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Abstract

Introduction: Sepsis has complex, time-sensitive pathophysiology and important phenotypic
subgroups. The objective of this study was to use machine learning analyses of blood and urine
biomarker profiles to elucidate the pathophysiologic signatures of subgroups of surgical sepsis
patients.

Methods: This prospective cohort study included 243 surgical sepsis patients admitted to a
quaternary care center between January 2015 and June 2017. We applied hierarchical clustering

to clinical variables and 42 blood and urine biomarkers to identify phenotypic subgroups in

a development cohort. Clinical characteristics and short-term and long-term outcomes were
compared between clusters. A naive Bayes classifier predicted cluster labels in a validation cohort.

Results: The development cohort contained one cluster characterized by early organ dysfunction
(cluster I, n=18) and one cluster characterized by recovery (cluster I, 7= 139). Cluster |
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was associated with higher Acute Physiologic Assessment and Chronic Health Evaluation 11 (30
versus 16, P< 0.001) and SOFA scores (13 versus5, P< 0.001), greater prevalence of chronic
cardiovascular and renal disease (P < 0.001) and septic shock (78% versus 17%, £< 0.001).
Cluster I had higher mortality within 14 d of sepsis onset (11% versus 1.5%, £=0.001) and within
1y (44% versus 20%, P=0.032), and higher incidence of chronic critical illness (61% versus
30%, £=10.001). The Bayes classifier achieved 95% accuracy and identified two clusters that were
similar to development cohort clusters.

Conclusions: Machine learning analyses of clinical and biomarker variables identified an
early organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction,
endotheliopathy, and immunosuppression, as well as poor short-term and long-term clinical
outcomes.
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Introduction

Sepsis, a dysregulated host response to infection leading to life-threatening organ
dysfunction, is responsible for more than $20 billion in annual US healthcare expenditures
and is associated with 18%—28% mortality.1=3 Optimal treatment involves early antibiotic
administration, resuscitation, and source control of infection.*® With widespread adoption
and implementation of this approach, sepsis mortality has decreased over time but remains
unacceptably high. Sepsis is a broad syndrome defined and classified by clinical criteria
not necessarily reflective of underlying pathological processes, and most sepsis drugtrials
have failed. Given the heterogeneity of sepsis, identifying subgroups of sepsis patients with
unique pathophysiological signatures and treatment responses may be necessary to develop
successful targeted therapies.5

Grouping routinely collected clinical variables and biomarkers from sepsis patients with
clustering, an unsupervised machine learning technique, will allow the identification of
entirely novel phenotypes.5-8 Unsupervised machine learning has been used previously

to identify subgroups in other complex syndromes, such as acute respiratory distress
syndrome (ARDS).? Given the complex pathophysiology of sepsis and heterogeneity
among sepsis patients, a battery of physiologic measurements of organ dysfunction
obtained during routine clinical care and blood and urine metabolic and immunologic
biomarkers are available to allow early identification of patients at risk for poor short-
term and long-term outcomes.® Ilness severity scoring systems such as the Sequential
Organ Failure Assessment (SOFA) and Acute Physiologic Assessment and Chronic Health
Evaluation Il (APACHE I1) scores and inflammatory and immunosuppressive biomarkers
can forecast mortality within 24 h of sepsis onset and thus may help predict the underlying
pathophysiology of various sepsis phenotypes.’-10-14 \alidating the utility and accuracy of
an unsupervised learning model on routinely available clinical variables may provide a basis
for future studies differentiating sepsis management efficacy based on phenotype.
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We used machine learning analyses of clinical variables, as well as blood and urine
biomarker profiles to identify phenotypic subgroups in a prospective, longitudinal cohort

of surgical sepsis patients. Our objective was to elucidate the pathophysiologic signatures of
phenotypic subgroups, with the rationale that a deeper understanding of sepsis phenotypes
can inform the development of targeted therapies.

