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Abstract

Microglia are activated in response to a number of different pathological states within the CNS 

including injury, ischemia, and infection. Microglial activation results in their production of 

pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α. While release of these factors is 

typically intended to prevent further damage to CNS tissue, they may also be toxic to neurons 

and other glial cells. Mounting evidence indicates that chronic microglial activation may also 

contribute to the development and progression of neurodegenerative disorders. Unfortunately, 

determining the role of pro-inflammatory cytokines in these disorders has been complicated 

by their dual roles in neuroprotection and neurodegeneration. The purpose of this review is to 

summarize current understanding of the involvement of cytokines in neurodegenerative disorders 

and their potential signaling mechanisms in this context. Taken together, recent findings suggest 

that microglial activation and pro-inflammatory cytokines merit interest as targets in the treatment 

of neurodegenerative disorders.
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1. Introduction

Cytokines comprise a group of small polypeptides (8–30 kDa) possessing tremendous 

diversity in their potential actions. Most cytokines act at very low concentrations (picomolar 

to nanomolar) and signal in either an autocrine or paracrine fashion to modulate local 

cellular activities including survival, growth, and differentiation. Cytokines are also rapidly 

upregulated in response to disease, injury, and infection and serve an important role in 

tissue repair in these acute pathologic states. These peptides have typically been classified 

as either pro-inflammatory or anti-inflammatory based on their actions in peripheral 

tissues. Recently, chronic microglial production of pro-inflammatory cytokines including 
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interleukins (IL-1 and IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) has 

received considerable attention for its role in neurodegenerative disorders. The purpose of 

this review is to outline current evidence regarding how these cytokines may contribute to 

the process of neurodegeneration and their potential as therapeutic targets in a wide range of 

central nervous system (CNS) diseases.

2. Microglia: culprits of cytokine production in neurodegenerative 

diseases

Microglia are the unique resident immune cells of the CNS acting as primary mediators 

of inflammation. Although microglial density is region-specific, they comprise between 

5 and 20% of all cells in the human brain, accounting for approximately 20% of the 

glial population [98,136]. Within healthy CNS tissue, microglia possess a unique ramified 

morphology with a small, round soma and numerous branching processes. Although long 

considered to be in a “resting” state, recent evidence indicates that ramified microglia 

have critical physiologic roles including determination of neuronal fate, migration, axonal 

growth, and synaptic remodeling during brain and spinal cord development. The critical 

contributions of microglia to CNS maturation can be attributed to their actions in 

phagocytosis of cellular debris, release of a variety of cell signaling factors including 

neurotrophins and extracellular matrix components, and direct contact with neurons 

[13,70,94,96,179].

Microglia also possess the necessary machinery and characteristics to act as sensors for 

disruption in normal homeostasis within the mature CNS [69,158]. Microglia are rapidly 

activated following a number of pathologic events including altered neuronal function, 

infection, injury, ischemia, and inflammation (Fig. 1). Activation results in a transition in 

microglial morphology to an ameboid state facilitating the migration of these cells to the site 

of insult [41]. Microglial response to CNS pathology also results in initiation of a number 

of immune functions including phagocytosis, antigen processing and presentation, and 

production of both cytotoxic and neurotrophic factors [41,180]. Mediators of cytotoxicity 

released from activated microglia include reactive oxygen and nitrogen species (superoxide 

anion, nitric oxide), arachidonic acid metabolites (eicosanoids), excitotoxic glutamate, 

quinolic acid, and histamine (Fig. 1) [128]. Release of these factors results from stimulation 

of microglia with lipopolysaccharide (LPS), amyloid protein, and high concentrations of 

IFN-γ [117,120]. Alternatively, microglia may also act as sources of neurotrophic factors 

including nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and 

neurotrophin-4/5 (NT-4/5) [13,127]. Microglia-mediated neuroprotection and neurogenesis 

has been shown to occur due to exposure to IL-4 and low levels of IFN-γ [23]. These 

findings indicate that microglial actions may be dependent on the nature of the activating 

stimulus. To this end, recent studies have shown that microglial phagocytosis of invading 

bacteria is associated with their release of pro-inflammatory factors whereas clearance of 

apoptotic debris is associated with production of anti-inflammatory factors [71,113]. While 

short-term microglial activity is generally accepted to serve a neuroprotective role, chronic 

activation has been implicated as a potential mechanism in neurodegenerative disorders. 
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A special emphasis has recently been placed on microglial release of pro-inflammatory 

cytokines including IL-1, IL-6, TNF-α, and IFN-γ and their roles in neuronal degeneration.

It is important to note, however, that microglia are not the sole producers of cytokines 

following CNS insult. Astrocytes have also been implicated in the generation of pro-

inflammatory mediators involved in neurodegenerative disorders [103,109,175]. Cytokines 

other than those classically described as pro-inflammatory may also have a role in the 

development of these disorders. For example, studies have identified IL-33 as having a 

potential role in Alzheimer’s disease. Chapuis et al. and other groups have demonstrated 

that multiple polymorphisms in the gene encoding IL-33 may confer increased risk of 

Alzheimer’s disease [29,188]. While these are both important topics deserving of attention, 

the focus of this review will remain on the role of classical pro-inflammatory cytokines 

(namely TNF-α, IL-1, and IL-6) in neurodegeneration.

