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Abstract

Methods for estimating heterogeneous treatment effect in observational data have largely focused 

on continuous or binary outcomes, and have been relatively less vetted with survival outcomes. 

Using flexible machine learning methods in the counterfactual framework is a promising approach 

to address challenges due to complex individual characteristics, to which treatments need to be 

tailored. To evaluate the operating characteristics of recent survival machine learning methods 

for the estimation of treatment effect heterogeneity and inform better practice, we carry out 

a comprehensive simulation study presenting a wide range of settings describing confounded 

heterogeneous survival treatment effects and varying degrees of covariate overlap. Our results 

suggest that the nonparametric Bayesian Additive Regression Trees within the framework of 

accelerated failure time model (AFT-BART-NP) consistently yields the best performance, in 

terms of bias, precision, and expected regret. Moreover, the credible interval estimators from 

AFT-BART-NP provide close to nominal frequentist coverage for the individual survival treatment 

effect when the covariate overlap is at least moderate. Including a nonparametrically estimated 

propensity score as an additional fixed covariate in the AFT-BART-NP model formulation can 

further improve its efficiency and frequentist coverage. Finally, we demonstrate the application 

of flexible causal machine learning estimators through a comprehensive case study examining 

the heterogeneous survival effects of two radiotherapy approaches for localized high-risk prostate 

cancer.
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1 | INTRODUCTION

Observational data sources are expanding to include large registries and electronic health 

records, providing new opportunities to obtain comparative effectiveness evidence among 

broader target patient populations. Although traditional methods for observational studies 

focus on estimating the average treatment effect in a fixed target population, the rise of 

personalized healthcare and the increasing complexity of observational data have generated 

a more patient-centric view for drawing causal inferences about treatment effect. As a 

result, treatments need to be tailored to the covariate distribution of the target population, 

which necessitates the evaluation of treatment effect heterogeneity (TEH). If TEH presents, 

there exists a partition of the population into subgroups across which the treatment 

effect differs. Because the assessment of TEH requires addressing challenges due to 

complex and oftentimes high-dimensional individual characteristics, using flexible modeling 

techniques such as machine learning methods within the counterfactual framework is a 

promising approach and has received increasing attention in the statistical literature. For 

example, Foster et al1 studied the virtual twins approach that first uses random forests to 

estimate the individual treatment effect (ITE). They obtained the difference between the 

predicted counterfactual outcomes under different treatment condition for each unit, and 

then regressed the predicted ITEs on covariates to identify subgroups with a treatment 

effect that is considerably different than the average treatment effect. Wager and Athey2 

developed the causal forests for ITE estimation. Lu et al3 compared several random 

forests methods, including Breiman forests,4,5 causal forests and synthetic forests,6 for 

predicting ITE and found that the synthetic RF had the best performance. Hill7 adapted the 

Bayesian Additive Regression Trees (BART) for causal inference and described methods 

for visualizing the modes of the predicted ITEs to gain insights into the underlying number 

of subgroups. Anoke et al8 a priori set the number of subgroups and group observations 

based on percentiles of the empirical distribution of either the ITEs or propensity scores and 

estimated a treatment effect within each subgroup. They compared several machine learning 

methods including BART, gradient boosted models and the facilitating score method, for the 

estimation of TEH and found BART performed the best in their simulation studies.

While these previous studies focus either on continuous or binary outcomes, time-to-event 

outcomes are of primary interest in many biomedical studies.9,10 Besides the average 

survival treatment effect, it is also important to understand whether there is survival TEH in 

order to make informed personalized treatment decisions.11 The detection of survival TEH, 

however, may be complicated by the right censoring (eg, due to loss-to-follow-up) as well 

as challenges in precisely relating survival curves to individual covariates. Extending BART 

to survival outcomes, Henderson et al12 developed a nonparametric accelerated failure time 

(AFT) model to flexibly capture the relationship between covariates and the failure times for 

the estimation of ITE. Tian et al13 approached the TEH problem by modeling interactions 

between a treatment and a large number of covariates. Both methods were designed for 

analyzing data from randomized clinical trials, with little empirical evidence within the 

context of observational studies. Shen et al14 used random forests with weighted bootstrap 

to estimate the optimal personalized treatment strategy; however, identification of TEH was 

not the focus of their paper. Cui et al15 extended the causal forests of Wager and Athey2 
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for ITE estimation to accommodate right censoring, and used bootstrap for inference. Tabib 

and Larocque16 also proposed a new random forests splitting rule to partition the survival 

data with the goal of maximizing the heterogeneity of the ITE estimates at the left and right 

nodes from a split. Neither of the last two methods has made software publicly available.

Despite burgeoning literature in causal machine learning methods for survival data, their 

comparative performance for estimating the survival TEH remains underexplored. The 

practical implementation of machine learning methods for detecting possible survival TEH 

also merits additional study. To address these gaps and facilitate better use of machine 

learning for estimating survival TEH, we carry out a series of simulations to investigate the 

operating characteristics of nine state-of-the-art machine learning techniques, including

1. nonparametric BART model within the AFT framework (AFT-BART-NP);12

2. a variant of AFT-BART-NP where the estimated propensity score is included as a 

covariate (AFT-BART-NP-PS);

3. semiparametric BART model within the AFT framework (AFT-BART-SP);12

4. random survival forests (RSF);17

5. Cox regression based on deep neural network (DeepSurv);18

6. deep learning with doubly robust censoring unbiased loss function (DR-DL);19

7. deep learning with Buckley-James censoring unbiased loss function (DL-

BJ);19,20

8. targeted survival heterogeneous effect estimation (TSHEE);21

9. generalized additive proportional hazards model (GAPH).22

These techniques are representative of the recent machine learning advancement specifically 

designed for estimating individual-specific survival functions with right-censored failure 

time data; details of each method are reviewed in Section 2. In particular, recent work of 

Dorie et al23 and Hahn et al24 suggests that inclusion of an estimated propensity score in the 

BART model can improve the estimation of causal effects with noncensored outcomes. To 

investigate whether the utility of this strategy is transferable to censored survival outcomes, 

we considered a version of the nonparametric AFT BART model, AFT-BART-NP-PS, 

where the estimated propensity score was included as a covariate in model formulation. 

We contributed sets of simulations representing a variety of causal inference settings, and 

evaluated the empirical performance of these machine learning methods, with emphasis 

on new insights that can be gained, relative to the average survival treatment effects. We 

also compared these machine learning methods with two commonly used parametric and 

semiparametric regression methods, the AFT and Cox proportional hazards model, and 

elucidated the ramifications of potentially restrictive parametric model assumptions. Finally, 

to improve our understanding of the survival effect under two radiotherapy approaches for 

treating high-risk localized prostate cancer, we applied these machine learning methods to an 

observational dataset drawn from the national cancer registry database (NCDB). We focused 

on 7330 prostate cancer patients10 who received either external beam radiotherapy (EBRT) 

combined with androgen deprivation (AD), EBRT + AD, or EBRT plus brachytherapy with 
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or without AD, EBRT + brachy ± AD, with at least 7920 cGy EBRT dose, and explored the 

possible survival TEH in relation to individual covariate information.

The remainder of the article is organized as follows. Section 2 introduces causal assumptions 

and estimand of interest; it further provides a concise overview of each machine learning 

method considered. In Section 3, we describe the data generating processes and parameter 

constellations in our simulation study. Section 4 summarizes the comparative findings 

from simulation studies. In Section 5, we provide a case study where we estimated 

the heterogeneous survival treatment effects of two radiotherapy approaches for high-risk 

localized prostate cancer patients. Section 6 concludes with a discussion.

2 | STATISTICAL METHODS

2.1 | Notation and causal estimand

Consider an observational study with two treatment conditions and n observations, i = 1, 

…, n. Let Zi be a binary treatment variable with Zi = 1 for treatment and Zi = 0 for 

control, and Xi be a vector of confounders measured before treatment assignment. We 

proceeded in the counterfactual framework, and defined the causal effect for individual i as 

a comparison of Ti(1) and Ti(0), representing the counterfactual survival times that would be 

observed under treatment and control, respectively. We similarly define Ci(1) and Ci(0) as 

the counterfactual censoring times under each treatment condition. We further write Ti as the 

observed survival time and Ci the observed censoring time. The observed outcome consists 

of Yi = min(Ti, Ci) and censoring indicator Δi = I(Ti < Ci). Throughout, we maintained the 

standard assumptions for drawing causal inference with observational survival data:25

(A1) Consistency: The observed failure time and censoring time Ti = ZiTi(1) + (1 − Zi)Ti(0) 

and Ci = ZiCi(1) + (1 − Zi)Ci(0);

(A2) Weak unconfoundedness: Ti(z) ∐ Zi|Xi for Zi = z, z ∈ {0,1};

(A3) Positivity: the propensity score for treatment assignment e(Xi) = P(Zi = 1 Xi) is 

bounded away from 0 and 1;

(A4) Covariate-dependent censoring: Ti(z) ∐ Ci(z)|{Xi, Zi}, for Zi = z, z ∈ {0,1}.

Assumption (A1) maps the counterfactual outcomes and treatment assignment to the 

observed outcomes. It allows us to write Yi = ZiYi(1) + (1 − Zi)Yi(0), where Yi(z) 

= min{Ti(z), Ci(z)}. Likewise, Δi = ZiΔi(1) + (1 − Zi)Δi(0), where Δi(z) = I{Ti(z) < 

Ci(z)}. Assumption (A2) is referred to as the “no unmeasured confounders” assumption. 

Because this assumption is generally not testable without additional data, sensitivity analysis 

may be required to help interpret the causal effect estimates.26 Assumption (A3) is also 

referred to as the overlap assumption,27 which requires that the treatment assignment is not 

deterministic within each strata formed by the covariates. This assumption can be directly 

assessed by visualizing the distribution of estimated propensity scores. Finally, Assumption 

(A4) states that the counterfactual survival time is independent of the counterfactual 

censoring time given the pretreatment covariates and treatment. This condition directly 
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implies Ti ∐ Ci|{Xi, Zi}, and is akin to the “independent censoring” assumption in the 

traditional survival analysis literature.

