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Abstract

Introduction: Sepsis has complex, time-sensitive pathophysiology and important phenotypic 

subgroups. The objective of this study was to use machine learning analyses of blood and urine 

biomarker profiles to elucidate the pathophysiologic signatures of subgroups of surgical sepsis 

patients.

Methods: This prospective cohort study included 243 surgical sepsis patients admitted to a 

quaternary care center between January 2015 and June 2017. We applied hierarchical clustering 

to clinical variables and 42 blood and urine biomarkers to identify phenotypic subgroups in 

a development cohort. Clinical characteristics and short-term and long-term outcomes were 

compared between clusters. A naїve Bayes classifier predicted cluster labels in a validation cohort.

Results: The development cohort contained one cluster characterized by early organ dysfunction 

(cluster I, n = 18) and one cluster characterized by recovery (cluster II, n = 139). Cluster I 
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was associated with higher Acute Physiologic Assessment and Chronic Health Evaluation II (30 

versus 16, P < 0.001) and SOFA scores (13 versus 5, P < 0.001), greater prevalence of chronic 

cardiovascular and renal disease (P < 0.001) and septic shock (78% versus 17%, P < 0.001). 

Cluster I had higher mortality within 14 d of sepsis onset (11% versus 1.5%, P = 0.001) and within 

1 y (44% versus 20%, P = 0.032), and higher incidence of chronic critical illness (61% versus 
30%, P = 0.001). The Bayes classifier achieved 95% accuracy and identified two clusters that were 

similar to development cohort clusters.

Conclusions: Machine learning analyses of clinical and biomarker variables identified an 

early organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction, 

endotheliopathy, and immunosuppression, as well as poor short-term and long-term clinical 

outcomes.
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Introduction

Sepsis, a dysregulated host response to infection leading to life-threatening organ 

dysfunction, is responsible for more than $20 billion in annual US healthcare expenditures 

and is associated with 18%–28% mortality.1–3 Optimal treatment involves early antibiotic 

administration, resuscitation, and source control of infection.4,5 With widespread adoption 

and implementation of this approach, sepsis mortality has decreased over time but remains 

unacceptably high. Sepsis is a broad syndrome defined and classified by clinical criteria 

not necessarily reflective of underlying pathological processes, and most sepsis drugtrials 

have failed. Given the heterogeneity of sepsis, identifying subgroups of sepsis patients with 

unique pathophysiological signatures and treatment responses may be necessary to develop 

successful targeted therapies.6

Grouping routinely collected clinical variables and biomarkers from sepsis patients with 

clustering, an unsupervised machine learning technique, will allow the identification of 

entirely novel phenotypes.6–8 Unsupervised machine learning has been used previously 

to identify subgroups in other complex syndromes, such as acute respiratory distress 

syndrome (ARDS).9 Given the complex pathophysiology of sepsis and heterogeneity 

among sepsis patients, a battery of physiologic measurements of organ dysfunction 

obtained during routine clinical care and blood and urine metabolic and immunologic 

biomarkers are available to allow early identification of patients at risk for poor short-

term and long-term outcomes.6 Illness severity scoring systems such as the Sequential 

Organ Failure Assessment (SOFA) and Acute Physiologic Assessment and Chronic Health 

Evaluation II (APACHE II) scores and inflammatory and immunosuppressive biomarkers 

can forecast mortality within 24 h of sepsis onset and thus may help predict the underlying 

pathophysiology of various sepsis phenotypes.7,10–14 Validating the utility and accuracy of 

an unsupervised learning model on routinely available clinical variables may provide a basis 

for future studies differentiating sepsis management efficacy based on phenotype.
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We used machine learning analyses of clinical variables, as well as blood and urine 

biomarker profiles to identify phenotypic subgroups in a prospective, longitudinal cohort 

of surgical sepsis patients. Our objective was to elucidate the pathophysiologic signatures of 

phenotypic subgroups, with the rationale that a deeper understanding of sepsis phenotypes 

can inform the development of targeted therapies.

