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ABSTRACT
Endothelial dysfunction represents a key mechanism underly-
ing heart failure with preserved ejection fraction (HFpEF), diabe-
tes mellitus (DM), and frailty. However, reliable biomarkers to
monitor endothelial dysfunction in these patients are lacking. In
this study, we evaluated the expression of a panel of circulating
microRNAs (miRs) involved in the regulation of endothelial func-
tion in a population of frail older adults with HFpEF and DM
treated for 3 months with empagliflozin, metformin, or insulin.
We identified a distinctive pattern of miRs that were significantly
regulated in HFpEF patients compared to healthy controls and
to HFpEF patients treated with the sodium glucose cotransporter
2 (SGLT2) inhibitor empagliflozin. Three miRs were significantly
downregulated (miR-126, miR-342-3p, and miR-638) and two
were significantly upregulated (miR-21 and miR-92) in HFpEF
patients compared to healthy controls. Strikingly, two of these
miRs (miR-21 and miR-92) were significantly reduced in HFpEF
patients after the 3-month treatment with empagliflozin, whereas

no significant differences in the profile of endothelial miRs were
detected in patients treated with metformin or insulin. Taken
together, our findings demonstrate for the first time that specific
circulating miRs involved in the regulation of endothelial function
are significantly regulated in frail HFpEF patients with DM and in
response to SGLT2 inhibition.

SIGNIFICANCE STATEMENT
We have identified a novel microRNA signature functionally in-
volved in the regulation of endothelial function that is signifi-
cantly regulated in frail patients with HFpEF and diabetes.
Moreover, the treatment with the SGLT2 inhibitor empagliflozin
caused a modification of some of these microRNAs in a direc-
tion that was opposite to what observed in HFpEF patients, in-
dicating a rescue of endothelial function. Our findings are
relevant for clinical practice inasmuch as we were able to estab-
lish novel biomarkers of disease and response to therapy.

Introduction

Endothelial dysfunction is a pathogenically relevant mecha-
nism underlying heart failure with preserved ejection fraction
(HFpEF) and diabetes mellitus (DM) (Hadi and Suwaidi,
2007; Giamouzis et al., 2016; Gevaert et al., 2019; Knapp
et al., 2019; Premer et al., 2019; Jankauskas et al., 2021;

The Santulli’s Laboratory is supported in part by the National Institutes
of Health National Heart, Lung, and Blood Institute [Grants R01-
HL146691, R01-HL164772, R01-HL159062, and T32-HL144456], National
Institute of Diabetes and Digestive and Kidney Diseases [Grants R01-
DK123259 and R01-DK033823] (to G.S.), by the Diabetes Action Research
and Education Foundation (to G.S.), and by the Monique Weill-Caulier and
Irma T. Hirschl Trusts (to G.S.). F.V. and J.S.S are supported by Postdoc-
toral Fellowships of the American Heart Association [Grants AHA-
22POST995561 and AHA-21POST836407], respectively.

dx.doi.org/10.1124/jpet.121.001251.

ABBREVIATIONS: BMI, body mass index; BNP, brain natriuretic peptide; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary
disease; DBP, diastolic blood pressure; DM, diabetes mellitus; EF, ejection fraction; Empa, empagliflozin; HbA1c, glycated hemoglobin; HDL,
high-density lipoprotein; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; Ins, insulin; LDL, low-density lipoprotein; Met,
metformin; miR, miRNA (microRNA); SBP, systolic blood pressure; SGLT2, sodium glucose cotransporter 2.

116

1521-0103/384/1/116–122$35.00 dx.doi.org/10.1124/jpet.121.001251
THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 384:116–122, January 2023
Copyright ª 2022 by The American Society for Pharmacology and Experimental Therapeutics

dx.doi.org/10.1124/jpet.121.001251
https://dx.doi.org/10.1124/jpet.121.001251


Mone et al., 2021a). HFpEF and DM are very common in older
adults, increasing the risk of frailty, a systemic condition that
leads to functional decline and adverse outcomes (Owan et al.,
2006; Steinberg et al., 2012; Paulus and Tschope, 2013; Chion-
cel et al., 2017; McHugh et al., 2019; Jankauskas et al., 2021;
Lejeune et al., 2021). The pathophysiology of frailty includes
chronic inflammation, which is typical of aging (inflammag-
ing), oxidative stress, insulin resistance, loss of anabolic hor-
mones, and reduced tolerance to physical exercise with a
reduction in muscle strength (Bandeen-Roche et al., 2015;
Cruz-Jentoft and Sayer, 2019; Rusanova et al., 2019). Of note,
we and others have shown that endothelial dysfunction plays
a fundamental role also in the pathobiology of frailty (Alonso-
Bouzon et al., 2014; Mansur et al., 2015; Amarasekera et al.,
2021; Mone et al., 2021a, 2022a).
Empagliflozin is a relatively novel selective inhibitor of so-