For survival outcomes, the population-level survival treatment effect can be characterized by 

the survival quantile effect,28

ωq = θq(1) − θq(0) = sup t:P(T(1) ≤ t) ≤ q − sup t:P(T(0) ≤ t) ≤ q , (1)

where q is a prespecified number between 0 and 1. The estimand (1) compares the qth 

quantile of the marginal counterfactual survival distribution under the treated and the 

control condition. Implicit in our notation, we assume that the treatment strategy includes 

a hypothetical intervention that removes censoring until the end of follow-up. It has been 

suggested that the survival quantile effect should be used when the proportional hazards 

assumption does not hold.29,30 In this article, we focus on q = 1∕2 and ωq = 1/2 corresponds 

to the causal contrast in median survival times, which is a natural summary statistics of the 

entire causal survival curve and of clinical relevance.28,31 Extending the population-level 

treatment effect (1), we define the individual survival treatment effect (ISTE) as

ωq = 1/2(x) = θq = 1/2(1, x) − θq = 1/2(0, x), (2)

where θq = 1/2(z, x) = sup t:P(T(z) ≤ t ∣ X = x) ≤ 1/2 . In other words, θq = 1/2(z, x)

represents the median survival time of the conditional counterfactual survival function 

P(T(z) > t ∣ X = x) and ωq = 1/2(x) is alternatively called the conditional survival treatment 
effect. Because only the outcome, (Yi, Δi), corresponding to the actual treatment assignment 

is observed, the ISTE as a function of the unknown counterfactuals is not directly 

identifiable without additional assumptions. However, under Assumptions (A1) to (A3), we 

have

P(T(z) > t ∣ X = x) = P(T(z) > t ∣ Z = z, X = x) = P(T > t ∣ Z = z, X = x), (3)

where P(T > t|Z = 1, X = x) becomes the group-specific survival functions conditional on X 
= x and is estimable from observed data. Specifically, the identification condition (3) allows 

us to estimate ωq = 1/2(x) by fitting two survival outcome regression models, ℳ0 and ℳ1, to 

two sets of the observed data {Xi, Yi, Δi|Zi = 0} and {Xi, Yi, Δi|Zi = 1}. We then predict, 

for each data point, two individual-specific counterfactual survival curves conditional on 

individual covariate profile Xi, P Ti(z) > t ∣ Xi = Sℳz t, Xi  from model ℳz, z = 0, 1. The 

general form of the ISTE estimator is then given by

ωq = 1/2 Xi = θℳ1
q = 1/2 Xi − θℳ0

q = 1/2 Xi , (4)

where Sℳ1 θℳ1
q = 1/2 Xi , Xi = Sℳ0 θℳ0

q = 1/2 Xi , Xi = 1/2.

2.2 | Estimating individual-specific counterfactual survival curves

Because the estimation of the causal estimand (2) critically depends on the estimation 

of individual-specific counterfactual survival functions (or conditional survival functions), 
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Sℳ2(t, X) for z = 0, 1, below we briefly review the machine learning methods for estimating 

Sℳz(t, X). For simplicity, we drop the subscript ℳz in the survival function, and only note 

here that the flexible outcome model will be fitted for each treatment group in a symmetric 

fashion, and the causal interpretation will be based on (3).

2.2.1 | Accelerated failure time BART model—The AFT-BART model relates the 

failure time T to the covariates through log T = f(X) + W, where f(X) is a sum-of-trees 

BART model, f(X) = ∑j = 1
J g X; Tj, ℳj , and W is the residual term. The sum-of-trees 

model is fundamentally an additive model with multivariate components, which can more 

naturally incorporate interaction effects than generalized additive models and more easily 

incorporate additive effects than a single tree model.32 If W is assumed to follow a Gaussian 

distribution, the resultant model is semiparametric, termed as AFT-BART-SP. Henderson 

et al12 model the distribution of W as a location-mixture of Gaussian densities by using 

the centered Dirichlet process (CDP), leading to a Bayesian nonparametric specification, 

which we refer to as AFT-BART-NP. The individual trees Tj and bottom nodes ℳj
are tree model parameters. A regularization prior is placed on Tj, ℳj  to allow each 

individual tree model to contribute only a small part to the overall fit and therefore avoids 

overfitting.32 Furthermore, prior distributions are assumed for the distributional parameters 

of the residual term W, including the normal variance components, or the location and 

scale parameters for the CDP assumption. The posterior distributions of AFT model 

parameters are computed using Markov chain Monte Carlo (MCMC)—Metropolis-within-

Gibbs sampler for updating tree parameters and then Gibbs sampler for parameters related 

to the residual distribution. The unobserved survival times are imputed from a truncated 

normal distribution N logYi, ∞ f Xi , σ2  in each Gibbs iteration, where σ2 is the variance 

or common scale of the residual term. The individual-specific survival curve can then be 

calculated by summarizing the posterior predictive distribution of

SAFT‐BART‐SP t, Xi = 1 − Φ
logt − f Xi

σ

for AFT-BART-SP, where Φ(·) is the cumulative standard normal distribution and σ is the 

variance of the residual term. For AFT-BART-NP, the individual-specific survival curve is 

calculated by summarizing the posterior predictive distribution of

SAFT‐BART‐NP t, Xi = 1 − ∑
l = 1

L
πlΦ

logt − f Xi − τl
σ ,

where πl is the mixture proportion of cluster l (l = 1, …, L), τl is the cluster-specific location 

parameter, σ is the common scale parameter. Additional technical details are available in 

Herderson et al.12 A recent review of BART methods can also be found in Tan and Roy.33

A direct implication from the weak unconfoundedness assumption (A2) is that Ti(z) ∐ Zi|

e(Xi) for Zi = 0, 1, suggesting that controlling for the one-dimensional propensity score 
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is sufficient to remove confounding in estimating the average causal effect.34 For the 

purpose of estimating ITE with noncensored outcomes, Dorie et al23 and Hahn et al24 

considered including an estimated propensity score as an additional covariate in BART for 

improved robustness and estimation efficiency. Assuming e i is an estimate of e(Xi), we 

further consider a version of AFT-BART-NP that includes both Xi and e i in the model 

formulation. To mitigate concerns on model misspecification, we obtain the propensity score 

estimate, e i, nonparametrically from a Super Learner35 and treat it as a fixed covariate in the 

subsequent AFT-BART-NP model formulation. The individual-specific survival curve from 

AFT-BART-NP-PS is then obtained by summarizing the posterior predictive distribution of

SAFT‐BART‐NP‐PS t, Xi, ei = 1 − ∑
l = 1

L*
πlΦ

logt − f Xi, ei − τl
σ ,

where πl is the mixture proportion of cluster l (l = 1, …, L*), τl is the cluster-specific 

location parameter, and σ is the common scale parameter.

2.2.2 | Random survival forests—The RSF approach extends Breiman random forests 

to right-censored survival data.17 The key idea of the RSF algorithm is to grow a binary 

survival tree ℋ and construct the ensemble cumulative hazard function (CHF). Each 

terminal node of the survival tree contains the observed survival times and the binary 

censoring information for individuals who fall in that terminal node ℎ ∈ ℋ. Let t1, h < t2, h 

< …, tN(h), h be the N(h) distinct event times. The CHF estimate for node h is the Nelson-

Aalen estimator Λℎ = ∑ l: tl, ℎ ≤ t dl, ℎ/Rl, ℎ, where dl,h and Rl,h are the number of events 

and size of the risk set at time tl,h. All individuals within node h then have the same CHF 

estimate. To compute the CHF for an individual with covariates Xi, one can drop Xi down 

the tree, and obtain the Nelson-Aalen estimator for Xi’s terminal node, Λ t ∣ Xi = Λℎ(t)
if Xi ∈ h. The out-of-bag (OOB) ensemble CHF for each individual, λOOB(t|Xi), can be 

calculated by dropping OOB data down a survival tree built from in-bag data, recording 

i’s terminal node and its CHF and taking the average of all of the recorded CHFs. By a 

conversation-of-events principle,17 the individual-specific survival curve can be computed as 

one minus the estimated ensemble OOB CHF summed over survival times (event time or 

censoring time) until t, conditional on Xi, namely

SRSF t, Xi = 1 − ∑
j:Tj ≤ t

ΛOOB Tj ∣ Xi .

2.2.3 | Targeted survival heterogeneous effect estimation—TSHEE was recently 

proposed based on the doubly robust estimation method, the targeted maximum likelihood 

estimation (TMLE), for survival causal inference.21 At the first step, a stylized counting 

process representation of the survival data is created, then the Super Learner36 is applied to 

estimate, for each individual at each survival time point, the conditional hazard rate h(t|Xi). 

The initial individual survival function is then derived via the probability chain rule,
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S t, Xi = ∏
j: tj ≤ t

q tj ∣ Xi .

In the second step, the initial estimator is adjusted with conditional censoring probability 

P(C > t|Z, X) and the propensity score e(X) using the one-step TMLE.37 To carry out the 

one-step TMLE, one replaces the univariate conditional hazard function q(t|X)—a covariate 

in a logistic regression working (fluctuation) model for the failure event conditional hazard

—with a high dimensional vector q ( • ∣ X) = q t1 ∣ X , …, q tmax ∣ X , where {t1, …, tmax} 

corresponds to the set of ordered unique survival times. Fitting the high-dimensional logistic 

regression, the one-step TMLE updates in small steps locally along the working model 

to iteratively update the conditional survival function of failure event to form a targeted 

estimator STSHEE(t, Xi). We refer to Zhu and Gallego21 for full technical details on TSHEE.

2.2.4 | Cox regression based on deep neural network—DeepSurv is a Cox 

regression tool based on deep neural network.18 It uses a deep feed-forward neural network 

to predict the effects of individual covariates on their hazard rate parameterized by the 

weights of the network. The input to the network is each individual’s baseline covariates 

Xi. The network propagates the inputs through a number of hidden layers with weights ξ. 