Methods

Patient recruitment

Sepsis patients were prospectively recruited between January 2015 and June 2017 from 

the Persistent Inflammation and Immunosuppression in Sepsis (PICS; NCT02276066) 

prospective longitudinal study cohort of surgical patients with sepsis. Study protocols were 

finalized,15 and ethics approval was obtained from the University of Florida Institutional 

Review Board (IRB201400611) prior to patient enrollment. All study participants or 

their surrogate decision-maker provided written informed consent. Inclusion criteria for 

the sepsis cohort were admission to the surgical intensive care unit (ICU), age 18 y or 

greater, and a clinical diagnosis of sepsis by attending intensivist in surgical ICU with 

subsequent initiation of the computerized sepsis protocol.16 Patients with pre-existing 

immunosuppression and those with advanced liver or heart disease were excluded to avoid 

their potentially confounding effects on the natural history of sepsis and the subsequent 

development of chronic critical illness.15 The final sepsis diagnosis was clinically 

adjudicated by investigators during weekly adjudication meetings according to consensus 

criteria.17 Among 243 patients meeting enrollment criteria with sufficient biomarker data, 

157 were included in the development cohort and 86 were included in the validation cohort. 

Patients were allocated to development or validation cohorts, based on split in time, as 

illustrated in Figure 1. This study was registered at Clinicaltrials.gov (NCT02276417).

Generation of biomarker signatures

The clustering algorithms used 58 laboratory and vital sign measurements obtained within 

24 h of sepsis onset, as listed in Supplement Table E1. Missing values were imputed 

using the median value of each biomarker for the entire study population. Standardized 

values of 42 biomarkers, as well as laboratory values, vital signs, subject age, and Charlson 

comorbidity index, were used to cluster 157 patients into groups with similar clinical and 

biomarker profiles using an agglomerative hierarchical clustering with complete linkage 

based on Euclidean distance, that is, the distance between two points in high-dimensional 

space.18–20 Agglomerative nesting is a type of hierarchical clustering in which the algorithm 

starts by treating each object as a singleton cluster, and then pairs of clusters are successively 

merged until all clusters have been merged into one cluster containing all objects. A 

dendrogram obtained from hierarchical clustering using the vector of distances denoted by 

D0 is shown in Figure 2A.

Cluster number and identification

A resampling approach was used to identify clusters by cutting the dendrogram as 

previously described.5,21 In this resampling method, we generate a reference distribution 

Dref for D0 under the null hypothesis that there would be no significant clusters in the 

Madushani et al. Page 3

J Surg Res. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02276066
http://Clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02276417


data by randomly mixing the biomarker values of patients for each biomarker and then 

performing hierarchical clustering on the permuted dataset. We repeat the resampling 

procedure ten times, and the reference distribution Dref is calculated by taking the average 

of the distances used for hierarchical clustering in each set. The plot of the observed (D0) 

and expected distances (Dref) is displayed in Figure 2C. Significant clusters were detected 

by cutting the dendrogram at the 99.6 percentile with α = 0.4% of the reference distribution, 

identifying five clusters, which are unlikely to appear in random data. Visual representations, 

as well as clinical characteristics and outcomes of five clusters, were observed to determine 

the number of clusters for primary analyses. After investigating the clinical characteristics 

and outcomes, due to observing only minor differences between two clusters (71 and 64) 

and in order to avoid even smaller sample sizes spread, we decided to report two main 

clusters, which corresponds to cutting the dendrogram at the significance level α = 0.001%, 

in the primary analysis. The sensitivity of cluster robustness to different significance levels is 

illustrated in Figure 2B.

The dependency of clusters on all variables was tested using ‘leave one feature out’ 

replication (Supplement Table E2),21 in which the cluster analysis was repeated by removing 

one of the 44 biomarkers at a time, and then hierarchical cluster analysis and selection 

was performed using the same method as in the primary analysis of two clusters with the 

significance level of 0.004. Concordance between primary analysis clusters was assessed 

by Spearman correlations of the cluster labels, summarized in Supplement Table E2, with 

low correlation indicating a change in cluster assignments after exclusion of the feature, 

suggesting the importance of the feature (Supplementary Methods).

