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ABSTRACT
MicroRNAs (miRNAs) are involved in the development of human
malignancies, and cells have the ability to secrete these mole-
cules into extracellular compartments. Thus, cell-free miRNAs
(circulating miRNAs) can potentially be used as biomarkers to eval-
uate pathophysiological changes. Although circulating miRNAs
have been proposed as potential noninvasive tumor biomarkers for
diagnosis, prognosis, and response to therapy, their routine appli-
cation in the clinic is far from being achieved. This review focuses
on the recent progress regarding the value of circulating miRNAs
as noninvasive biomarkers, with specific consideration of their rele-
vant clinical applications. In addition, we provide an in-depth analy-
sis of the technical challenges that impact the assessment of
circulatingmiRNAs.We also highlight the significance of integrating

circulating miRNAs with the standard laboratory biomarkers to
boost sensitivity and specificity. The current status of circulating
miRNAs in clinical trials as tumor biomarkers is also covered. These
insights and general guidelines will assist researchers in experi-
mental practice to ensure quality standards and repeatability, thus
improving future studies on circulatingmiRNAs.

SIGNIFICANCE STATEMENT
Our review will boost the knowledge behind the inconsistencies
and contradictory results observed among studies investigating
circulating miRNAs. It will also provide a solid platform for bet-
ter-planned strategies and standardized techniques to optimize
the assessment of circulating cell-free miRNAs.

Introduction
Cancer remains a leading cause of morbidity and mortality

in men and women. Biomarkers offer a wealth of information
with respect to tumor progression and assist in the selection of
optimal treatment modalities (Lozano et al., 2012; Ou et al.,
2021). Identifying reliable cancer biomarkers that can be used
for diagnosis, prognosis, or treatment is a critical need in bio-
medical research. The National Institutes of Health defines a
biomarker as an easily measured and analyzed sign of regular

cellular mechanisms, pathogenic processes, or pharmaceutical
responsiveness to clinical treatment (FDA-NIH Biomarker
Working Group, 2016). A biomarker must meet certain criteria
to be regarded as ideal. It must be economical (low-cost), read-
ily available, easily detectable, and can be measured and ana-
lyzed using minimally invasive procedures. Another essential
metric is the specificity for the disorder under consideration,
which must be coupled with sensitivity. Ideally, it should be
detectable as early as possible, prior to clinical symptoms, and
it should change based on the progression of the disease or
therapeutic response. Finally, it is important to establish accu-
rate and reproducible results that can be translated from the
laboratory to the clinic (Kingsley and Bhat, 2017).
Recently, microRNAs (miRNA) have gained significant in-

terest as potential biomarkers for cancer and other diseases.
MiRNAs are small, single-stranded (18–22 nucleotides) non-
coding RNAs that are highly conserved across species. They
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are generated from precursor molecules referred to as primary
miRNAs (pri-miRNAs), which may span hundreds of bases,
and are sequentially processed in the nucleus, followed by the
cytoplasm by ribonuclease-III complexes (Drosha and Dicer).
Mature miRNAs function by coupling to the RNA-induced
silencing complex (RISC) and guiding this complex to a com-
plementary sequence known as the seed region, which results
in translational suppression (O’Brien et al., 2018). As a result,
miRNA expression plays a central role in regulating gene
expression at the post-transcriptional level. In recent years,
miRNAs have been identified as key molecules in regulating
gene expression in humans and other species, with the effi-
ciency to control several molecular pathways (El-Daly, et al.,
2019a; Gouhar et al., 2022).
miRNAs are primarily synthesized inside the cell; however,

a considerable percentage is exported and can be detected in
body fluids. Although cell-free miRNAs may be detected in a
variety of bodily fluids (e.g., urine, saliva, spinal fluid, seminal
fluid, breast milk), circulating miRNAs are exclusively present
in the blood (Zen and Zhang, 2012). Aside from the passive re-
lease triggered by apoptotic, necrotic, or inflammatory events,
the bulk of circulating miRNAs rely on carriers for active se-
cretion to avoid degradation. Protein complexes, lipoproteins,
and extracellular vesicles, such as exosomes and microvesicles,
are examples of such carriers (Cheerla and Gevaert, 2017).
Although many studies have demonstrated the value of cir-

culating miRNAs as diagnostic and prognostic markers in
cancer, their application remains unrealized in personalized
medicine as a reliable diagnostic or therapeutic strategy.
This review focuses on the clinical potential of circulating

miRNAs as diagnostic and prognostic markers in cancer and
the strategies used to detect and quantify these molecules.
Moreover, we discuss previous research efforts to evaluate the
diagnostic potential of circulating miRNAs compared with
standard diagnostic techniques used in the clinic. The major
limitations to circulating miRNAs transitioning from bench to
clinic will be discussed in an attempt to offer strategies for
overcoming these challenges.