3. Evidence for cytokine involvement in neurodegenerative disorders: an 

undeniable case?

3.1. Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of dementia in the elderly resulting 

in a progressive decline in a number of cognitive functions including short-term memory. 

AD is characterized by the formation of two characteristic lesions: extracellular β-amyloid 

deposits forming senile plaques and intracellular neurofibrillary tangles made up of the 

microtubule associated protein tau. A strong link between inflammation, primarily mediated 

by pro-inflammatory cytokines, and AD has been established both in clinical data and 

bench research. Indirect evidence suggests that initiation of strong local inflammatory 

responses within the brain following traumatic injury may be a significant risk factor for 

the development of AD [63,112]. Recent findings also suggest that AD may be associated 

with a more widespread inflammatory state characterized by increased peripheral blood 

levels of IL-1β, IL-6, TNF-α, TGF-β, and IL-18 [162]. To this end, systemic inflammatory 

activation following lipopolysaccharide (LPS) administration appears to exacerbate disease 

features in multiple animal models of AD [100].

Recent studies have provided further evidence supporting an association between microglial 

cytokine production and AD. In particular, in vitro activation of microglia from Alzheimer’s 

patients and non-demented controls with Aβ peptide results in their release of pro-

inflammatory cytokines including IL-1β, IL-6, and TNF-α in a dose-dependent manner 

[110,141]. A number of post-mortem investigations have also demonstrated the presence 

of these proinflammatory cytokines in close proximity to AD lesion sites [44,64,83]. In 

addition, genetic analysis indicates an apparent link between disease development and 

specific polymorphisms in the genes encoding TNF-α and IL-1β [42,43].

Unfortunately, animal models of AD have not proven unambiguous in promoting our 

understanding of the involvement of microglial cytokines in disease progression. Early work 

in Tg2575 transgenic mice over-producing Aβ peptide was unsuccessful in demonstrating 

mRNA expression of pro-inflammatory cytokines in hippocampal and cortical tissues up 
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to 14 months of age utilizing a ribonuclease protection assay. The same study reported 

the presence of IL-1β reactive astrocytes in close apposition to Aβ plaques, but did not 

investigate microglial cytokine expression [121]. In comparison, other laboratories have 

shown the presence of cortical microglia expressing IL-1β, IL-6 and TNF-α proteins in 

similar mouse models [12,77]. Although the degree of cytokine expression in animal models 

is still debated, these studies have provided clues to their degenerative effects in AD. 

Deletion of the tumor necrosis factor receptor 1 (TNFR1) in APP23 transgenic mice results 

in decreased Aβ production and plaque formation and reverses impairments in cognitive 

performance [75]. Together, these studies suggest an important role for pro-inflammatory 

cytokines in AD, but further work is needed to understand their actions in disease pathology.

3.2. Parkinson’s disease

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder and 

is caused by the progressive loss of dopaminergic (DA) neurons from the substantia nigra 

pars compacta (SNpc) that normally innervate the striatum. The pathological hallmark of 

PD is intracellular accumulation of α-synuclein leading to the formation of Lewy bodies. 

PD may result in a number of different presenting symptoms including resting tremor, 

bradykinesia, cogwheel rigidity, and postural instability. Epidemiologic findings from a 

number of studies suggest that inflammation may be involved in the pathogenesis of PD. 

For example, long-term use of the non-steroidal anti-inflammatory drug (NSAID) ibuprofen 

appears to reduce the risk for developing PD [144]. This result may be explained, in part, by 

post-mortem analysis of cerebrospinal fluid (CSF) and brain demonstrating elevated protein 

levels of pro-inflammatory cytokines in PD patients [16,122,123]. In addition, transgenic 

mice engineered to over-express α-synuclein show increased DA neuronal susceptibility 

following stereotaxic injections of LPS within the nigra as compared to wild-type controls 

[55]. Together, these data demonstrate a role for inflammatory events in the progressive 

neurodegeneration associated with PD.

McGeer et al. were the first to demonstrate microglial activation in the SNpc of PD 

brains [118]. Additional work has confirmed these findings and also found that microglial 

reactivity may be more widespread than simply the SNpc: increased numbers of activated 

microglia were found in the hippocampus, putamen, cingulate cortex, and transentorhinal 

cortex of patients with PD [87]. Post-mortem findings such as these unfortunately are unable 

to determine when microglial activation first occurs in disease pathology. Recent PET 

imaging studies using an isoqunoline, [11C](R)-PK11195, which binds to the peripheral 

benzodiazepine receptor expressed by activated microglia/macrophages, have provided 

evidence for their reactivity in early-stage PD patients [45,132]. The same study also 

noted a correlation between microglial activation and loss of dopaminergic terminals in 

the midbrain. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) 

suggest that microglial activation in the PD brain results in increased expression of pro-

inflammatory cytokines [147]. Indeed, elevated production of IL-1β, IL-6, and TNF-α were 

noted in microglia activated by α-synuclein in vitro [160].