The weights parameter ξ is optimized to minimize the average negative log partial likelihood 

subject to ℓ2 regularization,

lPL(ξ): = − 1
NE ∑

i:Δi = 1
ℎξ Xi − log ∑

j ∈ R Yi
exp ℎξ Xi + κ‖ξ‖2

2,

where NE is the number of observed events, Yi’s are the unique observed survival times, 

R(Yi) is the risk set at time Yi, hξ (·) is the log hazard function, and κ is L2 regularization 

parameter. The hidden layers comprise fully connected layer of nodes, followed by a 

dropout layer. As a fully connected layer occupies most of the parameters, neurons develop 

codependency among each other during the training phase, which leads to overfitting of 

training data. By dropping out individual nodes, that is, neurons with certain probability 

during the training phase, a reduced network is retained to prevent overfitting. The output of 

the network estimates the log hazard function ℎξ(X) within the Cox model framework. To 

compute the individual-specific survival curve, we first calculate the Nelson-Aalen estimate 

of the baseline CHF using ℎξ Xi  outputted by DeepSurv,

Λ0(t) = ∑
i:Y i ≤ t

Δi
∑j ∈ R Yi exp ℎξ Xi

.

We then relate the survival function to the CHF and estimate the individual-specific survival 

curve by

SDeepSurv t, Xi = exp −Λ0(t)exp ℎξ Xi .
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2.2.5 | Censoring unbiased deep learning survival model—A recent deep 

learning (DL) survival modeling technique builds upon the DL algorithms for uncensored 

data, but develops censoring unbiased loss functions to replace the unobserved full data loss, 

resulting in two DL algorithms for censored survival outcomes—one with doubly robust 

censoring unbiased loss (DR-CL) and one with Buckley-James censoring unbiased loss 

(BJ-DL).19 The doubly robust loss function consists of two terms, one based on uncensored 

outcomes and one constructed to inversely weight observed outcome information with 

functionals of the event or censoring probability. The loss function is doubly robust in 

the sense that it is a consistent estimator for the expected loss if one of the models for 

failure time T or censoring time C is correctly specified but not necessary both. A related 

estimator BJ-DL requires only modeling the conditional survival function for T for the term 

of censored outcomes in the loss function, which does not share the property of double 

robustness with the DR-CL estimator. A survival prediction model, S(t, X), can be obtained 

by replacing the full data loss function with either the doubly robust or Buckley-James loss 

function and minimizing the Brier risk.19 Specifically, SDR-DL(t, Xi) minimizes the doubly 

robust censoring unbiased loss

ℒDR(t) = 1
n ∑

i = 1

n δi(t) I Y i ≥ t − S t, Xi
2

G Yi ∣ Xi
+ 1

n ∑
i = 1

n

1 − δi(t) KL2, t Y i, Xi, S t, Xi
G Yi ∣ Xi

− ∫0

Yi KL2, t Y i, Xi, S t, Xi dΛG u ∣ Xi
G u ∣ Xi

,

and SBJ-DL(t, Xi) minimizes the Buckley-James censoring unbiased loss

ℒBJ(t) = 1
n ∑

i = 1

n
δi(t) I Y i ≥ t − S t, Xi

2 + 1 − δi(t) KL2, t Ci, Xi, S t, Xi ,

where δi(t) is the event indicator at time t for individual i, G(u|X) is the conditional survival 

function for C, KL2, t u, Xi, S t, Xi = E I Y i ≥ t − S t, Xi
2 ∣ T ≥ u, Xi  is the Brier risk, 

and ΛG u ∣ Xi  is the conditional cumulative hazard function for C. We refer the reader to 

Steingrimsson and Morrison19 for additional technical details.

2.2.6 | Generalized additive proportional hazards model—In the absence of 

censoring, a flexible approach for outcome modeling and prediction is the generalized 

additive model (GAM).22 This approach has also been extended to accommodate survival 

data. Specifically, the generalized additive proportional hazards model (GAPH) model22 

represents the hazard ratio function of the Cox proportional hazards model via a sum of 

smooth functions of covariates, and can be used to estimate the group-specific survival 

functions conditional on X = x. In our notation, the GAPH model is written as λ(t|X) = λ0(t) 

exp {η(X)}, where η(X) = ∑j = 1
p fj Xj  is the sum of smooth functions of each confounder 

Xj. Estimation of model functions η proceeds by maximizing the log partial likelihood 

coupled with the second-order smoothness penalties for each function. In other words, the 

objective function is
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lPL f1, …, fp + ∑
j = 1

p
λj∫ {fj″(x)}2dx,

where lPH generically denote the log partial likelihood, and λj is the regularization 

parameter (as λj → ∞, fj(x) degenerates to the identity function). Similar to the DeepSurv, 

we can obtain the Nelson-Aalen estimate of the baseline CHF Λ0(t) and compute the 

individual-specific survival curve by

SGAPH t, Xi = exp −Λ0(t)exp η Xi .

2.2.7 | Parametric accelerated failure time model—A standard parametric model 

for analyzing survival data is the accelerated failure time (AFT) model. The parametric 

AFT model38 postulates an explicit functional relationship between the covariates and the 

failure time T, log T = μ + XT β + σW, where β is a vector of coefficients describing 

the effects of covariates X on the log transformed survival time, μ and σ are intercept and 

scale parameters, respectively, W is the error term, for which a variety of distributions can 

be assumed. In our simulations, we assume a standard extreme value distribution and a 

normal distribution, for which the survival time has a Weibull distribution and a log-normal 

distribution, respectively. The parameters can be estimated by maximizing the likelihood 

function for censored data, and are denoted by μ, β , σ. The individual-specific survival curve 

can then be calculated as

SAFT‐Lognormal t, Xi = 1 − Φ
logt − μ − XiTβ

σ ,

and

SAFT‐Weibull t, Xi = exp −exp
logt − μ − XiTβ

σ .

A good review of parametric AFT model and the associated computational algorithms can 

be found in Wei.39

2.2.8 | Cox proportional hazards model—A Cox proportional hazards model40 

relates the hazard function and the covariates X through λ(t|X) = λ0(t) exp(XTγ), where 

γ is a vector of parameters describing the multiplicative effects of pretreatment covariates 

on the hazard function. The model assumes that the hazard ratio is constant across the time 

span (the so-called proportional hazards assumption). The parameter γ can be estimated 

by maximizing the partial likelihood. Similar to the procedure described for DeepSurv, we 

can obtain the Nelson-Aalen estimate of the baseline CHF Λ0(t) and compute the individual-

specific survival curve by
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SCoxPH t, Xi = exp −Λ0(t)exp XiTγ .

Even though the Cox model includes a nonparametric specification of the baseline hazard, 

the performance of this approach critically depends on the parametric specification of 

the linear component Xi
Tγ . When the true survival outcome surface involves complicated 

functional forms of the covariates, both the parametric AFT model and the Cox model may 

be subject to bias due to inaccurate model assumptions. We use these two conventional 

modeling techniques as a benchmark to quantify the bias that may occur in estimating the 

ISTE due to model misspecification.

3 | SIMULATION STUDIES

3.1 | Simulation design

We carried out a series of simulation studies to compare the above methods for estimating 

the individual counterfactual survival curves and hence the ISTE in the context of 

observational studies. Throughout we considered two levels of total sample size: n = 500 

and n = 5000, representing small and large studies. We simulated p = 10 independent 

covariates, where X1, …, X5 were drawn from the standard N(0, 1), and X6, …, X10 from 

Bernoulli(0.5). The treatment assignment was generated from Z|X ~ Bernoulli(e(X)), where 

the true propensity score follows

logit e(X) = α0 + α1X1 + α2X2 + α3X3 + α4X5 + α5X6 + α6X7 + α7X9 + α8X10,

and (α1, α2, α3, α4, α5, α6, α7, α8) = (−0.1ψ, −0.9ψ, −0.3ψ, −0.1ψ, −0.2 ψ, −0.4ψ, 0.5ψ). 

We chose ψ ∈ {1, 2.5, 5} to represent strong, moderate, and weak levels of confounding, 

leading to strong, moderate, and weak covariate overlap.41,42 The distribution of the true 

propensity scores is shown in Figure 1. In particular, the degree of overlap determines the 

effective sample size for estimating population ATE,43 but may have important implications 

for estimating ISTE. The intercept in the true propensity score model α0 was chosen such 

that the proportion of treated remained approximately 0.5.

We simulated the true counterfactual survival times T from the Weibull distribution,

P(T(z) > t ∣ X = x) = S(t ∣ X = x, Z = z) = exp − dzexp mz(x)t η ∀z ∈ 0,
1 , (5)

where dz is the treatment-group-specific parameter, η is the shape parameter and mz(x) 

represents a generic functional form of covariates on survival time; specifications of these 

parameters will be discussed below. We considered the Weibull distribution because it 

has both the AFT and Cox proportional hazards representations, and therefore allows us 

to simulate scenarios where either one of these assumptions is valid. Using the inverse 

transform sampling, we generated counterfactual survival times by,
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T(z) = −logU
dzexp mz(X)

1/η
, ∀z ∈ {0, 1},

where U ~ Unif(0, 1) was a random variable following a uniform distribution on the unit 

interval [0, 1], dz = 1200 for z = 0, and dz = 2000 for z = 1, and η was the shape parameter 

used to induce nonproportional hazards. We considered three structures for mz(X), leading 

to four treatment effect heterogeneity settings (HS) with increasing complexities:

i. m1(X) = − 0.2 + 0.1/ 1 + e−X1 − 0.8sin X3 − 0.1X5
2 − 0.3X6 − 0.2X7, and m0(X) = 

0.2 − 0.5X1 − 0.8X3 − 1.8X5 − 0.9X6 − 0.1X7,

ii. m1(X) = − 0.2 + 0.1/ 1 + e−X1 − 0.8sin X3 − 0.1X5
2 − 0.3X6 − 0.2X7, and 

m0(X) = − 0.1 + 0.1X1
2 − 0.2sin X3 + 0.2/ 1 + e−X5 + 0.2X6 − 0.3X7,

iii. m1(X) = 0.5 − 0.1/ 1 + e−X2 + 0.1sin X3 − 0.1X4
2 + 0.2X4 − 0.1X5

2 − 0.3X6, and 

m0(X) = − 0.1 + 0.1X1
2 − 0.2sin X3 + 0.2/ 1 + e−X5 + 0.2X6 − 0.3X7,

iv. m1(X) = 0.5 − 0.1/ 1 + e−X2 + 0.1sin X3 − 0.1X4
2 + 0.2X4 − 0.1X5

2 − 0.3X6, and 

m0(X) = − 0.2 + 0.5sin πX1X3 + 0.2/ 1 + e−X5 + 0.2X6 − 0.3X7.