A naїve Bayes classifier was trained on the development cohort and used to assign patients 

to derived clusters in the validation cohort. A naїve Bayes classifier is a model based upon 

the Bayes theorem obtained by using a set of discriminant functions and estimating relevant 

probabilities from a training set. In this case, the classifier uses the set of pre-existing cluster 

prevalence and the presence of each biomarker signature to predict the cluster membership 

of new patients.

For each patient, we created a biomarker mosaic using the gene expression dynamics 

inspector (GEDI) that creates the biomarker mosaics using a self-organizing map 

algorithm.22,23 We compared clinical characteristics and outcomes between the two main 

clusters using Fisher’s exact test for categorical variables and Student’s t-test or Wilcoxon 

rank-sum test for continuous variables as appropriate.

Definition of outcomes

All outcomes were compared among clusters and between cohorts. The primary outcomes 

were in-hospital and 1-year mortality. Chronic critical illness (CCI) was defined as an ICU 

length of stay of 14 d or more with evidence of persistent organ dysfunction, determined 

using components of the SOFA score (cardiovascular SOFA ≥1, or score in any other 

organ system ≥2). Non-CCI patients were those who did not meet the criteria for CCI or 

early death (death within 14 d of sepsis onset).24 Other outcomes included hospital-free, 

ICU-free, and mechanical ventilation-free days within 28 d of sepsis onset. Exact dates and 

times were used to calculate the hospital length of stay, ICU length of stay, and duration 
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of mechanical ventilation. Hospital-free, ICU-free, mechanical ventilation-free, and organ 

dysfunction free-days within 28 d of sepsis onset were calculated by subtracting the number 

of days for each outcome from the lesser of 28 d or the number of days between sepsis onset 

and death. The Social Security Death Index database was used to confirm death dates and 

obtain death dates for patients who were lost to follow-up.

Results

Cluster identification

Cluster analysis identified two main clusters (Cluster I, Cluster II) and five statistically 

distinct clusters (I (A), I (B), II (A), II (B), II (C)) (P < 0.005, Fig. 2A and B). We focus 

on the two largest clusters: cluster I and cluster II (A, B, and C), which were obtained 

by cutting the dendrogram at significance level α = 0.00001. A QQ plot of expected and 

observed normalized distances among clusters shows similar clusters producing distances 

smaller than expected by chance and dissimilar clusters producing distances larger than 

expected by chance (Fig. 2C).

Clinical characteristics of development cohort clusters

Table 1 summarizes the clinical characteristics of 18 patients in cluster I and 139 patients in 

cluster II. Cluster I, characterized by early organ dysfunction, contained a greater proportion 

of septic shock patients (78% versus 17%, P < 0.001) and higher median APACHE II scores 

(30 versus 16, P < 0.001) and SOFA scores (13 versus 5, P < 0.001). Higher APACHE II 

scores in cluster I was primarily attributable to higher acute physiology scores (23 versus 12, 

P < 0.001) rather than the age or chronic health scores. Two chronic diseases differentiated 

between clusters: cardiovascular and renal diseases (P < 0.001). Forty-seven percent of 

patients in cluster I had chronic kidney disease, and 39% had congestive heart failure. In 

cluster II, 11% patients had chronic kidney disease, and 14% had congestive heart failure. 

There were no significant differences in age, gender, race, body mass index, or smoking 

history between clusters.

Outcome characteristics of development cohort clusters

Associations between cluster biomarker signatures and clinical outcomes are shown in Table 

2. Cluster I had higher mortality within 14 d of sepsis onset (11% versus 2%, P = 0.001), 

during admission (33% versus 5%, P = 0.001), and within 1 y (44% versus 20%, P = 0.032). 