Although the mechanisms by which microglial-derived cytokines participate in the 

progressive neurodegeneration in PD are largely unknown, basic science has begun 
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address this significant issue. Dopaminergic neurons appear to be exquisitely sensitive 

to TNF-α insult in vitro [119]. A role for TNF-α has also been suggested in multiple 

animal models of PD. Increased expression of TNF-α is noted following administration 

of 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

[124,156]. In addition, disruption of TNF-α signaling by at least two methods appears 

to reduce toxicity of these compounds to DA neurons. Mice lacking the TNF-α receptor 

show decreased loss of TH-immunoreactivity after MPTP administration [156]. Lentiviral 

therapy with a dominant-negative TNF two weeks after 6-OHDA lesion also prevented 

progressive degeneration of DA neurons and microglial activation, further indicating a role 

for cytokine signaling in models of PD [72]. Similarly, IFN-γ deficiency in mice prevents 

paraquat-induced changes in locomotor behaviors and DA neuron survival [105]. Although 

these findings collectively indicate that pro-inflammatory cytokines may have a detrimental 

role in the progression of PD, further studies are needed to determine how they may 

participate in early-stage pathogenesis.

3.3. Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is an adult-onset disorder characterized by the selective 

degeneration of both upper and lower motor neurons leading to development of muscle 

weakness, spasticity, atrophy, dysarthria, and dysphagia. ALS is rapidly progressive, often 

resulting in death approximately three years on average after initial diagnosis [17]. Although 

the vast majority of cases of ALS occur without a known cause, at least 10–15% of patients 

with this condition have an inherited form referred to as familial ALS (fALS). The most 

common form of fALS is caused by a gain of function mutation in the gene encoding 

the Cu2+/Zn2+ superoxide dismutase enzyme (SOD1) [17,40]. An association between 

inflammation and ALS has not been fully established, but existing clues provide some 

evidence of inflammatory activation in this disease. For example, elevated levels of the pro-

inflammatory cytokines IL-6 and TNF-α have been described in the CSF, serum, and skin of 

patients with ALS [131,149,167]. Subsequent imaging studies measuring [11C](R)-PK11195 

binding to the peripheral benzodiazepine receptor site of activated microglia/macrophages 

suggest microglial activation in this disorder may be prevalent throughout the CNS [45]. 

Increased microglial reactivity was noted in the spinal cord, motor cortex, pons, dorsolateral 

prefrontal cortex, and thalamus of ALS patients when compared to healthy controls [173]. 

In fact, increased binding of PK11195 to the peripheral benzodiazepine receptor of activated 

microglia in the motor cortex was significantly associated with clinical signs of upper motor 

neuron lesion, suggesting activated microglia may play a significant role in disease severity.

Experimental findings have also added to our understanding of the involvement of 

microglia and pro-inflammatory cytokines in ALS. Pramatarova et al. demonstrated that 

neuron-specific transgenic expression of mutant SOD1 (mSOD1) did not result in altered 

locomotor function [137]. In contrast, non-specific expression of mSOD1 causes severe 

motor impairment, suggesting that glial cells may play an important role in ALS pathology 

[92]. Microglial activation in the G93A mSOD1 model was first noted in the ventral horn of 

the spinal cord during the late pre-symptomatic phase (80 days) [5]. IL-1α and IL-1β were 

also increased in the pre-symptomatic phase and reached even higher levels when significant 

hindlimb paralysis developed (120 days) [79]. The existence of both microglial activation 
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and pro-inflammatory cytokine production before disease symptomatology indicates these 

biochemical changes may be directly involved in motor neuron degeneration. In support of 

this, mRNA expression of apoptosis-associated proteins including caspases, TNFR1, and 

Fas is significantly increased during the symptomatic phase in mSOD1 mice [78,79]. Our 

group and others have also demonstrated in vitro sensitivity of primary motor neurons and 

hybrid motoneuron cell lines to cytokine-induced apoptosis [38,153]. Further work is needed 

to fully determine the mechanisms by which pro-inflammatory cytokines and motor neuron 

apoptosis contribute to the disease process in ALS.

4. Modulatory role of the sympathetic nervous system in pro-inflammatory 

cytokine release

Interestingly, the sympathetic nervous system (SNS) plays an important role in the 

modulation of pro-inflammatory cytokine production by microglia. Following activation by 

acute stressors, the SNS releases the catecholamines norepinephrine (NE) and epinephrine 

(Epi) which are thought to act directly on both microglia and peripheral immune cells 

to regulate their activity [47]. mRNA expression of multiple adrenergic receptors (ARs) 

including α1, α2, β1, and β2-ARs has been demonstrated in vitro in microglia isolated 

from the rat forebrain [125]. Subsequent studies using selective agonists indicated that 

β1 and β2 adrenergic receptors present on microglia are functional, responding in a 

classical manner to activation by increases in intracellular cyclic AMP (cAMP) [164]. 