Across all four outcome generating processes, X1, X3, X5, X6, X7 were confounders that 

were related to both the treatment assignment and the potential survival outcome. In scenario 

(i), there is a nonlinear covariate effect only in the treated group. In scenario (ii), the 

nonlinear covariate effects are present in both treatment groups. Scenario (iii) is similar 

to scenario (ii) except that a nonoverlapping set of covariates are included in the treated 

and control groups; this additional complexity represents an additional source of TEH. To 

avoid concerns that these settings may favor tree-based models, in scenario (iv), we further 

increased the data complexity by introducing a correlation of 0.6 between X2 and X4 in 

m1(X) and by including a nonadditive term sin(πX1X3) in m0(X). Finally, when simulating 

the counterfactual survival times, the parameter η was set to be 2 to satisfy the proportional 

hazards assumption. To induce nonproportional hazards, η was set to be exp{0.7 − 1.8X3 + 

0.8X7} for Z = 0, and exp{0.9 − 0.5X1 + 0.5X2} for Z = 1. For simplicity, we generated the 

censoring time C independently from an exponential distribution with rate parameters 0.007 

and 0.02, corresponding to two levels of censoring rate (CR), 20% and 60%. In Section 4.5, 

we additionally investigated the robustness of findings when censoring depends on observed 

covariates. An exploratory sensitivity analysis of the estimated ISTE to departure from 

the weak unconfoundedness assumption (A2) for all methods considered was conducted in 

Section 4.6. The simulated counterfactual survival curves are presented in Web Figure 1.

3.2 | Implementation

We used the abart function from the R package bart with the default settings to 

implement AFT-BART-SP, and used the R package AFTrees to implement AFT-BART-

NP. We used 1100 draws with the first 100 discarded as burn-in. DeepSurv was 
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implemented in Theano with the Python package Lasagne. To fit RSF, we used the 

randomForestSRC R package with 1000 trees, mtry = p/3 and a nodesize of 3. For 

the TSHEE method, we used the R code available at https://github.com/EliotZhu/Targeted-

Survival. To implement DR-DL and BJ-DL, we used R codes provided at https://github.com/

jonsteingrimsson/CensoringDL. The GAPH model was implemented using the gam function 

with family=cox.ph from the R package mgcv. Super Leaner was implemented using the 

R package SuperLearner to estimate the propensity score e i for the method AFT-BART-

NP-PS. Models in the Super Learner ensemble library included BART, GAM and XGBoost. 

To facilitate the application of these state-of-the-art machine learning methods to estimate 

ISTE, we provide example code to replicate our simulation studies in the GitHub page of the 

first author https://github.com/liangyuanhu/ML-DL-TEH.

3.3 | Performance metrics

We first assessed the overall precision in the estimation of heterogeneous effects (PEHE) for 

each method considered using

PEHE = 1
n ∑

i = 1

n
{ωq = 1/2 Xi − ωq = 1/2 Xi }

2
,

where ωq = 1/2 Xi = θq = 1/2 1, Xi − θq = 1/2 0, Xi  is the difference between two 

counterfactual median survival times calculated from each data point, and ωq = 1/2 Xi  is 

the estimated ISTE for individual i. This metric was also considered in Hill7 and Dorie et 

al,23 and a smaller value of PEHE indicates better accuracy and is considered favorable. For 

computational considerations, we replicated each of our simulations independently B = 250 

times for n = 5000 and B = 1000 times for n = 500. We summarized the mean and standard 

deviation (SD) of the PEHE across B replications.

To further evaluate the operating characteristics of each method in recovering treatment 

effect within subpopulations, we subclassified the individuals into G = G1, …, GK  based on 

K quantiles of the true propensity score distribution, and calculated relative bias and root 

mean squared error (RMSE) for each method. This strategy was firstly considered in Lu 

et al3 in their simulations with noncensored outcomes, and adapted in our evaluation. We 

choose K = 50 to represent a large enough number of subclasses with adequate resolution. 

By investigating the performance of each method in distinct covariate regions with different 

proportions of treatment assignment and overlap, we can assess the robustness of each 

method to data sparsity. More concretely, given an ISTE estimator ωq = 1/2(X) we define the 

relative bias (or percent bias) in subclass Gk by

RelBias(k) =
E ωq = 1/2 Xi − ωq = 1/2 Xi ∣ Xi ∈ Gk

E ωq = 1/2 Xi ∣ Xi ∈ Gk
, k = 1, …, K .

While Lu et al3 report the bias of each estimator on its original scale, we assess the bias on 

the relative scale with respect to the true treatment effect (which is constant across different 
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methods) so that the simulation results of different methods are more comparable even 

across different data generating processes. Under the same data generating process, however, 

the relative rankings of methods should be the same regardless of using the bias or relative 

bias, and the choice between these two metrics are immaterial.

We also define the root mean squared error (RMSE) of an ISTE estimator for subclass Gk as

RMSE(k) = E ωq = 1/2 Xi − ωq = 1/2 Xi
2

∣ Xi ∈ Gk , k = 1, …, K .

Finally, given the objective of ISTE estimation is often associated with informing 

individualized treatment rule (ITR), we also consider regret as a performance metric to 

better connect with the literature on ITR.44 Specifically, the expected regret (or sometimes 

referred to as risk) in subclass Gk is defined as

Regret(k) = E I zopt Xi ≠ z* Xi × ωq = 1/2 Xi ∣ Xi ∈ Gk , k = 1, …, K,

where zopt Xi = I{ωq = 1/2 Xi > 0} is the recommended optimal ITR based on the 

estimated ISTE, z* Xi = I ωq = 1/2 Xi > 0  is the “true” (infeasible) optimal ITR given 

Xi. Similar concepts were also discussed in Manski,45 Hirano and Porter,46 and references 

therein. Intuitively, the expected regret is interpreted as the average treatment benefit loss 

due to incorrect treatment recommendation based on the estimated ISTE, and a smaller value 

indicates more precise treatment recommendations.

To estimate these performance metrics, let Gk,b contain individuals within the qk quantile of 

the true propensity score from replication b, and NGk, b = ∑i = 1
n I Xi ∈ Gk, b  denote its size. 

We estimate the relative bias for subclass Gk by

RelBias(k) =

1
B ∑b = 1

B 1
NGk, b

∑i = 1
n I Xi ∈ Gk, b ωb

q = 1/2 Xi − ωb
q = 1/2 Xi

1
B ∑b = 1

B 1
NGk, b

∑i = 1
n I Xi ∈ Gk, b ωb

q = 1/2 Xi
,

where the true ISTE ωb
q = 1/2 Xi  is computed as the difference in the median survival times 

of two true counterfactual survival curves for each individual with covariate profile Xi in 

the bth simulation iteration, and ωb
q = 1/2 Xi  is the corresponding estimate based the bth 

simulated data set. The RMSE for subclass Gk was estimated using

RMSE(k) = 1
B ∑

b = 1

B 1
NGk, b

∑
i = 1

n
I Xi ∈ Gk, b ωb

q = 1/2 Xi − ωb
q = 1/2 Xi

2
.

Finally, the expected regret for subclass Gk was estimated by
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Regret(k) = 1
B ∑

b = 1

B 1
NGk, b

∑
i = 1

n
I Xi ∈ Gk, b I zopt Xi ≠ z* Xi ωq = 1/2 Xi .

Of note, while it is generally challenging to obtain valid confidence intervals for the ISTE 

using the frequentist machine learning methods directly from the model output, the Bayesian 

methods naturally produce coherent posterior credible intervals for the ISTE. Thereby, we 

summarized in Section 4.4 the empirical coverage probability for two “winners” of the 

AFT-BART methods.

4 | SIMULATION RESULTS

4.1 | Performance under strong overlap

A total of 12 methods were considered. We first evaluated the performance of each method 

without the challenge due to lack of overlap. Table 1 summarizes, for sample size n = 

5000, the mean and standard deviation of PEHE under each configuration with strong 

covariate overlap (see panel A in Figure 1). Several patterns are immediate. First, all 

machine learning methods yielded substantially smaller PEHE than the parametric AFT 

and Cox regression models across all simulation scenarios. Second, with uncorrelated 

confounders and no interaction between confounders (HS (i) to (iii)), as the heterogeneity 

setting became more complex, machine learning methods tended to have better performance 

evidenced by decreasing mean and variation of the PEHE. When correlation and interaction 

between confounders were introduced in HS (iv), all machine learning methods but GAPH 

yielded similar results as for HS (ii), whereas GAPH had increased PEHE. In sharp 

contrast, parametric regression methods tended to perform worse, with increasing average 

PEHE as the heterogeneity setting became more complex. All methods show decreasing 

precision in estimating ISTE when the proportional hazards assumption fails to hold and 

under a higher censoring rate. The Cox proportional hazards model results in the largest 

increase in PEHE when the proportional hazards assumption is violated. In comparison, all 

machine learning estimators have a much smaller increase in PEHE under nonproportional 

hazards. This is possibly due to more complex data generating processes (the parameter η 
depends on a nonlinear form of the covariates) and slightly reduced effective sample size. 

Third, among the nine machine learning approaches, AFT-BART-NP had the best overall 

performance across simulation configurations; AFT-BART-NP-PS had essentially the same 

PEHE results as AFT-BART-NP. Web Table 1 presents the PEHE for n = 500. The findings 

are qualitatively similar except that the mean and variance of PEHE increase with a smaller 

sample size.

The relative bias, RMSE and expected regret within the K = 50 propensity score subclasses 

are summarized in Web Figures 2 to 7. The parametric AFT and Cox models had 

substantially larger bias, RMSE and regret compared to the class of machine learning 

methods across all scenarios; and even more so when the underlying model assumptions 

were violated. Specifically, the Cox model had the largest relative bias, RMSE and regret 

under the nonproportional hazards setting and AFT-Lognormal had the largest relative 

bias, RMSE and regret when the true outcomes were simulated from the Weibull curves. 
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Among the machine learning methods, AFT-BART-NP and AFT-BART-NP-PS generally 

maintained the lowest bias, RMSE and regret with a larger sample size (n = 5000) and under 

nonproportional hazards. AFT-BART-NP-PS, while producing the similar median values 

of the bias, RMSE and regret as AFT-BART-NP, had less variable performance measures 

demonstrated by the shorter length of boxplots of each metric. This efficiency improvement 

due to the inclusion of a propensity score estimate echoes the findings in Dorie et al23 with 

noncensored outcomes. Overall, the tightness of the range of relative bias values for machine 

learning methods under the most complex HS (iii) and HS (iv) when n = 5000 demonstrate 

their superior performance over the traditional parametric implementations.