Patient recruitment

Sepsis patients were prospectively recruited between January 2015 and June 2017 from

the Persistent Inflammation and Immunosuppression in Sepsis (PICS; NCT02276066)
prospective longitudinal study cohort of surgical patients with sepsis. Study protocols were
finalized,1° and ethics approval was obtained from the University of Florida Institutional
Review Board (IRB201400611) prior to patient enrollment. All study participants or

their surrogate decision-maker provided written informed consent. Inclusion criteria for
the sepsis cohort were admission to the surgical intensive care unit (ICU), age 18 y or
greater, and a clinical diagnosis of sepsis by attending intensivist in surgical ICU with
subsequent initiation of the computerized sepsis protocol.18 Patients with pre-existing
immunosuppression and those with advanced liver or heart disease were excluded to avoid
their potentially confounding effects on the natural history of sepsis and the subsequent
development of chronic critical illness.1® The final sepsis diagnosis was clinically
adjudicated by investigators during weekly adjudication meetings according to consensus
criteria.1” Among 243 patients meeting enrollment criteria with sufficient biomarker data,
157 were included in the development cohort and 86 were included in the validation cohort.
Patients were allocated to development or validation cohorts, based on split in time, as
illustrated in Figure 1. This study was registered at Clinicaltrials.gov (NCT02276417).

Generation of biomarker signatures

The clustering algorithms used 58 laboratory and vital sign measurements obtained within
24 h of sepsis onset, as listed in Supplement Table E1. Missing values were imputed

using the median value of each biomarker for the entire study population. Standardized
values of 42 biomarkers, as well as laboratory values, vital signs, subject age, and Charlson
comorbidity index, were used to cluster 157 patients into groups with similar clinical and
biomarker profiles using an agglomerative hierarchical clustering with complete linkage
based on Euclidean distance, that is, the distance between two points in high-dimensional
space.18-20 Agglomerative nesting is a type of hierarchical clustering in which the algorithm
starts by treating each object as a singleton cluster, and then pairs of clusters are successively
merged until all clusters have been merged into one cluster containing all objects. A
dendrogram obtained from hierarchical clustering using the vector of distances denoted by
Dy is shown in Figure 2A.

Cluster number and identification

A resampling approach was used to identify clusters by cutting the dendrogram as
previously described.>21 In this resampling method, we generate a reference distribution
Dyerfor Dy under the null hypothesis that there would be no significant clusters in the
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data by randomly mixing the biomarker values of patients for each biomarker and then
performing hierarchical clustering on the permuted dataset. We repeat the resampling
procedure ten times, and the reference distribution D,,fis calculated by taking the average
of the distances used for hierarchical clustering in each set. The plot of the observed (D)
and expected distances (D, is displayed in Figure 2C. Significant clusters were detected
by cutting the dendrogram at the 99.6 percentile with a = 0.4% of the reference distribution,
identifying five clusters, which are unlikely to appear in random data. Visual representations,
as well as clinical characteristics and outcomes of five clusters, were observed to determine
the number of clusters for primary analyses. After investigating the clinical characteristics
and outcomes, due to observing only minor differences between two clusters (71 and 64)
and in order to avoid even smaller sample sizes spread, we decided to report two main
clusters, which corresponds to cutting the dendrogram at the significance level a = 0.001%,
in the primary analysis. The sensitivity of cluster robustness to different significance levels is
illustrated in Figure 2B.

The dependency of clusters on all variables was tested using ‘leave one feature out’
replication (Supplement Table E2),2L in which the cluster analysis was repeated by removing
one of the 44 biomarkers at a time, and then hierarchical cluster analysis and selection

was performed using the same method as in the primary analysis of two clusters with the
significance level of 0.004. Concordance between primary analysis clusters was assessed

by Spearman correlations of the cluster labels, summarized in Supplement Table E2, with
low correlation indicating a change in cluster assignments after exclusion of the feature,
suggesting the importance of the feature (Supplementary Methods).