dium glucose cotransporter 2 (SGLT2) that has been shown
to reduce mortality and rehospitalization for HF (Zinman
et al., 2015; Anker et al., 2021; Varzideh et al., 2021; Braun-
wald, 2022). Additional benefits of SGLT2 inhibitors include
improved cardiovascular energetics, reduced vascular tone,
decreased renal dysfunction, increased circulating levels of
ketone bodies, and overall reduced systemic inflammation
(Benetti et al., 2016; Prattichizzo et al., 2018; Wan et al.,
2018; Oshima et al., 2019; Verma et al., 2019; Zhang et al.,
2021; Jensen et al., 2021; Li et al., 2021; Sardu et al., 2021;
Varzideh et al., 2021; Huang et al., 2022; Paolisso et al.,
2022; Zhang et al., 2022). We have recently demonstrated
that empagliflozin significantly improves cognitive impair-
ment in frail older patients with diabetes with HFpEF (Mone
et al., 2022c), also showing a correlation between physical
and cognitive impairment (Mone et al., 2022a).
MicroRNAs (miRs) are small noncoding RNAs molecules of

18–24 nucleotides, which typically repress mRNAs by binding
their 30 untranslated region (Santulli, 2015; Stavast and Erke-
land, 2019; Hu et al., 2021; Mirzaei et al., 2021; Mone et al.,
2021b; Bielska et al., 2022; Karagiannopoulos et al., 2022; Mauro

et al., 2022; Moisoiu et al., 2022; Qiu et al., 2022; Traber and Yu,
2022; Yaylim et al., 2022; Zeng et al., 2022). Substantial evi-
dence has shown that miRs exert their activity in many biologic
processes and several miRs have been proposed as biomarkers
and potential targets of novel therapeutic strategies (Creemers
et al., 2012; Wronska et al., 2015; Barwari et al., 2016; Zarone
et al., 2017; Chen et al., 2018; Wong et al., 2018; Morelli et al.,
2019; Kawasaki et al., 2020; Wang et al., 2020; Fonseca et al.,
2021; Gambardella et al., 2021; Bonnet et al., 2022; Gambardella
et al., 2022a,b; Kansakar et al., 2022; Varzideh et al., 2022). Sev-
eral investigators have linked miRs to frailty pointing at their in-
volvement in inflammation, endothelial dysfunction, and
senescence (Quinn and O’Neill, 2011; Olivieri et al., 2012; Geiger
and Dalgaard, 2017; Rusanova et al., 2019; Bu et al., 2021).
In this study, we aimed at assessing the effects of empagli-

flozin on the profile of circulating miRs involved in the regula-
tion of endothelial function in frail older adults with DM and
HFpEF treated with different antidiabetic regimens.

Materials and Methods
Study Design. We evaluated consecutive frail older adults with a

confirmed diagnosis of DM and HFpEF, from October 2021 to Decem-
ber 2021. All subjects were recruited from the Sant’Angelo dei Lom-
bardi Hospital, ASL (local health unit of the Italian Ministry of
Health) Avellino, Italy. Inclusion criteria were age >65 years; a previ-
ous diagnosis of type 2 DM, frailty, and HFpEF; patients were ex-
cluded if they had experienced a previous stroke, acute myocardial
infarction, or cardiac revascularization. As a control population, we en-
rolled age-matched subjects with no evidence of HFpEF or DM.

The patients fulfilling the above-mentioned eligibility criteria were
divided into three interventional groups (empagliflozin: 10 mg; metfor-
min: 500 mg; and insulin: basal-bolus regimen) and followed-up for
three months.

All patients underwent clinical evaluation. Blood samples were
taken at baseline and follow up. All patients received a transthoracic
echocardiography assessment according to the American Society of
Echocardiography recommendations (Lang et al., 2015). Every patient
(or a legally authorized representative) signed a written informed

TABLE 1
Baseline characteristics of the patients
Data are means ± S.D. or n (%). “Control” refers to subjects who did not have any evidence of HFpEF or DM.