Cluster I had a longer median ICU length of stay (15 versus 6 d, P < 0.001) and fewer 

ICU-free days (3 versus 22 d, P < 0.001). The incidence of acute kidney injury (AKI) was 

nearly two-fold higher in cluster I (78% versus 48%, P < 0.001). Thirty-nine percent of 

the cluster I patients required renal replacement therapy during admission, while only 5% 

of cluster II patients required renal replacement therapy (P < 0.001). Overall, 72% of the 

cluster I patients suffered early death or developed chronic critical illness, compared with 

32% of cluster II patients.

Biomarker characteristics of development cohort clusters

Visual cluster representation using principal component analysis shows that clusters are 

separated in biomarker space (Supplement Fig E1). Biomarker distributions for the two main 
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clusters are illustrated in Figure 3 and Supplement Figure E2, respectively. Similar has been 

shown for all five clusters in Supplement Figure E3. The reference mosaics representing all 

44 biomarker variables for the two main clusters and for all five clusters are illustrated in 

Figure 4 and Supplement Figure E4, respectively. Supplement Figure E4 illustrates mosaics 

for two example patients within each of the five clusters. Cluster I was characterized by high 

heterogeneity among biomarker expression (i.e., some biomarkers are drastically increased 

or decreased compared to the average values of the development cohort).

Table 3 summarizes differences in biomarker values between clusters I and II. Cluster 

I exhibited a biomarker profile consistent with inflammation, immunosuppression, and 

metabolic dysregulation.

Cluster I demonstrated early renal dysfunction. Cluster I had higher median serum creatinine 

(2.8 versus 0.96 mg/dL, P < 0.001), cystatin C (2.3 versus 0.8 mg/dL P < 0.001), and blood 

urea nitrogen (44 versus 19 mg/dL, P < 0.001). Endotheliopathy may have contributed, as 

angiopoietin 2 levels were 3–4 times higher in cluster I (27 versus 8 ng/mL P < 0.001), and 

fms-like tyrosine kinase levels were 2–3 times higher in cluster I (442 versus 174 pg/mL, 

P < 0.001). Other renal and acid-base parameters such as anion gap, lactate, Nephrocheck 

scores, and fluid overload volumes were significantly worse in cluster I (Fig. 3, Table 3). 

Consistent with renal dysfunction and volume overload, median brain natriuretic peptide 

was nearly three times higher in cluster I (3922 versus 1024 pg/mL, P < 0.001).

Other biomarkers in cluster I that were significantly elevated included bilirubin, aspartate 

aminotransferase, international normalized ratio, interleukin 8, tumor necrosis factor-alpha, 

monocyte chemoattractant protein-1, and glucagon-like peptide, suggesting an inflammatory 

state with hepatic dysfunction. In addition to the biomarkers used in the cluster analysis, 

soluble programmed death-ligand 1 was included to represent immunosuppression and was 

significantly higher in cluster I, as was interferon gamma-induced protein 10, suggesting 

immunosuppression.

In the leave-one-out analysis to assess the relative importance of each biomarker in 

assigning cluster labels (Supplement Table E2), absolute cluster concordance correlation 

coefficients ranged from 0.03 when platelet counts were left out to 0.66 when maximum 

heart rate was left out.

Predicting cluster labels in the validation cohort

To determine whether clusters with similar characteristics could be identified in an 

independent validation cohort, we trained a naїve Bayes classifier on the development cohort 

to predict cluster labels in the validation cohort of 86 patients. Some biomarker values 

(e.g., glucagon-like peptide, NephroCheck) were not available for patients in the validation 

cohort. As the derivation model was highly sensitive to the absence of singular features from 

leave-one-out analysis, a naїve Bayes classification model, which is more robust to missing 

variables, was used to minimize the impact of missing data. The classifier achieved 95% 

accuracy for leave-one-feature out cross-validation in the development cohort. The classifier 

was then applied to the validation cohort. The classifier assigned 29 validation cohort 

patients to cluster I and 57 patients to cluster II. Compared with development clusters, the 
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same patterns of clinical characteristics, outcomes, and biomarker values were observed (see 