A naive Bayes classifier was trained on the development cohort and used to assign patients
to derived clusters in the validation cohort. A naive Bayes classifier is a model based upon
the Bayes theorem obtained by using a set of discriminant functions and estimating relevant
probabilities from a training set. In this case, the classifier uses the set of pre-existing cluster
prevalence and the presence of each biomarker signature to predict the cluster membership
of new patients.

For each patient, we created a biomarker mosaic using the gene expression dynamics
inspector (GEDI) that creates the biomarker mosaics using a self-organizing map
algorithm.22:23 We compared clinical characteristics and outcomes between the two main
clusters using Fisher’s exact test for categorical variables and Student’s #test or Wilcoxon
rank-sum test for continuous variables as appropriate.

Definition of outcomes

All outcomes were compared among clusters and between cohorts. The primary outcomes
were in-hospital and 1-year mortality. Chronic critical illness (CCI) was defined as an ICU
length of stay of 14 d or more with evidence of persistent organ dysfunction, determined
using components of the SOFA score (cardiovascular SOFA =1, or score in any other
organ system =2). Non-CCl patients were those who did not meet the criteria for CCl or
early death (death within 14 d of sepsis onset).24 Other outcomes included hospital-free,
ICU-free, and mechanical ventilation-free days within 28 d of sepsis onset. Exact dates and
times were used to calculate the hospital length of stay, ICU length of stay, and duration
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of mechanical ventilation. Hospital-free, ICU-free, mechanical ventilation-free, and organ
dysfunction free-days within 28 d of sepsis onset were calculated by subtracting the number
of days for each outcome from the lesser of 28 d or the number of days between sepsis onset
and death. The Social Security Death Index database was used to confirm death dates and
obtain death dates for patients who were lost to follow-up.

Cluster identification

Cluster analysis identified two main clusters (Cluster I, Cluster Il) and five statistically
distinct clusters (I (A), I (B), Il (A), Il (B), Il (C)) (P< 0.005, Fig. 2A and B). We focus
on the two largest clusters: cluster | and cluster 11 (A, B, and C), which were obtained

by cutting the dendrogram at significance level a = 0.00001. A QQ plot of expected and
observed normalized distances among clusters shows similar clusters producing distances
smaller than expected by chance and dissimilar clusters producing distances larger than
expected by chance (Fig. 2C).

Clinical characteristics of development cohort clusters

Table 1 summarizes the clinical characteristics of 18 patients in cluster | and 139 patients in
cluster I1. Cluster I, characterized by early organ dysfunction, contained a greater proportion
of septic shock patients (78% versus 17%, P< 0.001) and higher median APACHE |11 scores
(30 versus 16, P< 0.001) and SOFA scores (13 versus5, P< 0.001). Higher APACHE I
scores in cluster | was primarily attributable to higher acute physiology scores (23 versus 12,
P <0.001) rather than the age or chronic health scores. Two chronic diseases differentiated
between clusters: cardiovascular and renal diseases (£ < 0.001). Forty-seven percent of
patients in cluster | had chronic kidney disease, and 39% had congestive heart failure. In
cluster 11, 11% patients had chronic kidney disease, and 14% had congestive heart failure.
There were no significant differences in age, gender, race, body mass index, or smoking
history between clusters.

Outcome characteristics of development cohort clusters

Associations between cluster biomarker signatures and clinical outcomes are shown in Table
2. Cluster | had higher mortality within 14 d of sepsis onset (11% versus 2%, P= 0.001),
during admission (33% versus 5%, P=0.001), and within 1y (44% versus20%, P=0.032).
Cluster I had a longer median ICU length of stay (15 versus6 d, P< 0.001) and fewer
ICU-free days (3 versus22 d, P<0.001). The incidence of acute kidney injury (AKI) was
nearly two-fold higher in cluster | (78% versus 48%, P< 0.001). Thirty-nine percent of

the cluster | patients required renal replacement therapy during admission, while only 5%

of cluster 11 patients required renal replacement therapy (£ < 0.001). Overall, 72% of the
cluster | patients suffered early death or developed chronic critical illness, compared with
32% of cluster 11 patients.