Control Empagliflozin Metformin Insulin

N 10 10 10 10
Age, y 79.8 ± 8.9 81.6 ± 6.8 80.8 ± 6.9 81.8 ± 6.5
Female sex, n (%) 5 (50.0) 6 (60.0) 6 (60.0) 5 (50.0)
BMI (kg/m2) 25.6 ± 1.8 27.7 ± 1.4* 27.6 ± 1.7* 28.1 ± 1.5*
SBP (mmHg) 118.8 ± 7.8 119.4 ± 7.2 119.8 ± 7.4 120.1 ± 7.3
DBP (mmHg) 76.3 ± 8.8 79.0 ± 7.0 79.3 ± 6.8 79.2 ± 6.9
Heart rate (bpm) 78.8 ± 11.1 87.3 ± 8.2 86.8 ± 8.5 87.3 ± 8.6
EF (%) 65.8 ± 7.3 55.4 ± 5.2* 55.8 ± 5.4* 55.2 ± 5.1*
Comorbidities, n (%)

Hypertension 4 (40.0) 7 (70.0) 6 (60.0) 8 (80.0)
Dyslipidemia 7 (70.0) 8 (80.0) 8 (80.0) 7 (70.0)
COPD 4 (40.0) 4 (40.0) 5 (50.0) 6 (60.0)
CKD 3 (30.0) 5 (50.0) 6 (60.0) 7 (70.0)

Laboratory parameters
Plasma glucose (mg/dl) 103.5 ± 30.6 161.8 ± 39.1* 163.7 ± 39.2* 164.1 ± 39.0*
Cholesterol (mg/dl) 202.9 ± 22.1 206.1 ± 20.2 205.9 ± 20.1 206.0 ± 19.8
LDL-cholesterol (mg/dl) 133.1 ± 16.1 132.3 ± 19.7 132.4 ± 19.5 132.5 ± 19.8
HDL-cholesterol (mg/dl) 35.1 ± 3.5 37.5 ± 3.4 36.9 ± 3.7 37.1 ± 3.4
Creatinine (mg/dl) 0.9 ± 0.3 1.2 ± 0.3* 1.2 ± 0.4* 1.3 ± 0.3*
HbA1c (mmol/mol) — 56 ± 6.4 55 ± 7.5 57 ± 5.3
BNP (pg/ml) — 443.8 ± 24.7 445.1 ± 24.5 446.2 ± 25.0

BMI, body mass index; BNP, brain natriuretic peptide; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure;
EF, ejection fraction; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure.
*P < 0.05 versus control.
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consent. The study was performed in accordance with the ethical
standards established in the 1964 Declaration of Helsinki and its later
amendments.

Frailty Assessment. A physical frailty assessment was performed
following previously described criteria (Mone et al., 2022b,d). A diagno-
sis of frailty was made with at least three of the following five points: 1)
weight loss (unintentional loss of$4.5 kg in the past year), 2) weakness
(handgrip strength in the lowest 20% quintile at baseline, adjusted for
sex and body mass index), 3) exhaustion (poor endurance and energy),
4) slowness (walking speed under the lowest quintile adjusted for sex
and height), and 5) low physical activity level (lowest quintile of kiloca-
lories of physical activity during the past week).

miR Isolation, Quantification, and Normalization. We ex-
tracted miRs using the miRVana miRNA Isolation kit (Thermo-
Fisher) according to the protocol provided by the manufacturer;
reverse transcription was performed using the miRCURY LNA Uni-
versal RT microRNA PCR kit (Qiagen, Hilden, Germany); miR ex-
pression was analyzed by RT-qPCR. We analyzed a panel of miRs
that had been previously reported to be involved in the regulation of
endothelial dysfunction (Ni et al., 2011; Sabatel et al., 2011; Costa
et al., 2013; Zhang et al., 2013; Santulli et al., 2014; Widmer et al.,
2014; Kriegel et al., 2015; Ye et al., 2015; Chen et al., 2016; Santulli,
2016; Tang et al., 2017; Cheng et al., 2018; Wei et al., 2018; Gu
et al., 2019; Hu and Dong, 2019; Xu et al., 2019; Du et al., 2020;
Paterson et al., 2021). The RNA Spike-in kit (Qiagen) was used as an
exogenous control of RNA extraction following the manufacture�rs in-
structions. To control yield, we used two synthetic RNA spike-ins
(UniSp2 and UniSp5) in different concentrations; miR-320a and
miR-423-5p were identified as the most stable miRs among all groups
and were therefore used as endogenous normalizers. Relative gene
expression was determined using the 2-DDCT method.