4.2 | Impact of covariate overlap

When there is strong covariate overlap, AFT-BART-NP demonstrates moderately better 

performance than AFT-BART-SP, RSF, DeepSurv, DR-DL, BJ-DL, TSHEE, and GAPH. As 

the degree of covariate overlap decreases, we find that the advantage of AFT-BART-NP 

becomes more apparent. In addition, inclusion of the estimated propensity score in the 

AFT-BART-NP model considerably reduced the variability of all performance measures, 

regardless of degree of overlap. Figure 2 shows that for the most challenging scenario (HS 

(iv) + nonproportional hazards + 60% censoring), the three performance measures (relative 

bias, RMSE and expected regret) increase as the lack of overlap increases for all machine 

learning methods, with both n = 500 and n = 5000. However, AFT-BART-NP and its variant 

AFT-BART-NP-PS appeared to be the most robust approach with the median relative bias 

around only 7% in the most extreme scenario (ψ = 5); DeepSurv appeared to have the 

largest increase in all performance metrics as the degree of overlap decreased. The two DL 

methods based on the censoring unbiased loss function, DR-DL and BJ-DL, showed similar 

performance across different simulation configurations, and performed better than the other 

DL method, DeepSurv, TSHEE as well as GAPH. AFT-BART-SP compared unfavorably 

with AFT-BART-NP, underscoring the benefit of more flexible nonparametric modeling of 

the residual term.

4.3 | Overall performance assessment

In Figure 3, we provided an overall assessment of the machine learning methods across the 

simulation scenarios following the approach taken in Tabib et al.16 Specifically, in each of 

the B simulation iterations, we computed the percent increase in PEHE with respect to the 

best performer for this iteration. The percent increase in PEHE for method s is given by

PEHEs
PEHEmin

− 1 × 100,

where PEHEmin corresponds to the PEHE from the best performer (hence with the smallest 

PEHE). For a given iteration, only the best method will correspond to a percent increase 

of exact zero while the others lead to positive values. Figure 3 presents the boxplots of 

percent increase in PEHE over all 3500 simulations for n = 5000 and 14000 simulations 

for n = 500 (Details of the scenarios covered are explained in the figure title). Evidently, 

the AFT-BART-NP method outperformed the other approaches (with AFT-BART-NP-PS 

slightly trailing behind) for having the smallest median and interquartile range of the percent 

Hu et al. Page 16

Stat Med. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase in PEHE; the advantage of AFT-BART-NP and AFT-BART-NP-PS is much more 

pronounced for a larger sample size n = 5000.

4.4 | Frequentist coverage for AFT-BART-NP

Because we identified the AFT-BART-NP and its variant AFT-BART-NP-PS to be the “best 

performer” in our simulations, we further assessed the accuracy of associated frequentist 

inference based on this flexible outcome model. An additional advantage of AFT-BART-

NP is that it naturally produces coherent posterior intervals in contrast to other machine 

learning methods, for which it may be difficult to derive simple and valid interval estimates 

for ISTE. Table 2 provides the mean frequentist coverage of the AFT-BART-NP credible 

interval estimators of the ISTE within the propensity score subclasses, under HS (iv), 60% 

censoring rate and three different degrees of covariate overlap. In this most challenging 

HS scenario, when there is strong or moderate level of overlap, AFT-BART-NP leads to 

valid inference for ISTE because it generally provides close to nominal frequentist coverage 

across all subclasses for both sample sizes. Furthermore, under weak overlap for which it 

is challenging to correctly estimate or make valid inference even for the population average 

causal effects,43 the AFT-BART-NP approach could still provide close to nominal frequentist 

coverage among the data region where treatment assignment is approximately balanced (eg, 

the 25th subclass where there is sufficient local overlap). However, the coverage probability 

decreases as we move toward the tail regions of the propensity score distribution. This 

interesting finding on frequentist coverage echoes the previous findings for estimating the 

population level causal effect, but on a finer scale as we focused on individual-specific 

heterogeneous treatment effect. In addition, we find inclusion of the estimated propensity 

score in the AFT-BART model formulation further improved the mean frequentist coverage 

across all scenarios, and more considerably so near the tail regions of the propensity score 

distribution, that is, in subclasses Gk’s away from G25. A full summary of frequentist 

coverage across different scenarios is visualized in Web Figure 8 and conveys essentially the 

same message.

4.5 | Sensitivity to covariate-dependent censoring

We assessed the sensitivity of our findings to more complex censoring mechanisms. 

Specifically, we replicated the simulation for the most challenging scenario (HS (iv) + 

nonproportional hazards) using the data generating process outlined in Section 3.1, except 

that we generate the counterfactual censoring times C(1) = C(0) from an exponential 

distribution with rate parameter ρ(X), where

ρ(X) = 0.02 + 0.1X1
2 + 0.1sin X3 + 0.2eX5/ 1 + eX5 + 0.02X6 − 0.03X7 .

The marginal censoring proportion implied by this model remains 60%. Web Figure 9 

presents the relative bias, RMSE and expected regret across all methods under strong, 

moderate, and weak overlap, and with sample sizes n = 500 and n = 5000. The results 

appeared almost identical to those in Figure 2, and AFT-BART-NP and AFT-BART-NP-PS 

were still identified to be the best approaches in terms of bias and precision. Web Table 

2 presents the mean frequentist coverage of the AFT-BART-NP and AFT-BART-NP-PS 
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credible interval estimators of the ISTE within five propensity score subclasses, in parallel to 

Table 2. The results confirm that the frequentist coverage probability of these approaches is 

unaffected by covariate-dependent censoring.

4.6 | Sensitivity to unmeasured confounding

While the flexible machine learning approaches relaxed the parametric assumptions for 

outcome modeling, their validity for estimating ISTE using observational data still critically 

depends on the structural causal assumptions (A1) to (A4) in Section 2.1. Among them, a 

key structural assumption is the availability of pretreatment confounders so that the weak 

unconfoundedness holds. To assess the sensitivity of the estimated ISTE to various degrees 

of departure from the weak unconfoundedness assumption, we conducted an exploratory 
sensitivity analysis using our simulation structure. We generated potential survival outcomes 

under the heterogeneous setting (iii), in which all of the machine learning methods had 

relatively better performance compared to other heterogeneous settings. We sequentially 

increased the degree of unmeasured confounding by removing access to confounders 1) X3, 

2) X3 and X5 and 3) X3, X5, and X6 in the analysis stage for each of the 12 methods. 

The PEHE results for n = 5000 are provided in Table 3. Results for n = 500 convey the 

same message and were therefore omitted. In the presence of unmeasured confounders, the 

performance of all methods deteriorated, demonstrated by the larger mean and standard 

deviation of the PEHE under increasing degree of unmeasured confounding. However, 

the relative performance rankings remain the same as in the situation when the weak 

unconfoundedness assumption holds, with AFT-BART-NP and AFT-BART-NP-PS being 

the top performing methods. Results on the relative bias, RMSE and expected regret are 

summarized in Web Figures 10 to 12, and further support the findings in Table 3.

5 | CASE STUDY: ESTIMATING HETEROGENEOUS SURVIVAL CAUSAL 

EFFECT OF TWO RADIOTHERAPY APPROACHES FOR PATIENTS WITH 

HIGH-RISK PROSTATE CANCER

Two popular radiotherapy based approaches for treating high-risk localized prostate cancer 

are EBRT + AD and EBRT + brachy ± AD.10 It is unclear whether EBRT + AD and 

EBRT + brachy ± AD have significantly different survival effect among those who received 

at least 7920 cGY EBRT dose, and whether there exists TEH. To better understand the 

comparative overall and heterogeneous survival causal effects of these two radiotherapy 

approaches, we pursued a two-stage causal analysis with the NCDB data including 7730 

high-risk localized prostate cancer patients who were diagnosed between 2004 and 2013 

and were treated with either EBRT + AD or EBRT + brachy ± AD with no less than 

7920 cGY EBRT dose. The pretreatment confounders included in this analysis were age, 

prostate-specific antigen (PSA), clinical T stage, Charlson-Deyo score, biopsy Gleason 

score, year of diagnosis, insurance status, median income level (quartiles on the basis of 

zip code of residence), education (based on the proportion of residents in the patient’s zip 

code who did not graduate high school), race, and ethnicity. Web Table 3 summarizes the 

baseline characteristics of patients in the two treatment groups. Clearly, there are a number 

of covariates that are unbalanced between the two groups, suggesting the need to adjust for 
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confounding. Web Figure 13 shows the distribution of the estimated propensity scores by 

fitting a Super Learner35 on the treatment and covariates data. Relatively strong covariate 

overlap is suggested from the propensity score distribution.

Our analyses proceed in a two-stage fashion. In the first stage, we applied the machine 

learning methods to estimate the ISTE within the counterfactual framework. The estimated 

ISTE were then used, in the second stage, as dependent variables in an exploratory 

linear regression analysis to generate some further insights. As argued in Lu et al,3 the 

estimated regression coefficients can be interpreted as how treatment effects are modulated 

by corresponding covariates. To estimate standard errors and uncertainty intervals for the 

regression coefficients, we drew for each individual 1000 posterior MCMC samples of 

ISTE from the AFT-BART models. For the frequentist machine learning approaches (RSF, 

DeepSurv, TSHEE, DR-DL and BJ-DL), we subsampled the entire procedure to obtain 

uncertainty intervals for the linear regression coefficients. Specifically, we drew a sample 

of size n∕5 without replacement, refit each model based on the subsampled data and used 

the resulting ISTE estimates as dependent variable in the exploratory linear regression. 

The subsampling process was repeated 1000 times. Similar to Politis et al47 and Lu et 

al,3 we used the subsampling approach instead of bootstrap due to considerations on 

computational speed and robustness. Web Table 4 presents the regression coefficients and 

95% credible intervals for all covariates and the intercept from the AFT-BART-NP-PS 

model; the intercept could be considered as an overall measure of the treatment effect for the 

“baseline” population (with all covariates set to be the reference category or mean value). 