While accumulation of intracellular cAMP in peripheral blood mononuclear cells (PBMCs) 

following catecholamine stimulation has classically been thought to prevent their production 

of pro-inflammatory cytokines, the microglial response to NE and Epi appears to depend 

on the environmental context [47]. For example, multiple studies indicate that activation 

of β-adrenergic receptors attenuates production of pro-inflammatory mediators including 

TNF-α, IL-6, IL-12, and NO in cultured microglia exposed to LPS [27,50,138]. Conversely, 

β-AR stimulation in the absence of LPS activates microglia in vitro resulting in their release 

of IL-1β [164,171]. Similar responses have also been reported in vivo following exposure 

to acute stressors where NE release was associated with increased CNS production of 

IL-1β and IL-6 [14,90]. In both of these studies, microglial activation and pro-inflammatory 

cytokine release was blocked by administration of β-AR antagonists further indicating 

a pivotal role for adrenergic receptors in the response of microglia to catecholamine 

stimulation. Together, these findings suggest that sympathetic activation and cytokine release 

may be tightly coupled depending on the cellular and environmental context.

Unfortunately, the role of the interaction between the sympathetic nervous system 

and microglial activity in neurodegenerative disorders has been largely overlooked. 

Despite evidence indicating that catecholamines may facilitate microglial activation, 

anti-inflammatory effects of β-AR stimulation have been shown in animal models of 

excitotoxicity, AD, and PD [54,60,139]. These findings have been attributed to the 

differential effects of β-AR activation on inhibiting systemic inflammatory responses when 

compared to local stimulation of CNS microglia [57,157]. Further work is necessary to 

determine the particular environmental conditions that may promote catecholamine-induced 

activation of microglia in neurodegenerative disorders. In addition, future studies should 
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focus on understanding how increased cytokine levels in the diseased brain may modulate 

activity of the SNS. For example, both IL-1 and TNF-α have been shown to inhibit release 

of norepinephrine in the rat myenteric plexus [84,85]. Elenkov et al. have also shown that 

TNF-α acts at pre-synaptic terminals to suppress the release of NE from the rat median 

eminence [46]. However, our knowledge concerning cytokine modulation of the adrenergic 

system is still incomplete. This is a particularly important field of study especially as it 

pertains to changes in SNS signaling due to cytokine dysregulation in neurodegenerative 

disorders.

5. Pro-inflammatory cytokine signaling in neurodegeneration: muddy 

waters of neurodegeneration vs. neuroprotection?

5.1. TNF-α

TNF-α exists either as a 26 kDa membrane-bound protein or a 17 kDa soluble form 

generated by the activity by a metalloprotease known as TNF-α converting enzyme 

(TACE; ADAM17). Although microglia have been implicated as the major producers of 

TNF-α in neurodegenerative disorders and CNS insult, numerous studies have demonstrated 

that astrocytes and neurons may also be a source of this pro-inflammatory cytokine 

[19,101]. TNF-α signaling occurs via two distinct receptors termed TNFR1 (also known 

as Tnfrsf1a/p55) expressed almost ubiquitously among cell types and TNFR2 (Tnfrsf1b/

p75) which is present in lower levels in specific neuronal subtypes and glial cells in 

the brain [32,166]. TNFR1 appears to have important roles in promoting neuronal death 

through activation of pro-apoptotic proteins or survival by increasing nuclear factor-n 

B (NF-κB) activity. Upon TNF binding, dissociation of a silencer protein allows the 

intracellular death domain of TNFR1 to interact with the TNF receptor-associated death 

domain adaptor protein (TRADD) [67]. Depending on the cellular context, TRADD–

TNFR1 association allows for recruitment of distinct signaling complexes. Complex I is 

composed of TRADD, TNF receptor associated proteins 2/5 (TRAF2/5), cellular inhibitor-

of-apoptosis proteins 1/2 (c-IAP 1/2), ubiquitin-conjugating enzyme 13 (Ubc 13), and 

receptor interacting protein (RIP) [182]. Association of these signaling proteins promotes 

lysine 63 (Lys 63)-linked polyubiquitination of RIP via the actions of TRAF2/5 and c-

IAP1/2 [114,178,186]. Polyubiquitinated RIP can in turn activate IκB kinase (IKK) either 

through direct interaction with its regulatory subunit NF-κB essential modulator (NOME) 

or via recruitment of the transforming growth factor β-activated kinase 1 (TAK1) complex 

[15,91,184]. Phosphorylation of IκB by IKK allows for subsequent nuclear translocation 

of NF-κB and transcription of its target genes including anti-apoptotic proteins (e.g., IAPs, 

Bcl-2, Bcl-xL) and pro-inflammatory factors (e.g., cytokines, chemokines, COX-2) [2]. 

Complex I may also initiate transcription of pro-inflammatory molecules and enzymes by 

activation of JNK and p38 kinases [66,177]. Together, these results indicate that formation 

of complex 1 following TNFR1 binding appears to play an important role in inflammation 

and cell survival.