Supplement Tables E3, E4, and E5). Cluster I had higher APACHE II scores (25 versus 17, P 
< 0.001) and total Acute Physiology Scores (20 versus 14, P < 0.001) compared with cluster 

II. Cluster I also had higher SOFA scores at sepsis onset (9 versus 5, P < 0.001) with higher 

cardiovascular (3 versus 1, P < 0.001) and renal (3 versus 0, P < 0.001) scores at sepsis 

onset. These were associated with poor short-term and long-term outcomes. Cluster I (n = 

29) had higher hospital mortality (P = 0.03) and 1-year mortality (P < 0.001) and had more 

than twice as many ICU days (P = 0.03). The incidence of early death or chronic critical 

illness was significantly higher among cluster I patients (75% versus 27%, P < 0.001).

Characteristics of the development and validation cohorts were compared in order 

to determine if clusters identified in the development cohort were identifiable in an 

independent validation cohort due to the cohorts being similar (Supplement Tables E6, E7, 

and E8). This analysis revealed several important differences between cohort characteristics. 

The validation cohort contained a smaller proportion of patients with congestive heart 

failure (5% versus 17%, P < 0.01), different primary sources for sepsis (P = 0.02), 

and higher maximum renal SOFA scores within 24 h of sepsis onset (1 versus 0, P = 

0.02). The validation cohort had higher in-hospital mortality (18% versus 8%, P = 0.03) 

and a greater burden of kidney disease and magnitude of AKI. Consistent with these 

clinical outcomes, the validation cohort had a biomarker profile consistent with kidney 

disease, including higher serum creatinine and cystatin C. It also featured differences in 

endothelial dysfunction evident by higher angiopoietin 2 and fms-like tyrosine kinase, a 

proinflammatory immunosuppressed state manifested as higher tumor necrosis factor-alpha, 

interferon-gamma, soluble programmed death-ligand 1. Therefore, the identification of early 

dysfunctional and recovery clusters is reproducible in cohorts that may have different 

clinical characteristics and biomarker profiles compared to the development cohort.

Discussion

Using 42 blood and urine biomarkers and routinely collected clinical data, we identified 

two major clusters of patients with surgical sepsis. Inflammatory, renal, and endothelial 

biomarkers that differentiated cluster I from cluster II included interleukin 8, tumor 

necrosis factor-alpha, serum creatinine, cystatin C, blood urea nitrogen, anion gap, fluid 

overload, lactate, angiopoietin 2, and fms-like tyrosine kinase. These biomarkers contributed 

significantly to differences in composite biomarker mosaics in both clusters, suggesting 

that systemic inflammation, renal dysfunction, and endotheliopathy were primary drivers 

of cluster differentiation. Leave-one-out analysis suggested that all biomarkers contributed 

significantly to primary cluster assignment because excluding any of these biomarkers 

would result in different cluster assignments. Although agglomerative hierarchical clustering 

is dependent on data dimensionality (i.e., number of clustering biomarkers), making it more 

likely that leave-one-out analysis produces different results as a statistical artifact, we found 

that a naïve Bayes classifier, which is more robust to dimensional changes, was able to 

successfully reproduce similar clusters on a validation cohort, suggesting that biomarker 

profiles reflect underlying septic pathology.
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Consistent with these biomarker profiles, we observed a greater prevalence of chronic 

renal and cardiovascular disease in cluster I. Furthermore, cluster I had severe early 

multiorgan failure with a disproportionately high incidence of cardiovascular and renal 

disease. These results are consistent with a previous study by Garcia-Obregon et al. 
(2018),25 in which a similar panel of ten proteins in a prospective cohort of 85 patients 

predicted sepsis with cardiovascular dysfunction. In addition, cluster I patients had an 

immunosuppressive phenotype manifest as increased interferon gamma-inducible protein 

