile and validate miRNA 
candidate biomarkers in large cohort studies. 

Despite all advances, management of mCRPC still presents chal-
lenges emphasizing the need for novel treatment and drug delivery ap-
proaches. miRNA-based therapeutics have been considered as potential 
strategies to target PCa. However, till now, no miRNA treatments have 
been clinically tested for PCa, as miRNA-based therapeutic approaches 
are still naïve lacking further preclinical studies to validate their efficacy 
and safety. 
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