Results from using ISTE estimated by frequentist machine learning approaches were similar 

and therefore omitted. The intercept estimates suggest that the population average survival 

treatment effect of EBRT + brachy ± AD vs EBRT + AD is not statistically significant at 

the 0.05 level. However, PSA and age significantly modulated the comparative effect of 

the two radiotherapy approaches on median survival. For example, the estimated coefficient 

was 3.99 (95% CI: 3.60 to 4.38) for PSA; this means that difference in the counterfactual 

median survival under EBRT + brachy ± AD vs EBRT + AD, which was positive, became 

greater for patients with higher PSA. Similarly, the negative coefficient estimate for age 

suggests that the median survival benefit from EBRT + brachy ± AD were more pronounced 

among younger patients. In Figure 4, we created 300 subgroups based on percentiles of 

the distribution of posterior mean ISTE, and provide the scatter plots of subgroup-specific 

average covariate (PSA, age, clinical T stage, and insurance status) vs subgroup-specific 

average survival treatment effect. While the subgroup survival treatment effect estimates are 

randomly scattered across values of clinical T stage and insurance status, there is a clear 

nonrandom pattern between subgroup-specific survival treatment effect estimates and PSA 

or age, with directions in close agreement to findings from the exploratory linear regression 

analysis (Web Table 4).

To further explore the subgroups that may have enhanced survival treatment effect from 

either of the two radiotherapy approaches, we leveraged the posterior MCMC draws of the 

ISTE from AFT-BART-NP, and employed the “fit-the-fit” strategy to explore the potential 

TEH in relation to the covariate subspaces. The “fit-the-fit” strategy has been used to 

identify possible subgroups defined by combination rules of covariates that have differential 

treatment effects; see for example, Foster et al1 and Logan et al44 Instead of a linear 
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regression analysis, the classification and regression tree (CART) model was used to regress 

the posterior mean of the ISTE on the covariates. A sequence of CART models were fit, 

where covariates were sequentially added to the CART model in a stepwise manner to 

improve the model fit, as measured by R2. At each step, the variable leading to the largest 

R2 improvement was selected into the model and the procedure ended until the percent 

improvement in R2 was less than 1%. This complexity parameter controls the size of the 

final CART tree. Subgroup treatment effects were estimated by averaging the ISTE among 

individuals falling into each node of the final CART model, and the branch decision rules 

(ie, binary splits of the covariate space) suggested combination rules of covariates. Figure 

5 shows the results of the final tree estimates. The final R2 between the tree fit and the 

posterior mean treatment effect of EBRT + brachy ± AD vs EBRT + AD was 80%. The 

first splitting variable was PSA. Patients with PSA ≥10 ng/mL had approximately 7.6 

(95% CI: 0.6 to 14.5) months longer median survival with EBRT + brachy ± AD, while 

patients with PSA < 10 ng/mL did not experience significantly higher median survival 

from either treatment. A second level of variable splitting provided further resolution 

on the magnitude of the treatment benefit for patients with higher PSA ≥ 10 ng/mL; 

the most beneficial subgroup was those with PSA ≥ 25 ng/mL and had approximately 

10.9 months longer median survival. Among patients with lower PSA < 10 ng/mL, older 

patients aged above 70 years experienced treatment benefit from EBRT + AD with median 

survival approximately 2.2 months longer; on the contrary, younger patients aged below 

70 years could benefit from EBRT + brachy ± AD with approximately 4.6 months longer 

median survival. This alternative analysis strategy generated evidence that converged to the 

exploratory linear regression analysis on the ISTE estimates, and suggested interpretable 

patient subpopulations with beneficial survival treatment effects due to EBRT + brachy ± 

AD. We further explored the sensitivity of the summarizing CART model fit to the tuning 

parameters of both CART and AFT-BART-NP. When the complexity parameter value of 

CART ranges from 0.6% to 1.1%, the final tree remains the same. With a value > 1.1%, 

the final summarizing tree includes only PSA and the final R2 drops to 0.67. When the 

complexity parameter value is < 0.6%, the final summarizing tree gets more complex by 

including an additional variable biopsy Gleason score with only a slight increase (0.005) in 

the final R2. Varying values for the hyperparameters of the AFT-BART-NP model did not 

change the results of the CART model fit. Hence, the summarizing CART model fit in this 

case study is robust to the tuning parameters.

6 | DISCUSSION

Identification of TEH has been conventionally carried out by first enumerating potential 

effect modifiers with subject-matter experts and then estimating the average treatment 

effect within each subgroup.48,49 In randomized clinical trials, this approach could also 

facilitate prespecification and therefore is particularly suitable to confirmatory TEH 
analysis.48 In observational data with complex heterogeneity of treatment effect, such a 

priori specification that separates the issues of confounding and TEH is often practically 

infeasible, especially with a large number of pretreatment covariates. Such complications 

motivate exploratory THE analysis for generating scientifically meaningful hypotheses 

and treatment effect discovery, which is the focus of this current article.48–50 Exploiting 
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on the counterfactual framework, flexibly modeling of the outcome has been shown to 

be well-suited for exploratory TEH analysis. However, ongoing discussions about causal 

methods for estimating TEH in observation data have largely focused on nonsurvival data. 

For example, tree-based methods such as BART and random forests have recently emerged 

as popular approaches to causal effect estimation for continuous or binary outcomes.3,7 

On the other hand, several modern deep learning methods (DeepSurv, DR-DL, BJ-DL) 

have been developed for censored survival data,18,19 and a TMLE based method has 

recently been proposed to estimate the survival heterogeneous effect.21 The GAPH model 

is adept at flexibly fitting complex main effects, which are often of great interest in 

health studies.22 We adapt these machine learning modeling tools for estimating ISTE and 

provide new empirical evidence using simulations representative of complex confounding 

and heterogeneity settings with right-censored survival data.

Our results indicate that all machine learning methods substantially outperformed the 

traditional AFT and Cox proportional hazards models in estimating TEH. This is not 

surprising given that the traditional models often encode strong parametric and linearity 

assumptions, which are prone to bias when model assumptions fail to hold. Among 

the class of machine learning methods, the nonparametric version of the AFT-BART 

model12 generally outperformed the other methods, both from the traditional prediction 

perspective (bias and RMSE) and the decision perspective (expected regret). The advantage 

of AFT-BART-NP becomes more pronounced with a larger sample size and increased 

data complexity. On the other hand, AFT-BART-NP also conveniently enables posterior 

inference by providing credible intervals for ISTE and the associated subgroup-specific 

treatment effects. In particular, we demonstrated that when there is strong or moderate 

overlap, AFT-BART-NP could provide close to nominal frequentist coverage for almost all 

average causal effect among subpopulations defined by propensity score strata. Under weak 

overlap, AFT-BART-NP still provides satisfactory frequentist coverage for the subpopulation 

near the centroid of the propensity score distribution. While the overall population may 

exhibit weak overlap, the central region of the propensity score distribution may still present 

satisfying local overlap and in fact admits valid inference for the causal effects. However, 

AFT-BART-NP could understate the uncertainty of ISTE estimates in regions with lack of 

overlap. This observation was also discussed in an invited Commentary to Hahn et al24 

by Papadogeorgou and Li,51 who illustrated that BART for continuous outcomes produced 

overly narrow confidence band in the region of poor overlap. As a potential improvement, 

we found that including a nonparametrically estimated propensity score in the AFT-BART-

NP model formulation leads to more accurate estimation and inference for ISTE, evidenced 

by less variable subgroup-specific performance measures, as well as higher frequentist 

coverage under weak overlap. Because previous simulations for TEH rarely considered 

the effect of overlap, our results offer new insights. Importantly, our findings can provide 

new perspectives into the estimation of ISTE relative to average treatment effects. At the 

minimum, we noticed that even though it is challenging to estimate ISTE for units at the 

tails of the propensity score distribution, it remains practically feasible to make accurate 

inference for ISTE within the centroid of the propensity score distribution. In fact, the 

centroid region of the propensity score distribution includes individuals at clinical equipoise 

(and for whom the treatment decisions are mostly unclear) and resemble those recruited 
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in a randomized controlled trial. In the propensity score literature, this subpopulation is 

sometimes referred to as the overlap population, for which there exists an efficient weighting 

estimator for the average causal effect.27,43,52,53

In general, the flexible outcome modeling represents a simple and powerful approach 

for causal effect estimation, with the caveat that accurate estimation critically depends 

on correct model specification of the outcome surface.54 With the rapid advancement 

of machine learning techniques, more precise modeling of the outcome surface can be 

achieved, which can serve as the building block for improved individualized causal effect 

estimation. The ISTE estimates can also be utilized to explore the degree of TEH. For 

example, as in the second stage of the virtual twins approach, the ISTE estimates were 

used as the outcome and a tree diagram was fitted to identify predictors that explain 

away differences in the ISTE estimates. In Lu et al,3 the ISTE estimates were used as the 

dependent variable in a standard regression model to explain between-subgroup differences 

in treatment effect. As suggested in Anoke et al,8 averaging ISTE estimates within a 

prespecified subgroup (eg, female vs male) can also facilitate exploration of the TEH. Given 

these existing tools, the ISTE from a flexible outcome model can yield insights not only 

for the population average treatment effect but also for the detection of TEH. Another 

interesting practical point regards how to use the estimated ISTE to inform treatment 

decisions for future patients when only part of the covariates Xobs will be available at the 

decision time, and Xmis will not be collected. In such situations, a plausible strategy is to 

marginalize the product of the ISTE functional f(ω|x) and the conditional distribution f(xmis|

xobs), over the probability distribution of Xmis. However, the estimation of the conditional 

f(xmis|xobs) can be computationally challenging, especially when there are a large number of 

covariates.

In the NCDB case study, we showed how the counterfactual ISTE estimates from machine 

learning models could be utilized to understand whether there might be TEH among 

localized high-risk prostate cancer patients who were treated with two different radiotherapy 

approaches. These two radiotherapy techniques did not show significantly different average 

treatment effects in the overall study population, but we found age and PSA are two 

key patient factors that modulated the comparative treatment effect. We further exploited 

the posterior MCMC samples of the ISTE from AFT-BART-NP and the binary tree 

model CART to explore interesting connections between radiotherapy techniques, patient 

characteristics and median counterfactual survival. This causal analysis revealed that patients 

with very high PSA or older patients with low PSA may have enhanced treatment benefit 

from EBRT + brachy ± AD or EBRT + AD. The results could facilitate treatment effect 

discovery in subpopulations and may inform personalized treatment strategy and the 

planning of future confirmatory randomized trials.