TNFR1 may also signal via an alternate protein complex (Complex II) to initiate apoptotic 

cell death. Complex II is formed by the association of TNFR1 and TRADD with Fas-

associated death domain protein (FADD) [11]. This allows the N-terminal death effector 
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domain (DED) of FADD to interact with similar domains on the pro-forms of caspase-8 

and caspase-10, leading to their activation [31,151]. Activated initiator caspases such as 

caspase-8 and caspase-10 may then initiate apoptosis directly by cleavage of caspase-3 

or indirectly through activation of Bax (a pro-apoptotic member of the Bcl-2 family) 

and eventual release of cytochrome c from mitochondria [190]. In this manner, signaling 

via complex II after ligand binding of TNFR1 results in apoptotic cell death seemingly 

counteracting the NF-κB- and kinase-mediated effects of complex I. Recent findings 

indicate that activation of NF-κB is sufficient to prevent TNF-α-induced apoptosis [106]. 

However, the conditions which may promote anti- or pro-apoptotic signaling through 

complex I and complex II, respectively, remain largely unknown. Further insight into 

this issue may provide novel targets for preventing neuronal death in neurodegenerative 

disorders.

Signaling through TNFR2 shares a number of common similarities with the cascades 

initiated by TNFR1. Specifically, TNFR2 acts via a number of different signaling pathways 

to increase NF-κB-mediated transcription of anti-apoptotic and pro-inflammatory gene 

targets. TNFR2 responds preferentially to binding by membrane-bound TNF-α and does not 

possess a death domain [62]. Instead, TNFR2 is capable of directly interacting with TRAF2 

to promote formation of a protein complex comprised of TRAF1/2 and c-IAP1/2 leading 

to RIP-dependent activation of NF-κB and JNK/p38 kinases in a manner similar to that 

described above for TNFR1 [142]. Additionally, TNFR2 stimulation also appears to mediate 

cytoplasmic accumulation of NF-κB-inducing kinase (NIK) through interactions between 

the TRAF/c-IAP protein complex and TRAF3. NIK buildup provides an alternate means 

to promote activity of IKK and thus NF-κB [174]. Neuronal TNFR2 is also capable of 

increasing NF-κB-mediated transcription by activation of the phosphatidylinositol-3-kinase 

(PI3K)/Akt signaling pathway [68]. These findings suggest that TNFR2 signaling mediates 

at least part of the protective and regulatory effects of TNF-α in the CNS.

5.2. IL-1

The IL-1 family consists of several different proteins including IL-1α, IL-1β, and an 

endogenous IL-1 receptor antagonist (IL-1RA). IL-1α is found primarily as a membrane-

bound protein that is thought to participate mainly in paracrine and autocrine signaling, 

whereas IL-1β is typically found in a soluble, secreted form. Both IL-1α and IL-1β 
are synthesized in pro forms which are then cleaved by proteases (i.e. caspase-1 for 

IL-1β) to generate mature proteins [129]. Signaling by both IL-1α and IL-1β is mediated 

by the type I IL-1 receptor (IL-1RI). An additional receptor, the type II IL-1 receptor 

(IL-1RII), is thought to act as a decoy receptor that does not participate in active IL-1 

signaling [18]. Ligand binding of IL-1RI results in a conformational change that allows 

for its association with an accessory receptor chain known as IL-1 receptor accessory 

protein (IL-1RAcP). The high affinity complex formed by IL-1RI and IL-1RAcP can then 

recruit a number of adaptor proteins to the receptor including the myeloid differentiation 

response gene 88 (MyD88) and tumor necrosis factor-associated factor 6 (TRAF6) leading 

to activation of a number of different kinases including IL-1 receptor associated kinases 

1 and 4 (IRAK1, IRAK4), transforming growth factor β-activated kinase (TAK), and 

members of the mitogen activated protein kinase (MAPK) cascade (p38, JNK, and ERK1/2) 
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[20,35,116,126,146,161]. Together, the actions of these kinases facilitate the transcription of 

a wide variety of IL-1-responsive genes via the actions of NF-κB and the AP-1 transcription 

factor complex consisting of members of the Fos, Jun, and ATF families of transcription 

factors [130,181]. IL-1RI may also promote the hydrolysis of sphingomyelin by neutral 

sphingomyelinase (nSMase) in the neuronal membrane to produce ceramide [81]. Cellular 

accumulation of cermide may result in activation of apoptotic pathways, activity of Src 

kinases, and alterations in neuronal electrophysiology [21,30,39].

5.3. IL-6

IL-6 is characterized as a 26 kDa glycoprotein, which was formerly known by a variety 

of names including B-cell differentiation factor, T-cell differentiation factor, hybridoma/

plasmacytoma growth factor, and hepatocyte stimulating factor [36]. IL-6 binds and activates 

a receptor protein complex comprised of one non-signaling, membrane-associated α subunit 

(IL-6R) and two gp130 subunits responsible for signal transduction [111,152]. Interestingly, 

a soluble form of IL-6R (sIL-6R) may also be formed by alternative RNA splicing or 

protease cleavage and subsequently associate with cell surface gp130 to participate in a 

process referred to as IL-6 transsignaling [26]. Ligand binding of this protein complex 

results in homodimerization of gp130 and activates multiple signaling mechanisms. First, 

gp130 homodimerization facilitates activation of members of the Janus kinase family 

including JAK1, JAK2, and TYK2. These kinases may then act to phosphorylate signal 

transducer and activator of transcription (STAT) proteins, particularly STAT1 and STAT3 