10 and soluble programmed death-ligand 1. Prior work has not consistently demonstrated 

concomitant inflammation and immunosuppression, as was observed in our study. In an 

analysis of peripheral blood leukocyte gene expression among patients with sepsis due 

to pneumonia, Davenport et al. (2016)26 found that inflammation and immunosuppression 

occur in separate, distinct sepsis response signatures. However, a meta-analysis of 949 

sepsis patients using hierarchical clustering demonstrated significant inflammation and 

immunosuppression in early sepsis, similar to results from our study.27

The unique biologic signatures of clusters I and II corresponded to different illness severity 

and clinical outcomes. The acute physiology component of the APACHE score differentiated 

between clusters, similar to results obtained by Knox et al. (2015)7 Cluster I had higher 

Charlson comorbidity indices, suggesting that they had a greater chronic disease burden 

prior to the onset of sepsis, but the difference in the acute physiological score between 

clusters I and II was of greater magnitude. Cluster I had a higher incidence of septic shock, 

which could be explained by the cardiovascular physiological derangement. Cluster I had 

worse clinical outcomes with higher early and 1-year mortality rates. The 5% in-hospital 

mortality and 20% 1-year mortality rates observed in Cluster II are lower than the mortality 

rates observed in other studies of contemporary populations with sepsis; this may be 

attributable to the early preserved hemostasis biomarker profile and phenotype observed 

in Cluster II.

High heterogeneity in clinical and biomarker characteristics across phenotypes among sepsis 

patients may provide insight regarding failed sepsis drug trials. Seymour et al. (2019)6 

demonstrated that there are subgroups of sepsis patients with unique responses to treatments, 

offering compelling evidence that broadly applied monotherapies for sepsis and septic shock 

are likely to continue to fail. Our study does not address the hypothesis that different sepsis 

phenotypes have different treatment responses but supports the hypothesis that clustering 

analysis can identify hidden patterns and structures within sepsis patient data, identifying 

phenotypes with distinct short-term and long-term outcomes. Also, clustering analysis may 

help improve the performance of prediction and risk-stratification for these outcomes by 

building separate prediction models for each cluster. These observations were made in a 

prospective study of a relatively small group of patients, suggesting that it is feasible to 

perform these clustering techniques in clinical settings.

We demonstrate that the application of machine learning analytic methods to a battery of 

routine clinical, physiologic measurements of organ dysfunction in concert with blood and 

urine biomarkers of renal function, tissue perfusion, inflammation, and immunosuppression 

can identify surgical sepsis phenotypes. Although these are done in a small cohort as 

a proof-of-concept, these findings demonstrate the potential benefit of machine learning-

Madushani et al. Page 8

J Surg Res. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derived clusters of sepsis in treatment. For example, as we utilize routine biomarkers, 

all procured within hours of ICU admission, machine learning may rapidly identify 

septic patients at high risk of AKI requiring aggressive resuscitation or renal replacement 

therapy. Furthermore, as Cluster I is defined by an inflammatory phenotype, these patients 

may benefit from anti-inflammatory therapy, which can be administered quickly and 

potentially improve surgical outcomes. Similar approaches have demonstrated efficacy 

for phenotyping other critical illnesses, suggesting broader implications for understanding 

the host response to critical illness.28 Calfee et al. (2018)9 performed a secondary, 

latent class analysis to identify acute respiratory distress syndrome subphenotypes in 

a multicenter, randomized controlled trial database. This analysis identified distinct 

hyperinflammatory and hypoinflammatory phenotypes with different biological features and 

clinical outcomes. Perhaps more importantly, the administration of simvastatin conferred 

a survival advantage that was specific to the hyperinflammatory group, suggesting that 

the identification of phenotypes can guide patient-specific treatments. Similarly, Antcliffe 

et al. (2019)29 performed a secondary analysis of a randomized clinical trial database of 

sepsis patients to determine whether phenotypes of sepsis patients have unique responses to 