Statistical Analysis. All data were analyzed using the Prism
GraphPad software (Dotmatics, Boston, CA). Data are expressed
as means ± S.D. or numbers and percentages. The differences in
miR levels among groups were analyzed using two-tailed t tests or
one-way ANOVA, followed by Bonferroni post hoc correction, as
appropriate.

Results
We enrolled 51 frail older adults with HFpEF and DM.

Twenty-one patients were excluded because they did not
meet the eligibility criteria, refused to give consent, withdrew
from the study, or did not have data from blood analyses at
baseline or at follow up. Thus, 30 patients, divided into three
treatment groups (empagliflozin, metformin, or insulin)

successfully completed the 3-month follow up. Baseline char-
acteristics of our population are reported in Table 1, whereas
follow up data are in Table 2.
Interestingly, the evaluation of the miR signature of endothelial

dysfunction revealed a unique pattern of miRs that were signifi-
cantly regulated in HFpEF patients compared with healthy con-
trols and in HFpEF patients pre and post treatment with the
SGLT2 inhibitor empagliflozin (Fig. 1).
We were able to identify three circulating miRs that were sig-

nificantly downregulated (miR-126, miR-342-3p, and miR-638)

TABLE 2
Follow up characteristics of the patients 3 months after starting the study
Data are means ± S.D. or n (%). “Control” refers to subjects who did not have any evidence of HFpEF or DM.

Control Empagliflozin Metformin Insulin

N 10 10 10 10
BMI (kg/m2) 25.4 ± 1.7 27.1 ± 1.1* 27.3 ± 1.2* 28.0 ± 1.3*
SBP (mmHg) 117.9 ± 7.9 118.7 ± 6.8 118.6 ± 6.9 120.0 ± 7.1
DBP (mmHg) 76.2 ± 8.7 78.9 ± 6.4 79.0 ± 6.5 79.3 ± 6.8
Heart rate (bpm) 77.6 ± 10.3 87.0 ± 7.8* 86.9 ± 8.1* 87.2 ± 8.2*
EF (%) 65.6 ± 7.4 56.2 ± 5.0* 55.9 ± 5.2* 55.1 ± 5.0*
Laboratory parameters

Plasma glucose (mg/dl) 100.2 ± 28.8 159.8 ± 37.8* 162.9 ± 38.6* 163.3 ± 38.8*
Cholesterol (mg/dl) 201.5 ± 22.4 205.6 ± 20.0 205.5 ± 20.3 205.9 ± 19.9
LDL-cholesterol (mg/dl) 130.1 ± 16.5 131.8 ± 19.4 132.1 ± 19.3 132.3 ± 19.4
HDL-cholesterol (mg/dl) 36.1 ± 3.6 37.2 ± 3.2 36.8 ± 3.6 37.0 ± 3.3
Creatinine (mg/dl) 0.9 ± 0.3 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2
BNP (pg/ml) — 439.7 ± 23.8 444.5 ± 24.1 444.8 ± 24.6

BMI, body mass index; BNP, brain natriuretic peptide; DBP, diastolic blood pressure; EF, ejection fraction; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP,
systolic blood pressure.
*P < 0.05 versus control.

Fig. 1. Heat-map illustrating the expression of circulating miRs in the
indicated groups of patients. HFpEF, heart failure with preserved ejec-
tion fraction; Healthy, healthy control subjects; Empa, patients receiv-
ing empagliflozin; Met, patients receiving metformin; Ins, patients
receiving insulin.
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and two that were significantly upregulated (miR-21 and miR-
92) in HFpEF patients compared with healthy controls (P <

0.001) (Fig. 2A). Intriguingly, circulating levels of two of these
miRs (namely miR-21 and miR-92) were significantly (P <

0.001) reduced in HFpEF patients after the 3-month treatment
with empagliflozin (Fig. 2B). Instead, no significant differences
in the profile of endothelial miRs were detected in patients
treated with metformin (Fig. 2C) or insulin (Fig. 2D).