[10,89]. Upon phosphorylation, STAT1 and STAT3 undergo nuclear translocation and 

promote transcription of their target genes. STAT1 is thought to be an important regulator 

of signaling by interferons (IFNs) involved in innate immune responses including type 

I (IFN-α, IFN-β, and IFN-ω) and type II (IFN-γ) IFNs [7,104]. In contrast, STAT3 

mediates the cell survival and proliferation-promoting effects of IL-6 by modulating 

expression of genes involved in cell division/progression of the cell cycle (cyclin D1, c-myc, 

c-fos) and suppression of apoptosis (survivin, c-IAP2, Bcl-xL, Bcl-2) [1,80]. Activated 

IL-6R–gp130 receptor complexes may also initiate signaling by MAPKs. In this case, 

the MAPK cascade is initiated by tyrosine phosphorylation of the Src homology region 

2 domain-containing phosphatase-2 (SHP-2). SHP-2 subsequently activates the Ras/Raf/

MAPK signaling pathway leading to activation of multiple members of the MAPK family 

involved in both cellular survival and stress responses including classical extracellular 

signal-regulated kinases 1/2 (ERK1/2), p38 MAPK, and JNK [37,148,163]. Finally, IL-6 

can also promote PI3K/Akt signaling. Akt may in turn promote cell survival by acting 

on a number of substrates including transcription factors (forkhead/FOXO), cell cycle 

regulators (CDK2), and pro-apoptotic (Bax, Bad, caspase-9) and anti-apoptotic (Bcl-2) 

proteins [22,107,115].

5.4. Common pro-inflammatory cytokine signaling pathways involved in 
neurodegeneration

The signaling pathways outlined above illustrate only a small portion of the complexity 

in the actions of pro-inflammatory cytokines. Although a clear link has been established 

between these cytokines and neurodegeneration, their signaling mechanisms appear to 

involve a balance between promoting cell survival, apoptosis, and pro-inflammatory 
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responses. Although the factors that may disrupt this normal equilibrium remain largely 

unknown, this may partly explain the conflicting data surrounding the role of pro-

inflammatory cytokines in neuronal degeneration: IL-1, IL-6, and TNF-α have often been 

described as having neuroprotective effects both in vivo and in vitro [24]. However, recent 

findings have elucidated a number of pro-inflammatory cytokine actions that may directly 

contribute to neuronal degeneration. Interestingly, many of these degenerative mechanisms 

may be commonly activated by multiple pro-inflammatory cytokines (Fig. 1). One example 

of this is cytokine modulation of neuronal excitability and neurotransmitter release. 

Recent evidence indicates that IL-1 may mediate increased neuronal excitability through 

direct interaction of its receptor complex with N-methyl-D-aspartate (NMDA) receptors 

and inhibition of Ca2+-induced K+ channels [58,189]. In addition, increased microglial 

production of nitric oxide (NO) following cytokine exposure may also contribute to neuronal 

hyperexcitability by initiating Ca2+-dependent release of glutamate from astrocytes [8,145]. 

Pro-inflammatory cytokines may also disrupt neuronal ionic balance by altering activity 

and expression on ion channels and ionotropic neurotransmitter receptors [76,183,191]. 

Finally, cytokine exposure has been shown to modulate neuronal release of multiple 

neurotransmitters including GABA, dopamine, acetylcholine, and serotonin both in cell 

culture and tissue preparations [69]. Recent evidence indicates that intracerebroventricular 

administration of LPS may also increase frequency of spike wave discharges in a genetic 

rat model of absence epilepsy providing further evidence for pro-inflammatory cytokine 

modulation of neuronal excitability [95]. These effects may result in excitotoxic injury to 

neurons. Pro-inflammatory cytokines also share the ability to induce apoptosis in neurons 

and glial cells. As discussed above, TNF-α may directly mediate apoptotic death by 

interaction with TNFR1. The actions of IL-1 in inducing apoptosis are less clearly defined, 

but appear to be dependent on the presence or absence of additional cytokines and signaling 

molecules. For example, IL-1 has been shown to promote cell death when combined 

with either IFN-γ or TNF-α in primary human neuron cultures [28,82]. Pro-inflammatory 

cytokines can also contribute to damage of neurons and glia by promoting trafficking 

of peripheral immune cells into the CNS. Entry of immune cells into the CNS may be 

facilitated by cytokine-mediated increases in blood–brain-barrier permeability or enhanced 

movement of leukocytes into the CNS by increasing expression of cell adhesion molecules 

essential for extravasation (e.g., intracellular adhesion molecule 1 [ICAM-1], vascular cell 

adhesion molecule 1 [VCAM-1]) and trafficking [6,51,52]. Pro-inflammatory cytokines also 

promote increased production of factors which are toxic to neurons and glial cells including 

reactive oxygen species (ROS) and NO.

6. Conclusions concerning pro-inflammatory cytokines as a therapeutic 

target in neurodegenerative disorders: bullseye or bust?