While we have defined our individual-level causal estimand based on the median 

counterfactual survival times in Section 2, it is straightforward to extend this definition 

to alternative individual-level causal estimands. For example, we can take different values 

for q ∈ (0, 1) in Equation (2) than 1∕2 and obtain the survival causal effect conditional on 

the individual profile X = x for other quantiles of the distribution of failure times. While the 

median survival times are frequently used for its simple interpretation in clinical practice, 
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studying individual quantile survival causal effects could provide additional insights on how 

treatment effect varies across the distribution of failure times. However, when q departures 

from 1∕2, the effective sample size for estimating the individual causal effect may decrease 

due to data sparsity, and the resulting interval estimates could become wider. Beyond the 

quantile survival causal effect, we can also define individual causal estimands by contrasting 

the conditional survival probability up to a fixed time t, conditional restricted mean survival 

times (RMST), and conditional (cumulative) hazard rate, extending the population-level 

estimands introduced in, for example, Chen and Tsiatis,25 Zhang et al,55,56 Bai et al,57 

and Mao et al.28 Because we embedded the machine learning approaches considered in 

the outcome modeling framework and were able to estimate the individual counterfactual 

survival curves, it is convenient to leverage the estimated individual-specific survival 

curves and obtain TEH represented by these alternative definitions. We have not examined 

the corresponding empirical results, and therefore recommend future investigations to 

identify the best approaches for estimating these alternative individual survival causal effect 

estimands.

We acknowledge that there are several limitations of our study, which could stimulate future 

research in the field of (frequentist or Bayesian) causal machine learning. First, while our 

simulations aimed at providing new empirical evidence about the operating characteristics of 

state-of-the-art machine learning techniques for estimating TEH with survival data, we only 

provided frequentist coverage probability for AFT-BART-NP because the credible intervals 

are readily available from the MCMC output. On the other hand, it may be challenging 

to precisely estimate the variance of the ISTE using DL, RSF, and TSHEE, without 

resorting to more computationally intensive sample-splitting methods.2,15,58,59 Developing 

and investigating new methods for the variance and interval estimation for frequentist 

machine learning represent an important avenue for future research. Second, an anonymous 

reviewer pointed out that one may further improve the estimation of ISTE by parameterizing 

the counterfactual AFT mean model as E[log(T(z))|X = x] = α(x) + (z − e(x))τ(x), where 

the ISTE can be explicitly represented as a function of τ(x). This apparent parameterization 

orthogonalizes the model into two components: a prognostic score, α(x) − e(x)τ(x), as well 

as a treatment effect model, zτ(x), and anchors the propensity score in model formulation 

to build in robustness. While this idea represents a promising approach, developing a 

formal estimation procedure by placing separate regularization priors on these two model 

components along the lines of Hahn et al24 is beyond the scope of this work, and will be 

pursued in future work. Third, we have assumed conditional noninformative censoring so 

that the counterfactual censoring time is independent of the counterfactual survival time 

given baseline covariates. It would be interesting to further develop these machine learning 

to address informative censoring such that the censoring process is a function of some 

time-varying covariates.60 Combining the inverse probability of censoring weights61,62 and 

the flexible outcome models also represents a promising approach to obtain valid causal 

estimates in this scenario but requires further study in the context of TEH. Finally, as in 

all causal inference work with observational data, we require an untestable assumption that 

the observed pretreatment covariates are sufficient to deconfound the relationship between 

treatment and outcome. We conducted an exploratory sensitivity analysis to demonstrate 

that, the violation of this assumption will lead to more biased ISTE estimates even for 
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machine learning methods. To wit, using flexible modeling techniques alone will not address 

violations of structural assumptions (such as weak unconfoundedness) required for causal 

inference. Developing a formal sensitivity analysis approach to capture the sensitivity of an 

ISTE estimation method to the potential magnitude of departure from the unconfoundedness 

assumption would be a worthwhile and important contribution.26,63
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FIGURE 1. 
Distributions of true propensity scores generated from three treatment assignment 

mechanisms with an overall treatment prevalence equal to 0.5. The unshaded bars indicate 

the treated group; the gray shaded bars indicate the control group. Panels A to C correspond 

to setting ψ = 1, ψ = 2.5, and ψ = 5, respectively
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FIGURE 2. 
Relative bias, panel A, RMSE, panel B, and expected regret, panel C results for each of nine 

machine learning methods under strong, moderate, and weak covariate overlap, and for the 

complex scenario of heterogeneous setting (iv), nonproportional hazards and 60% censoring. 

Each boxplot visualizes the distribution of a performance measure across the propensity 

score subgroups Gk, k = 1, …, 50
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FIGURE 3. 
Overall comparison of nine machine learning methods across all simulation configurations. 

The boxplots represent the distribution of the percent increase in PEHE with respect to 

the best performer for each simulation run for all runs. Smaller values are better. The total 

number of simulation runs for each boxplot equals to the number of scenarios multiplied 

by B (B = 250 for n = 5000 and B = 1000 for n = 500). There are a total of 18 scenarios 

considered, including (a) 2 proportional hazards assumptions × 2 censoring proportions × 

4 heterogeneity settings under strong overlap; plus (b) 1 proportional hazards assumptions 

(nonproportional hazards) × 1 censoring proportions (CR= 60%) × 1 heterogeneity settings 

(HS (iv)) under moderate and weak overlap
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FIGURE 4. 
Visualization of results from the NCDB data analysis. Covariates considered are PSA, age, 

clinical T stage, and insurance status. The x-axis represents the subgroup-specific posterior 

average survival treatment effect (median counterfactual survival in months), and the y-axis 

represents the subgroup-specific average value of the covariate. A red dot represents a 

subgroup, generated by dividing percentiles of the distribution of posterior mean individual 

survival treatment effects (ISTE). There are 300 subgroups in total. Gray dots represent 

a random subset of 100 (out of 1000) posterior draws of the ISTE with the subgrouping 

process applied
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FIGURE 5. 
Final CART model fit to the posterior mean of the individual survival treatment effect 

(measured by median survival in months) comparing EBRT plus brachytherapy with or 

without AD (EBRT + brachy ± AD) vs EBRT plus AD (EBRT + AD). Values in each 

node correspond to the posterior mean and 95% credible intervals for the average survival 

treatment effect for the subgroup of individuals represented in that node
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TABLE 1

Mean (SD) of PEHE for each of 12 methods and each of 8 simulation configurations for n = 5000 with strong 

overlap

CR Method

Proportional hazards Nonproportional hazards

HS (i) HS (ii) HS (iii) HS (iv) HS (i) HS (ii) HS (iii) HS (iv)

20% AFT-L 3.63 (0.14) 4.17 (0.15) 4.13 (0.14) 4.81 (0.15) 3.79 (0.13) 4.35 (0.16) 4.41 (0.17) 4.89 (0.18)

AFT-W 2.11 (0.12) 2.58 (0.12) 2.65 (0.12) 2.94 (0.13) 2.31 (0.13) 2.84 (0.13) 2.81 (0.13) 3.08 (0.15)

CoxPH 2.16 (0.11) 2.61 (0.12) 2.61 (0.13) 2.98 (0.13) 3.81 (0.13) 4.38 (0.14) 4.39 (0.13) 4.86 (0.17)

ABN 0.51 (0.03) 0.21 (0.02) 0.12 (0.02) 0.23 (0.03) 0.72 (0.07) 0.41 (0.04) 0.33 (0.04) 0.42 (0.05)

ABNPS 0.52 (0.03) 0.22 (0.02) 0.13 (0.02) 0.24 (0.03) 0.73 (0.07) 0.42 (0.04) 0.34 (0.04) 0.43 (0.05)

ABS 0.56 (0.04) 0.24 (0.03) 0.15 (0.02) 0.26 (0.03) 0.78 (0.08) 0.44 (0.05) 0.36 (0.04) 0.45 (0.05)

RSFs 0.53 (0.03) 0.22 (0.02) 0.13 (0.02) 0.24 (0.03) 0.73 (0.07) 0.42 (0.04) 0.33 (0.04) 0.43 (0.05)

DeepSurv 0.62 (0.04) 0.29 (0.03) 0.22 (0.03) 0.29 (0.04) 0.82 (0.08) 0.47 (0.06) 0.41 (0.05) 0.49 (0.06)

DR-DL 0.58 (0.04) 0.26 (0.02) 0.16 (0.02) 0.27 (0.04) 0.78 (0.07) 0.44 (0.05) 0.36 (0.04) 0.45 (0.05)

BJ-DL 0.57 (0.05) 0.25 (0.02) 0.15 (0.02) 0.26 (0.04) 0.77 (0.07) 0.43 (0.05) 0.35 (0.04) 0.44 (0.05)

TSHEE 0.60 (0.04) 0.27 (0.03) 0.20 (0.03) 0.26 (0.04) 0.80 (0.08) 0.46 (0.06) 0.40 (0.04) 0.48 (0.06)

GAPH 0.60 (0.04) 0.28 (0.03) 0.20 (0.03) 0.36 (0.05) 0.80 (0.07) 0.48 (0.05) 0.40 (0.04) 0.58 (0.07)

CR Method

Proportional hazards Nonproportional hazards

HS (i) HS (ii) HS (iii) HS (iv) HS (i) HS (ii) HS (iii) HS (iv)

60% AFT-L 4.14 (0.14) 4.57 (0.15) 4.45 (0.15) 5.19 (0.20) 4.39 (0.18) 4.89 (0.19) 4.91 (0.18) 5.88 (0.22)

AFT-W 2.62 (0.12) 3.22 (0.13) 3.14 (0.13) 4.01 (0.16) 2.89 (0.16) 3.71 (0.14) 3.72 (0.13) 4.66 (0.18)

CoxPH 2.63 (0.12) 3.21 (0.13) 3.22 (0.13) 3.89 (0.18) 4.41 (0.18) 4.83 (0.18) 4.83 (0.18) 5.93 (0.20)