Biomarker characteristics of development cohort clusters

Visual cluster representation using principal component analysis shows that clusters are
separated in biomarker space (Supplement Fig E1). Biomarker distributions for the two main
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clusters are illustrated in Figure 3 and Supplement Figure E2, respectively. Similar has been
shown for all five clusters in Supplement Figure E3. The reference mosaics representing all
44 biomarker variables for the two main clusters and for all five clusters are illustrated in
Figure 4 and Supplement Figure E4, respectively. Supplement Figure E4 illustrates mosaics
for two example patients within each of the five clusters. Cluster | was characterized by high
heterogeneity among biomarker expression (i.e., some biomarkers are drastically increased
or decreased compared to the average values of the development cohort).

Table 3 summarizes differences in biomarker values between clusters | and 1. Cluster
| exhibited a biomarker profile consistent with inflammation, immunosuppression, and
metabolic dysregulation.

Cluster | demonstrated early renal dysfunction. Cluster | had higher median serum creatinine
(2.8 versus0.96 mg/dL, P< 0.001), cystatin C (2.3 versus 0.8 mg/dL £< 0.001), and blood
urea nitrogen (44 versus 19 mg/dL, < 0.001). Endotheliopathy may have contributed, as
angiopoietin 2 levels were 3-4 times higher in cluster | (27 versus 8 ng/mL P< 0.001), and
fms-like tyrosine Kinase levels were 2-3 times higher in cluster | (442 versus 174 pg/mL,
P<0.001). Other renal and acid-base parameters such as anion gap, lactate, Nephrocheck
scores, and fluid overload volumes were significantly worse in cluster I (Fig. 3, Table 3).
Consistent with renal dysfunction and volume overload, median brain natriuretic peptide
was nearly three times higher in cluster | (3922 versus 1024 pg/mL, £< 0.001).

Other biomarkers in cluster I that were significantly elevated included bilirubin, aspartate
aminotransferase, international normalized ratio, interleukin 8, tumor necrosis factor-alpha,
monocyte chemoattractant protein-1, and glucagon-like peptide, suggesting an inflammatory
state with hepatic dysfunction. In addition to the biomarkers used in the cluster analysis,
soluble programmed death-ligand 1 was included to represent immunosuppression and was
significantly higher in cluster I, as was interferon gamma-induced protein 10, suggesting
immunosuppression.

In the leave-one-out analysis to assess the relative importance of each biomarker in
assigning cluster labels (Supplement Table E2), absolute cluster concordance correlation
coefficients ranged from 0.03 when platelet counts were left out to 0.66 when maximum
heart rate was left out.

Predicting cluster labels in the validation cohort

To determine whether clusters with similar characteristics could be identified in an
independent validation cohort, we trained a naive Bayes classifier on the development cohort
to predict cluster labels in the validation cohort of 86 patients. Some biomarker values

(e.g., glucagon-like peptide, NephroCheck) were not available for patients in the validation
cohort. As the derivation model was highly sensitive to the absence of singular features from
leave-one-out analysis, a naive Bayes classification model, which is more robust to missing
variables, was used to minimize the impact of missing data. The classifier achieved 95%
accuracy for leave-one-feature out cross-validation in the development cohort. The classifier
was then applied to the validation cohort. The classifier assigned 29 validation cohort
patients to cluster | and 57 patients to cluster Il. Compared with development clusters, the
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same patterns of clinical characteristics, outcomes, and biomarker values were observed (see
Supplement Tables E3, E4, and E5). Cluster | had higher APACHE |11 scores (25 versus17, P
< 0.001) and total Acute Physiology Scores (20 versus 14, P< 0.001) compared with cluster
I1. Cluster | also had higher SOFA scores at sepsis onset (9 versus 5, P< 0.001) with higher
cardiovascular (3 versus1, P< 0.001) and renal (3 versus0, P< 0.001) scores at sepsis
onset. These were associated with poor short-term and long-term outcomes. Cluster | (n=
29) had higher hospital mortality (= 0.03) and 1-year mortality (£ < 0.001) and had more
than twice as many ICU days (P = 0.03). The incidence of early death or chronic critical
illness was significantly higher among cluster | patients (75% versus 27%, P< 0.001).