Given the mounting evidence for their role in neurodegenerative disorders and the 

host of mechanisms by which they may cause neuronal degeneration, pro-inflammatory 

cytokines have appropriately received considerable attention as therapeutic targets in 

neurodegenerative disorders. Caution must be taken in this approach because of the multiple 

roles these cytokines may have in both neurodegeneration and neuroprotection. Nonetheless, 

both experimental and clinical evidence suggest that inhibiting inflammatory responses (and 
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more specifically pro-inflammatory cytokines) may be a viable option in the treatment of 

neurodegenerative disorders. The earliest evidence to this point stems from epidemiological 

reports suggesting the use of some non-aspirin NSAIDs may reduce the risk of developing 

both AD and PD [49,53,56]. Unfortunately, these findings remain controversial and several 

studies indicate that NSAIDs may not be effective in preventing disease progression in 

patients with existing AD [3,135,140]. This may indicate another challenge in using drugs 

targeting inflammatory responses because efficacy of treatment may depend on therapy 

initiation long before overt clinical signs of disease are evident. This would require 

considerable progress in our current repertoire of biomakers for neurodegenerative disease.

Our group and others have focused on the use of endogenously produced anti-inflammatory 

substances in the treatment of CNS injury and other neurodegenerative disorders. Some of 

these agents, such as estrogen and melatonin used in our laboratory, may have multiple 

actions in preventing both inflammation and downstream effects of pro-inflammatory 

cytokines including production of ROS and induction of apoptosis [25,88,143,150,154,155]. 

Unfortunately, evidence for the clinical efficacy of these drugs against neurodegeneration 

is lacking. Still other groups have placed an emphasis on inhibiting microglial activation 

in the treatment of neurodegenerative disorders. Minocycline, originally developed as a 

broad spectrum tetracycline antibiotic, has generated interest because of its ability to prevent 

activation of microglia [65]. In particular, minocycline has been shown to inhibit expression 

of pro-inflammatory cytokines (IL-1β, TNF-α) by microglia [99,168]. Minocycline has 

shown particular promise in reversing functional defects in animal models of AD, PD, 

ALS, and spinal cord injury (SCI) [33,97,102,185]. A number of clinical trials are currently 

underway to test the efficacy of minocycline in neurodegeneration. Unfortunately, a phase 

III multi-center randomized trial in ALS patients demonstrated that minocycline treatment 

may worsen disease progression, calling into question the translational potential of this drug 

[61].

Recent investigations have focused on targeting individual cytokines in neurodegeneration. 

IL-1 has received particular attention because a recombinant form of its endogenous 

inhibitor, IL-1RA, is well-tolerated and has been clinically approved for use in rheumatoid 

arthritis [59]. A recent phase II clinical trial demonstrated that recombinant human IL-1RA 

may improve clinical outcome in stroke patients with cortical infarcts [48]. In addition, 

IL-1RA exposure demonstrated protective effects against CNS injury and neuron damage 

resulting from NMDA-mediated excitotoxicity [4,176]. Interestingly, AD patients have been 

shown to have decreased CSF levels of IL-1RA, indicating that IL-1RA therapy could 

have particular benefit in these patients [165]. Several inhibitors of TNF-α signaling have 

also been designed which may be useful as therapeutics. Pilot studies and case reports 

indicate that perispinal administration of etanercept, which inhibits TNF-α by acting as a 

decoy receptor, may have efficacy in the treatment of AD patients. In particular, etanercept 

treatment was associated with rapid improvement in language and visuospatial/executive 

tasks [169,170]. The rate of improvement in these patients indicates that etanercept may 

enhance cognitive function by reversing changes in neuronal excitability/activity associated 

with TNF-α exposure (as described above), although this has not been investigated. Further 

work is necessary to confirm findings from earlier studies using etanercept in large, well-

designed clinical trials.
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As previously discussed, the interaction between the SNS and microglial cytokine 

production may also be a viable target in the treatment of neurodegenerative disorders. 

Most of the studies in this field have focused on the effects of inhibiting peripheral immune 

responses on neurodegeneration. Mounting evidence suggests that agonists of β-adrenergic 

receptors may exert anti-inflammatory effects in animal models of CNS degeneration 

[34,54,60,139]. These findings appear to be contradictory to studies demonstrating that 

β-AR activation in microglia promotes their production of pro-inflammatory cytokines. 

β-AR agonists may instead exert their anti-inflammatory effects systemically by blocking 

activation of peripheral immune cells. In fact, increased intercellular levels of cAMP 

following β-AR stimulation has been shown to attenuate cytokine production by PBMCs 

[47]. Other studies have focused on the use of phosphodiestarase (PDE) inhibitors that 

act to prevent degradation of cAMP in peripheral immune cells as a method to prevent 

pro-inflammatory cytokine production. Hasko et al. have demonstrated that adminstration 

of both rolipram (a selective PDEIV inhibitor) and amrinone (selective PDEIII inhibitor) 

inhibit production of the pro-inflammatory mediators IL-12, IFN-γ, TNF-α, and NO 

to prevent immune activation in a mouse model of LPS-mediated endotoxemia [74]. 