ABN 0.81 (0.04) 0.31 (0.04) 0.21 (0.02) 0.31 (0.03) 0.99 (0.09) 0.51 (0.06) 0.41 (0.04) 0.50 (0.05)

ABNPS 0.82 (0.04) 0.32 (0.04) 0.22 (0.02) 0.32 (0.03) 1.00 (0.09) 0.52 (0.06) 0.42 (0.04) 0.51 (0.05)

ABS 0.84 (0.04) 0.34 (0.04) 0.24 (0.02) 0.35 (0.03) 1.04 (0.09) 0.56 (0.06) 0.45 (0.04) 0.54 (0.05)

RSFs 0.82 (0.05) 0.32 (0.05) 0.22 (0.02) 0.33 (0.03) 1.01 (0.09) 0.52 (0.06) 0.41 (0.04) 0.52 (0.05)

DeepSurv 0.85 (0.04) 0.38 (0.04) 0.26 (0.03) 0.37 (0.04) 1.09 (0.11) 0.59 (0.07) 0.51 (0.05) 0.62 (0.06)

DR-DL 0.84 (0.04) 0.35 (0.04) 0.24 (0.02) 0.40 (0.03) 1.04 (0.09) 0.55 (0.06) 0.45 (0.04) 0.56 (0.05)

BJ-DL 0.83 (0.04) 0.35 (0.04) 0.23 (0.02) 0.38 (0.03) 1.03 (0.09) 0.53 (0.06) 0.43 (0.04) 0.54 (0.05)

TSHEE 0.85 (0.05) 0.37 (0.05) 0.25 (0.03) 0.36 (0.04) 1.08 (0.10) 0.57 (0.07) 0.48 (0.05) 0.58 (0.06)

GAPH 0.86 (0.04) 0.38 (0.04) 0.25 (0.02) 0.47 (0.05) 1.08 (0.09) 0.58 (0.06) 0.48 (0.05) 0.69 (0.07)

Abbreviations: AB, AFT-BART-NP; ABNPS, AFT-BART-NP-PS; ABS, AFT-BART-SP; AFT-L, AFT-Lognormal; AFT-W, AFT-Weibull; CR, 
censoring rate; HS, heterogeneity setting.
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TABLE 2

Summary of average frequentist coverage probability of the Bayesian credible intervals from the AFT-BART-

NP (denoted by X) and AFT-BART-NP-PS (denoted by X + PS) for five propensity score subclasses, for each 

of two sample sizes, proportional and nonproportional hazards assumptions, and under varying degrees of 

overlap, in the scenario of HS (iv) and 60% censoring

Nonproportional hazards Proportional hazards

Strong overlap Moderate overlap Weak overlap Strong overlap Moderate overlap Weak overlap

Sample size Gk X X + PS X X + PS X X + PS X X + PS X X + PS X X + PS

n = 5000 1 0.93 0.94 0.90 0.90 0.50 0.55 0.92 0.94 0.91 0.92 0.49 0.56

12 0.92 0.94 0.90 0.91 0.70 0.75 0.92 0.93 0.92 0.94 0.68 0.77

25 0.94 0.95 0.92 0.93 0.92 0.93 0.93 0.93 0.92 0.94 0.92 0.94

37 0.94 0.94 0.90 0.92 0.71 0.75 0.92 0.95 0.91 0.93 0.67 0.74

50 0.94 0.95 0.90 0.91 0.50 0.56 0.91 0.94 0.90 0.92 0.50 0.57

n = 500 1 0.93 0.94 0.86 0.90 0.52 0.62 0.92 0.93 0.89 0.91 0.52 0.58

12 0.90 0.94 0.90 0.90 0.70 0.73 0.93 0.94 0.90 0.92 0.67 0.74

25 0.91 0.95 0.91 0.92 0.90 0.93 0.94 0.93 0.92 0.93 0.90 0.93

37 0.90 0.94 0.89 0.90 0.70 0.77 0.92 0.94 0.92 0.93 0.66 0.72

50 0.91 0.93 0.86 0.87 0.50 0.58 0.94 0.95 0.87 0.88 0.50 0.57

Note: The subclasses Gk = 1 and Gk = 50 include units with the most extreme propensity scores, with the propensity scores closest to zero in Gk 
= 1 and the propensity scores closest to one in Gk = 50. The numbers in each cell represent the mean coverage of the ISTE for the corresponding 

subclass.
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TABLE 3

Mean (SD) of PEHE for each of 12 methods

Proportional hazards Nonproportional hazards

CR No U U 1 U 2 U 3 No U U 1 U 2 U 3 

20% AFT-L 4.13 (0.14) 5.03 (0.16) 5.82 (0.19) 6.52 (0.19) 4.41 (0.17) 5.16 (0.20) 5.77 (0.20) 6.47 (0.20)

AFT-W 2.65(0.12) 3.13 (0.14) 3.73 (0.14) 4.43 (0.14) 2.81 (0.13) 3.35 (0.16) 4.03 (0.16) 4.71 (0.16)

CoxPH 2.61 (0.13) 3.03 (0.14) 3.63 (0.14) 4.33 (0.14) 4.39 (0.13) 5.09 (0.20) 5.78 (0.20) 6.48 (0.20)

ABN 0.12 (0.02) 0.31 (0.04) 0.46 (0.04) 0.66 (0.04) 0.33 (0.04) 0.50 (0.06) 0.65 (0.06) 0.85 (0.06)

ABNPS 0.13 (0.02) 0.32 (0.04) 0.47 (0.04) 0.67 (0.04) 0.34 (0.04) 0.51 (0.06) 0.66 (0.06) 0.86 (0.06)

ABS 0.15 (0.02) 0.35 (0.04) 0.50 (0.04) 0.70 (0.04) 0.36 (0.04) 0.53 (0.06) 0.68 (0.06) 0.88 (0.06)

RSFs 0.13 (0.02) 0.32 (0.04) 0.47 (0.04) 0.67 (0.04) 0.33 (0.04) 0.51 (0.06) 0.66 (0.06) 0.86 (0.06)

DeepSurv 0.22 (0.03) 0.38 (0.05) 0.53 (0.05) 0.73 (0.05) 0.41 (0.05) 0.58 (0.07) 0.73 (0.07) 0.93 (0.07)

DR-DL 0.16 (0.02) 0.35 (0.04) 0.50 (0.04) 0.70 (0.04) 0.36 (0.04) 0.53 (0.06) 0.68 (0.06) 0.88 (0.06)

BJ-DL 0.15 (0.02) 0.34 (0.04) 0.49 (0.04) 0.69 (0.04) 0.35 (0.04) 0.53 (0.06) 0.68 (0.06) 0.88 (0.06)

TSHEE 0.20 (0.03) 0.37 (0.05) 0.52 (0.05) 0.72 (0.05) 0.40 (0.04) 0.57 (0.07) 0.72 (0.07) 0.92 (0.07)

GAPH 0.20 (0.03) 0.37 (0.05) 0.52 (0.05) 0.72 (0.05) 0.40 (0.04) 0.57 (0.07) 0.72 (0.07) 0.92 (0.07)

Proportional hazards Nonproportional hazards

CR No U U 1 U 2 U 3 No U U 1 U 2 U 3 

60% AFT-L 4.45 (0.15) 5.33 (0.20) 6.04 (0.22) 6.78 (0.25) 4.91 (0.18) 5.99 (0.22) 6.56 (0.22) 7.27 (0.22)

AFT-W 3.14 (0.13) 4.22 (0.16) 4.93 (0.19) 5.66 (0.22) 3.72 (0.13) 4.75 (0.18) 5.45 (0.18) 6.05 (0.18)

CoxPH 3.22 (0.13) 3.94 (0.18) 4.52 (0.20) 5.13 (0.22) 4.83 (0.18) 6.02 (0.20) 6.64 (0.20) 7.24 (0.20)

ABN 0.21 (0.02) 0.34 (0.03) 0.49 (0.04) 0.69 (0.05) 0.41 (0.04) 0.56 (0.05) 0.71 (0.05) 0.92 (0.05)

ABNPS 0.22 (0.02) 0.35 (0.03) 0.50 (0.04) 0.70 (0.05) 0.42 (0.04) 0.57 (0.05) 0.73 (0.05) 0.93 (0.05)

ABS 0.24 (0.02) 0.38 (0.03) 0.52 (0.04) 0.72 (0.05) 0.45 (0.04) 0.59 (0.05) 0.73 (0.05) 0.94 (0.05)

RSFs 0.22 (0.02) 0.36 (0.03) 0.51 (0.04) 0.71 (0.05) 0.41 (0.04) 0.60 (0.05) 0.75 (0.05) 0.94 (0.05)

DeepSurv 0.26 (0.03) 0.40 (0.04) 0.55 (0.05) 0.75 (0.06) 0.51 (0.05) 0.68 (0.06) 0.83 (0.06) 1.02 (0.06)

DR-DL 0.24 (0.02) 0.44 (0.03) 0.59 (0.04) 0.79 (0.05) 0.45 (0.04) 0.65 (0.05) 0.80 (0.05) 1.00 (0.05)

BJ-DL 0.23 (0.02) 0.42 (0.03) 0.56 (0.04) 0.76 (0.05) 0.43 (0.04) 0.64 (0.05) 0.79 (0.05) 0.99 (0.05)

TSHEE 0.25 (0.02) 0.41 (0.04) 0.56 (0.05) 0.77 (0.06) 0.48 (0.05) 0.67 (0.06) 0.82 (0.06) 1.02 (0.06)

GAPH 0.25 (0.02) 0.41 (0.04) 0.56 (0.05) 0.77 (0.06) 0.48 (0.05) 0.67 (0.06) 0.82 (0.06) 1.02 (0.06)

Note: Data are generated under heterogeneous setting (iii) with n = 5000 and strong overlap. U: unmeasured confounders; U1: X3 is the 

unmeasured confounder; U2: X3 and X5 are the unmeasured confounders; U3: X3, X5, and X6 are the unmeasured confounders.

Abbreviations: ABN, AFT-BART-NP; ABNPS, AFT-BART-NP-PS; ABS, AFT-BART-SP; AFT-L, AFT-Lognormal; AFT-W, AFT-Weibull; CR: 
censoring rate; HS: heterogeneity setting.
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