Characteristics of the development and validation cohorts were compared in order

to determine if clusters identified in the development cohort were identifiable in an
independent validation cohort due to the cohorts being similar (Supplement Tables E6, E7,
and E8). This analysis revealed several important differences between cohort characteristics.
The validation cohort contained a smaller proportion of patients with congestive heart
failure (5% versus 17%, P< 0.01), different primary sources for sepsis (P=0.02),

and higher maximum renal SOFA scores within 24 h of sepsis onset (1 versus0, P=

0.02). The validation cohort had higher in-hospital mortality (18% versus 8%, P= 0.03)

and a greater burden of kidney disease and magnitude of AKI. Consistent with these

clinical outcomes, the validation cohort had a biomarker profile consistent with kidney
disease, including higher serum creatinine and cystatin C. It also featured differences in
endothelial dysfunction evident by higher angiopoietin 2 and fms-like tyrosine kinase, a
proinflammatory immunosuppressed state manifested as higher tumor necrosis factor-alpha,
interferon-gamma, soluble programmed death-ligand 1. Therefore, the identification of early
dysfunctional and recovery clusters is reproducible in cohorts that may have different
clinical characteristics and biomarker profiles compared to the development cohort.

Discussion

Using 42 blood and urine biomarkers and routinely collected clinical data, we identified

two major clusters of patients with surgical sepsis. Inflammatory, renal, and endothelial
biomarkers that differentiated cluster | from cluster Il included interleukin 8, tumor

necrosis factor-alpha, serum creatinine, cystatin C, blood urea nitrogen, anion gap, fluid
overload, lactate, angiopoietin 2, and fms-like tyrosine kinase. These biomarkers contributed
significantly to differences in composite biomarker mosaics in both clusters, suggesting

that systemic inflammation, renal dysfunction, and endotheliopathy were primary drivers

of cluster differentiation. Leave-one-out analysis suggested that all biomarkers contributed
significantly to primary cluster assignment because excluding any of these biomarkers
would result in different cluster assignments. Although agglomerative hierarchical clustering
is dependent on data dimensionality (i.e., number of clustering biomarkers), making it more
likely that leave-one-out analysis produces different results as a statistical artifact, we found
that a naive Bayes classifier, which is more robust to dimensional changes, was able to
successfully reproduce similar clusters on a validation cohort, suggesting that biomarker
profiles reflect underlying septic pathology.

J Surg Res. Author manuscript; available in PMC 2023 January 09.
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Consistent with these biomarker profiles, we observed a greater prevalence of chronic
renal and cardiovascular disease in cluster I. Furthermore, cluster | had severe early
multiorgan failure with a disproportionately high incidence of cardiovascular and renal
disease. These results are consistent with a previous study by Garcia-Obregon et al.
(2018),25 in which a similar panel of ten proteins in a prospective cohort of 85 patients
predicted sepsis with cardiovascular dysfunction. In addition, cluster | patients had an
immunosuppressive phenotype manifest as increased interferon gamma-inducible protein
10 and soluble programmed death-ligand 1. Prior work has not consistently demonstrated
concomitant inflammation and immunosuppression, as was observed in our study. In an
analysis of peripheral blood leukocyte gene expression among patients with sepsis due

to pneumonia, Davenport et a/. (2016)26 found that inflammation and immunosuppression
occur in separate, distinct sepsis response signatures. However, a meta-analysis of 949
sepsis patients using hierarchical clustering demonstrated significant inflammation and
immunosuppression in early sepsis, similar to results from our study.2’