Interestingly, rolipram has also been shown to promote neuroprotection in animal models 

of spinal cord injury and multiple sclerosis through its immunomodulatory effects 

[9,86,133,134]. Adenosine signaling has also been implicated as a potential target to 

modulate the systemic inflammatory response [73]. Reports indicate that adenosine may 

protect against cardiac ischemia by inhibiting peripheral production of pro-inflammatory 

cytokines through its actions at A1 and A2 receptors [93,108,159,187]. Interestingly, mice 

lacking the adenosine A1 receptor show increased expression of pro-inflammatory IL-1β 
in peripheral immune cells [172]. These animals also have increased disease severity in 

experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis 

[172]. Thus, the adenosine A1 receptor appears to be an important modulator of immune 

system function and activation. Taken together, these data suggest that interaction between 

the SNS and pro-inflammatory cytokine production both centrally and peripherally may be 

a viable target in the treatment of neurodegenerative disorders. However, further studies are 

needed to fully understand the effects of SNS activity on local microglial and peripheral 

responses as well as the contribution of the peripheral immune system to neurodegeneration.

Together, evidence from clinical and translational studies targeting the general inflammatory 

response and pro-inflammatory cytokines in neurodegenerative disorders suggest that 

this approach may have merit. However, it must be noted that inflammation often 

serves a protective role in the CNS. Future studies should place particular emphasis 

on the conditions that promote cytokine-mediated neuronal degeneration over survival. 

Defining specific changes in the CNS environment responsible for enhanced detrimental 

effects of pro-inflammatory cytokines may also reveal new targets in the treatment 

of neurodegenerative disorders. Inflammation should also be carefully viewed as only 

one contributor to the mechanisms underlying neurodegeneration. Design of therapeutics 

targeting only the inflammatory component may be short-sighted. Instead, drugs attenuating 

multiple mechanisms of neuronal loss may have greater promise in the treatment of 

neurodegenerative diseases. Nonetheless, the volume of evidence linking pro-inflammatory 
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cytokine involvement to neurodegeneration makes this an exciting field of study with 

particular clinical relevance.
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Abbreviations:

ILs interleukins

TNF-α tumor necrosis factor-α

IFNs interferons

CNS central nervous system

LPS lipopolysaccharide

NGF nerve growth factor

BDNF brain derived neurotrophic factor

NT-4/5 neurotrophin-4/5

AD Alzheimer’s disease

TGF-β transforming growth factor β

IL-18 interleukin-18

Aβ amyloid beta

APP amyloid precursor protein

TNFR1 tumor necrosis factor receptor 1

PD Parkinson’s disease

SNpc substantia nigra pars compacta

DA dopamine

NSAID non-steroidal anti-inflammatory drug

CSF cerebrospinal fluid

ELISA enzyme-linked immunosorbent assay

6-OHDA 6-hydroxydopamine

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

ALS amyotrophic lateral sclerosis
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fALS familial amyotrophic lateral sclerosis

SOD1 superoxide dismutase

TACE TNF-α converting enzyme

TRADD TNF receptor-associated death domain adaptor protein

TRAFs TNF receptor associated proteins

c-IAPs cellular inhibitor-of-apoptosis proteins

Ubc 13 ubiquitin-conjugating enzyme 13

RIP receptor interacting protein

NFκB nuclear factor kappa B

IκB inhibitor of κB

IKK IκB kinase

NOME NF-κB essential modulator

TAK1 transforming growth factor β-activated kinase 1

COX-2 cyclooxygenase-2

FADD Fas-associated death domain protein

DED death effector domain of FADD

JNK c-Jun N-terminal kinase

NIK NFκB-inducing kinase

PI3K phosphatidylinositol-3-kinase

IL-1RA IL-1 receptor antagonist

IL-1RI type I IL-1 receptor

IL-1RII type II IL-1 receptor

IL-1RAcP IL-1 receptor accessory protein

MyD88 myeloid differentiation response gene 88

IRAKs IL-1 receptor associated kinases

MAPKs mitogen activated protein kinases

ERKs extracellular signal-regulated kinases

AP-1 activator protein 1

ATFs activating transcription factors
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nSMase neutral sphingomyelinase

IL-6R interleukin-6 receptor

sIL-6R soluble IL-6 receptor

JAK Janus kinase

STAT signal transducer and activator of transcription proteins

SHP-2 Src homology region 2 domain-containing phosphatase-2

FOXO forkhead box proteins

CDK cyclin dependent kinase

NMDA N-methyl-D-aspartate

NO nitric oxide

GABA gamma-aminobutyric acid

ICAM-1 intracellular adhesion molecule 1

VCAM-1 vascular cell adhesion molecule 1

ROS reactive oxygen species

SCI spinal cord injury

SNS sympathetic nervous system

NE norephinephrine

Epi epinephrine

ARs adrenergic receptors

cAMP cyclic adenosine monophosphate

PBMCs peripheral blood mononuclear cells

PDE phosphodiestarase

EAE experimental autoimmune encephalomyelitis
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Fig. 1. 
Common mechanisms by which microglial activation and subsequent pro-inflammatory 

cytokine release may contribute to neurodegenerative pathology.
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