1. Sparkling Stars in the Dark Night: The
Potential Use of miRNAs as Biomarkers

Circulating miRNAs have several characteristics that sup-
port their potential utility as biomarkers for a wide range of
diseases. The extraction of miRNAs from blood, urine, or other
bodily fluids is a relatively easy procedure; thus, invasive tis-
sue biopsies may be replaced with a relatively simple analysis
of commonly available blood products that may be used for
early cancer detection. Circulating miRNAs are distinguished
by their high stability, which enables them to remain in bodily
fluids after release from cells either as exposed ribonucleopro-
tein complexes or inside membrane vesicles linked to argo-
naute proteins (Pritchard et al., 2012b). The ease of detection
is another advantage to their potential use in the clinic. Nu-
cleic acid detection techniques are widely available. Of note,
the development of new techniques for detecting circulating
nucleic acids will save time and money compared with the dis-
covery of new antibodies as protein biomarkers (Li et al.,
2016; Ban et al., 2017a). Furthermore, the advent of next-gen-
eration techniques, such as microarrays and deep sequencing

(Farazi et al., 2011), will facilitate the use of miRNA bio-
markers in clinical practice.
Circulating miRNAs exhibit high specificity for both the tis-

sue and cell of origin, and are also associated with disease pro-
gression. Thus, they have been used in various studies for
categorizing tumor grade and evaluating treatment response
(Backes et al., 2016). However, there is a debate regarding
this alleged high sensitivity and specificity, as we will discuss
later.
In general, the irregular expression patterns of mature or pre-

cursor miRNAs have been detected compared with that ex-
pressed in normal tissues (Lu et al., 2005; Calin and Croce,
2006; El-Daly et al., 2016). A large number of studies have indi-
cated that human malignancies exhibit abnormal miRNA ex-
pression patterns. Hundreds of cases of aberrant miRNAs
detected in the plasma and serum of cancer patients compared
with healthy participants have been reported over the last de-
cade, whereas other researchers have recognized that circulat-
ing miRNAs are potential biomarkers for cancer diagnosis and
prognosis (Backes et al., 2016; Kawaguchi et al., 2016; Armand-
Labit and Pradines, 2017). A wide range of human tumors, such
as lymphoma, glioma, breast, colorectal, and prostate cancers,
show abnormal miRNA expression levels that are either de-
creased or increased (El-Daly, Bayraktar, et al., 2020a; Qasemi
Rad et al., 2022; Zou et al., 2022). Alterations in miRNA expres-
sion profiles may be a direct reflection of chromosomal or geno-
mic changes in cancer-related genes. Together with the function
of cancer-associated miRNAs discovered in a variety of tumor
tissue specimens, aberrant miRNA expression likely has major
clinical implications (Wu et al., 2012; Schwarzenbach et al.,
2014; Grimaldi and Incoronato, 2019).
There are several explanations for the abnormal expression of

circulating miRNAs in cancer patients. Approximately half of
the genes coding for miRNAs are found in cancer-associated re-
gions of the genome, where they are translocated or activated
during carcinogenesis (Calin et al., 2004). Variations in the activ-
ities of the enzymes responsible for miRNA biosynthesis, such as
Drosha and Dicer 1, are another cause of aberrant miRNA levels
(Lin and Gregory, 2015). These enzymes are downregulated in
bladder and ovarian cancer but activated in stomach and cervi-
cal squamous cell tumors. Finally, alterations in circulating
miRNAs in cancer may be induced by pri-miRNA transcriptional
errors (Condrat et al., 2020). Considering the variables men-
tioned above, alterations in miRNA expression in various cancer
types result in distinct miRNA fingerprints for each malignancy.
Such unique miRNA profiles may be suitable for early cancer
diagnosis, prognosis, or therapeutic outcome prediction (Winkle
et al., 2021). Given the potential diagnostic value of circulating
miRNAs, a comprehensive list of the circulating miRNAs cur-
rently recognized as potential biomarkers in various cancers is
summarized in Table 1.

2. Pitfalls of Using Circulating miRNAs as
Biomarkers

Although previous reports have considered miRNAs as pow-
erful biomarkers, other studies have indicated that the most
commonly reported miRNA biomarkers are largely nonspecific
because they are associated with a variety of diseases and out-
comes. In some circumstances, highly comparable studies with
the same aim have shown minimal agreement in their results
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TABLE 1
Clinical correlation of circulating miRNAs as diagnostic/prognostic biomarkers in the most studied solid cancer types (prostate, ovarian, lung,
breast, and colorectal cancer)

Prostate cancer Clinical Correlation Sample References

Diagnostic
miR-221,222

Upregulated in metastatic patients Plasma /serum (Fendler et al., 2016; Thieu et
al., 2014)

Diagnostic
miR-21

Upregulated in resistant and metastatic
patients

Serum (Zhang et al., 2011)