corticosteroid administration. Patients with an immunocompetent phenotype had increased 

mortality after corticosteroid administration compared with placebo. These findings suggest 

that phenotyping techniques not only elucidate underlying pathophysiology but are also 

associated with unique treatment responses. Machine learning techniques may be ideal 

for representing complex disease syndromes like sepsis and acute respiratory distress 

syndrome because their underlying pathophysiology is beyond the reach of additive and 

linear statistical approaches.30

Study limitations

Our study has several limitations. First, we used a small data sample of surgical patients 

from a single institution, limiting the power and generalizability of these findings. In 

addition, perhaps the greatest value of phenotyping is the ability to assess responses to 

targeted therapies. Accomplishing this objective would require the application of biomarker 

signatures to data from randomized controlled trials, which is feasible but beyond the scope 

of this study. Second, the method we used to evaluate the importance of each biomarker 

to the clusters (leave-one-out analysis) was susceptible to false positives. The merge step 

of agglomerative clustering cannot be reversed and is dependent on the distance, and 

subsequently the dimensionality of the data. By reducing the dimensions of the dataset in 

leave-one-out analysis, reperforming agglomerative clustering is more likely to find different 

results. Despite the reliance of leave-one-out on statistical methods, we still report these 

findings (1) to show the magnitude of dependence for each variable and (2) to account 

for the possibility that some biomarkers may be unimportant even given the clustering 

method’s limitations. Likewise, we used a naїve Bayes classifier to predict clusters in 

our validation cohort, which makes an assumption of data independence. Although some 

collected variables, such as BUN and Cr, do not satisfy the independence assumption, naїve 

Bayes was chosen for its simplicity and outperformance of other alternatives even in some 

cases where the independence assumption is not met.31,32 Third, we use a single time point, 

rather than longitudinal data. Although we focus on capturing patient profiles shortly after 

sepsis diagnosis and exclude patients with advanced liver or heart disease, our approach 
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did not account for the evolution of sepsis prior to and after ICU admission. Thus, it is 

possible that our clusters represent differences in the evolution of sepsis, with Cluster II 

representing a resolved state. However, given that our study focuses on exploring the ability 

of machine learning to derive sepsis phenotypes, longitudinal analyses were deemed out of 

scope. Finally, we did not perform an external validation of our derived clusters using a large 

dataset, and this should be considered in the interpretation of our findings.

Conclusions

Machine learning analyses of clinical and biomarker variables identified an early 

organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction, 

endotheliopathy, and immunosuppression, as well as poor short-term and long-term 

clinical outcomes. These efforts to elucidate the pathophysiologic signatures of phenotypic 

subgroups may provide a deeper understanding of sepsis phenotypes that can inform the 

development of targeted therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Patient enrollment and inclusion flowchart.
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Fig. 2 –. 
Clustering dendrogram with significance. (A) Dendrogram showing the subject profile 

arrangement from the hierarchical clustering using the complete linkage method with 

normalized distances by the number of features 42. (B) Cluster composition for different 

levels of significance α. Colors track clusters that are robust with increasing significance 

levels. (C) QQ-plot displaying the observed and expected distances used in hierarchical 

clustering (height of branch nodes). Departure from the diagonal line suggests that there are 

significant clusters in the data.
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Fig. 3 –. 
Distributions of biomarkers by clusters. Side-by-side boxplots show the distributions of the 

standardized biomarker values across clusters. Each color represents a group of biomarkers 

based on their functionality. In each plot, the horizontal dash line represents the average 

value of the standardized biomarker in the whole cohort.
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Fig. 4 –. 
Average biomarker mosaics for patients using a self-organizing map for each of the two 

main clusters. Average biomarker mosaics of a specific cluster illustrate the average value 

of biomarker values for patients within that cluster. Red color correlates with increased 

biomarker expression, and blue color correlates with decreased biomarker expression 

compared to mean values for the development cohort, which is illustrated by the green 

color.
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