The unique biologic signatures of clusters | and Il corresponded to different illness severity
and clinical outcomes. The acute physiology component of the APACHE score differentiated
between clusters, similar to results obtained by Knox er al. (2015)7 Cluster | had higher
Charlson comorbidity indices, suggesting that they had a greater chronic disease burden
prior to the onset of sepsis, but the difference in the acute physiological score between
clusters I and Il was of greater magnitude. Cluster | had a higher incidence of septic shock,
which could be explained by the cardiovascular physiological derangement. Cluster | had
worse clinical outcomes with higher early and 1-year mortality rates. The 5% in-hospital
mortality and 20% 1-year mortality rates observed in Cluster Il are lower than the mortality
rates observed in other studies of contemporary populations with sepsis; this may be
attributable to the early preserved hemostasis biomarker profile and phenotype observed

in Cluster I1.

High heterogeneity in clinical and biomarker characteristics across phenotypes among sepsis
patients may provide insight regarding failed sepsis drug trials. Seymour et a/. (2019)%
demonstrated that there are subgroups of sepsis patients with unique responses to treatments,
offering compelling evidence that broadly applied monotherapies for sepsis and septic shock
are likely to continue to fail. Our study does not address the hypothesis that different sepsis
phenotypes have different treatment responses but supports the hypothesis that clustering
analysis can identify hidden patterns and structures within sepsis patient data, identifying
phenotypes with distinct short-term and long-term outcomes. Also, clustering analysis may
help improve the performance of prediction and risk-stratification for these outcomes by
building separate prediction models for each cluster. These observations were made in a
prospective study of a relatively small group of patients, suggesting that it is feasible to
perform these clustering techniques in clinical settings.

We demonstrate that the application of machine learning analytic methods to a battery of
routine clinical, physiologic measurements of organ dysfunction in concert with blood and
urine biomarkers of renal function, tissue perfusion, inflammation, and immunosuppression
can identify surgical sepsis phenotypes. Although these are done in a small cohort as

a proof-of-concept, these findings demonstrate the potential benefit of machine learning-
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derived clusters of sepsis in treatment. For example, as we utilize routine biomarkers,

all procured within hours of ICU admission, machine learning may rapidly identify

septic patients at high risk of AKI requiring aggressive resuscitation or renal replacement
therapy. Furthermore, as Cluster | is defined by an inflammatory phenotype, these patients
may benefit from anti-inflammatory therapy, which can be administered quickly and
potentially improve surgical outcomes. Similar approaches have demonstrated efficacy

for phenotyping other critical illnesses, suggesting broader implications for understanding
the host response to critical illness.28 Calfee et al. (2018)° performed a secondary,

latent class analysis to identify acute respiratory distress syndrome subphenotypes in

a multicenter, randomized controlled trial database. This analysis identified distinct
hyperinflammatory and hypoinflammatory phenotypes with different biological features and
clinical outcomes. Perhaps more importantly, the administration of simvastatin conferred

a survival advantage that was specific to the hyperinflammatory group, suggesting that

the identification of phenotypes can guide patient-specific treatments. Similarly, Antcliffe
et al. (2019)29 performed a secondary analysis of a randomized clinical trial database of
sepsis patients to determine whether phenotypes of sepsis patients have unique responses to
corticosteroid administration. Patients with an immunocompetent phenotype had increased
mortality after corticosteroid administration compared with placebo. These findings suggest
that phenotyping techniques not only elucidate underlying pathophysiology but are also
associated with unique treatment responses. Machine learning techniques may be ideal

for representing complex disease syndromes like sepsis and acute respiratory distress
syndrome because their underlying pathophysiology is beyond the reach of additive and
linear statistical approaches.30