Discussion
To the best of our knowledge, this is the first study investi-

gating the effects of SGLT2 inhibitors on circulating miRs,
with a significant relevance both in terms of mechanisms of
action and clinical practice. Empagliflozin has been shown to
have beneficial effects on cardiovascular outcomes, particu-
larly on the rehospitalization rate for HF (Dave et al., 2020).
Nevertheless, there are limited reports investigating the func-
tional role of potential biomarkers to monitor the effects of
SGLT2 inhibitors. In this sense, miRs have been widely used
as biomarkers; however, limited data are available on the miR
profile in frailty (Ipson et al., 2018; Carini et al., 2021). Be-
sides, there are no studies investigating miRs in terms of en-
dothelial dysfunction in HFpEF or frailty.
In our study, we identified five miRs as significantly regu-

lated in HFpEF patients versus healthy control subjects,
namely miR-21, miR-92 (upregulated), miR-126, miR-342-3p,
and miR-638 (downregulated). Our findings are fully in agree-
ment with previous reports. Indeed, miR-21 has been previ-
ously linked to inflammaging and age-related diseases: miR-21

has been proposed as a biomarker of systolic heart failure
(Ben-Zvi et al., 2020) and its plasma levels have been linked to
aging (Olivieri et al., 2012; Rusanova et al., 2019). Additionally,
an increased expression of miR-21 in older adults has been
shown to diminish the induction of transcription factor net-
works involved in memory cell generation (Kim et al., 2018).
Equally important, miR-92 is upregulated after vascular in-

jury, both in vitro and in vivo (Deng et al., 2019), has been pre-
viously advocated as a biomarker of HF (Napoli et al., 2020),
and its inhibition has been shown to have favorable effects in
preventing detrimental cardiac remodeling (Bellera et al.,
2014). Strikingly, both miRs were downregulated after empa-
gliflozin treatment, strongly suggesting a rescue of endothelial
dysfunction in HFpEF patients after a 3-month treatment
with this SGLT2 inhibitor.
Consistent with our data, Cheng and collaborators had

demonstrated that miR-342-3p is an indispensable modu-
lator of angiogenic activation in endothelial cells, and de-
regulation of its expression mediates the vascular
dysfunction caused by hyperinsulinemia (Cheng et al.,
2018). Further studies are needed to determine the exact
clinical relevance of miR-638 downregulation in HFpEF,
which could also be compensatory, since previous studies,
performed in the setting of hepatocellular carcinoma, sug-
gested that this miR is promoting angiogenesis (Cheng et al.,
2016; Yokota et al., 2021).
We observed decreased circulating levels of the master regu-

lator of endothelial function, miR-126 (Liu and Olson, 2010;
Santulli et al., 2014; Pei et al., 2020), in HFpEF patients, cor-
roborating the view that endothelial dysfunction is playing an

Fig. 2. Volcano plots depicting the miR analyses in the different groups. (A) HFpEF versus healthy controls; (B) effects of empagliflozin treatment in HFpEF pa-
tients; (C) effects of metformin treatment in HFpEF patients; and (D) effects of insulin Ctreatment in HFpEF patients. The horizontal dotted line represents
a P value of 0.001; thus, the points in the plot above that line represent the differently expressed miRs with statistical significance.
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instrumental role in HFpEF. Consistently, previous analyses
had evidenced lower levels of miR-126 in diabetic patients
(Zampetaki et al., 2010).
Another miR that was found to be significantly downregu-

lated after empagliflozin treatment is miR-221, which had
been linked to muscle proliferation and sarcopenia both in el-
derly patients and aged mice (Hamrick et al., 2010; He et al.,
2020; Roldan Gallardo and Quintar, 2021); the same miR had
been also associated with DM and obesity (Lustig et al., 2014).
Notably, we did not find evidence of any significant results in
terms of endothelial miR network in patients treated with
metformin and insulin.
In line with the present findings, most recently we demon-

strated that empagliflozin improves endothelial function by re-
ducing mitochondrial calcium overload and the generation of
reactive oxygen species (Mone et al., 2022e) and that SGLT2
inhibition has a beneficial impact on quality of life.
In conclusion, our findings demonstrate for the first time

that a specific profile of circulating miRs implied in the regula-
tion of endothelial function are significantly regulated in frail
HFpEF patients with DM and in response to empagliflozin
treatment.
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