Study limitations

Our study has several limitations. First, we used a small data sample of surgical patients
from a single institution, limiting the power and generalizability of these findings. In
addition, perhaps the greatest value of phenotyping is the ability to assess responses to
targeted therapies. Accomplishing this objective would require the application of biomarker
signatures to data from randomized controlled trials, which is feasible but beyond the scope
of this study. Second, the method we used to evaluate the importance of each biomarker

to the clusters (leave-one-out analysis) was susceptible to false positives. The merge step

of agglomerative clustering cannot be reversed and is dependent on the distance, and
subsequently the dimensionality of the data. By reducing the dimensions of the dataset in
leave-one-out analysis, reperforming agglomerative clustering is more likely to find different
results. Despite the reliance of leave-one-out on statistical methods, we still report these
findings (1) to show the magnitude of dependence for each variable and (2) to account

for the possibility that some biomarkers may be unimportant even given the clustering
method’s limitations. Likewise, we used a naive Bayes classifier to predict clusters in

our validation cohort, which makes an assumption of data independence. Although some
collected variables, such as BUN and Cr, do not satisfy the independence assumption, naive
Bayes was chosen for its simplicity and outperformance of other alternatives even in some
cases where the independence assumption is not met.31:32 Third, we use a single time point,
rather than longitudinal data. Although we focus on capturing patient profiles shortly after
sepsis diagnosis and exclude patients with advanced liver or heart disease, our approach
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did not account for the evolution of sepsis prior to and after ICU admission. Thus, it is
possible that our clusters represent differences in the evolution of sepsis, with Cluster 11
representing a resolved state. However, given that our study focuses on exploring the ability
of machine learning to derive sepsis phenotypes, longitudinal analyses were deemed out of
scope. Finally, we did not perform an external validation of our derived clusters using a large
dataset, and this should be considered in the interpretation of our findings.

Conclusions

Machine learning analyses of clinical and biomarker variables identified an early

organ dysfunction sepsis phenotype characterized by inflammation, renal dysfunction,
endotheliopathy, and immunosuppression, as well as poor short-term and long-term
clinical outcomes. These efforts to elucidate the pathophysiologic signatures of phenotypic
subgroups may provide a deeper understanding of sepsis phenotypes that can inform the
development of targeted therapies.
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Y

y

Development Cohort

01/22/2015 - 09/17/2016

159 Sepsis Patients Consented

Validation Cohort

86 Sepsis Patients Consented

09/21/2016 - 06/17/2017

2 patients are excluded due to
not sufficient biomarker data

Y

for the cluster analysis

157 Sepsis patients considered

Fig. 1-.

Patient enrollment and inclusion flowchart.
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Fig. 2 -

Clustering dendrogram with significance. (A) Dendrogram showing the subject profile
arrangement from the hierarchical clustering using the complete linkage method with

Expected

normalized distances by the number of features 42. (B) Cluster composition for different
levels of significance a. Colors track clusters that are robust with increasing significance
levels. (C) QQ-plot displaying the observed and expected distances used in hierarchical
clustering (height of branch nodes). Departure from the diagonal line suggests that there are
significant clusters in the data.
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Distributions of biomarkers by clusters. Side-by-side boxplots show the distributions of the
standardized biomarker values across clusters. Each color represents a group of biomarkers
based on their functionality. In each plot, the horizontal dash line represents the average
value of the standardized biomarker in the whole cohort.
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Cluster | (A and B), n=18 Cluster Il (A, B and C), n=139

Fig. 4 —.

A\?erage biomarker mosaics for patients using a self-organizing map for each of the two
main clusters. Average biomarker mosaics of a specific cluster illustrate the average value
of biomarker values for patients within that cluster. Red color correlates with increased
biomarker expression, and blue color correlates with decreased biomarker expression
compared to mean values for the development cohort, which is illustrated by the green
color.
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