Diagnostic
miR-203a-3p

Downregulated in Cancer and metastatic
patients

Serum (Qasemi Rad et al., 2022)

Diagnostic
miR-221,222

Upregulated in metastatic patients Plasma, serum (Fendler et al., 2016; Thieu et
al., 2014)

Prognostic
miR-141

Upregulated with good clinical outcome Plasma (Gonzales et al., 2011)

Prognostic
miR-210

Upregulated with poor clinical outcome Plasma, serum (H. H. Cheng et al., 2013)

Prognostic
miR-132, miR-375, miR-429, miR-200a,

miR-200b, miR-200c

Upregulated with short overall survival Plasma (H. H. Cheng et al., 2018; H.-
M. Lin et al., 2017a; Souza
et al., 2017)

Prognostic
miR-141

Upregulated with good clinical outcome Plasma (Gonzales et al., 2011)

Prognostic
miR-210

Upregulated with poor clinical outcome Plasma, serum (H. H. Cheng et al., 2013)

Ovarian cancer Clinical Correlation Sample References

Diagnostic
miR-181a, miR-342-3p, and miR-450b-

5p, miR-30c-1*

All miRNAs were downregulated in early
stage ovarian cancer patients
compared with controls except miR-
30c-1* was upregulated

Whole blood (H€ausler et al., 2010)

Diagnostic
miR-126, MiR-127, miR-150, miR-155,

miR-106b, miR-99b

Downregulated in newly diagnosed
patients compared with controls

Serum (Resnick et al., 2009; Shapira
et al., 2014)

Diagnostic
miR-195-5p, miR-451a

Downregulated in late stage ovarian
cancer patients compared with controls

Plasma (Oliveira et al., 2019)

Diagnostic
miR-21, miR-92, miR-93, miR-126,

miR-29a, miR-1274a, miR-625-3p,
miR-720, miR-375, miR-1307

Upregulated in ovarian cancer patients
compared with controls, except miR-
375, miR-1307 upregulated in
metastatic patients

Serum (Resnick et al., 2009; Shapira
et al., 2014; Su et al., 2019)

Diagnostic
miR-205-5p, miR-145, miR-10a-5p,

miR-346, and miR-328-3p

Upregulated in patients compared with
controls

Plasma (Wang et al., 2019)

Prognostic
miR-34a-5p, miR-93-5p

Downregulated with better progression
free survival

Serum (Robelin et al., 2020)

Prognostic
miR-135a-3p

Upregulated in favorable clinical
prognosis

Serum (Fukagawa et al., 2017)

Prognostic
miR-1290

Upregulated in patients with short
overall survival

Plasma (Shapira et al., 2014)

Lung cancer Clinical Correlation Sample References

Diagnostic
hsa-miR-140-5p

Downregulated in patients of different
stages compared with controls

Whole blood (Fehlmann et al., 2020)

Diagnostic
miR-492, miR-590-3p

Upregulated in early stage patients
compared with controls

Serum (Duan et al., 2021)

Diagnostic
miR-631

Downregulated in early stage patients
compared with controls

Serum (Duan et al., 2021)

Diagnostic
miR-200b-5p, miR-190b, miR-502-5p,

miR-629, miR-17, miR-100, miRs-
21-5p, miR-103a-3p, miR-126, miR-
141-3p, miR-193b-3p, miR-205-5p,
miR- 210, miR-301b

Upregulated in patients with malignant
pulmonary nodules compared with
benign ones except miR-200b-5p
differentiates between nodule lung
adenocarcinomas and non-nodule
healthy smokers

Plasma (Cazzoli et al., 2013;
Lin et al., 2017b)

Diagnostic
miRs-135a-5p, miR-145, mIR-200b-3p

Downregulated in patients with
malignant tumor versus benign tumor

Plasma (Lin et al., 2017a)

Prognostic
miR-98-5p, miR-302e, miR-495-3p,

miR-613

Upregulated with good clinical outcome Plasma (Chen et al., 2016)

Prognostic
miR-21, miR-27a, miR-218

Upregulated in patients resistant to
tyrosine kinase inhibitor therapy

Plasma (Wang, Su, et al., 2015a)

Prognostic
miR-20a, miR-223, miR-145, miR-628-

3p miR-29c, miR-210 and miR-1244.

Upregulated in patients of stage I–II Serum, plasma (Moretti et al., 2017)
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TABLE 1 continued

Breast cancer Clinical Correlation Sample References

Diagnostic
miR-4270, miR-1225-5p, miR-188-5p,

miR-1202, miR-4281, miR-1207-5p,
miR-642b-3p, miR-1290, miR-3141

Upregulated in patients with stage I, II,
and III, compared with stage IV

Serum (Hamam et al., 2016)

Diagnostic
miR-20a, miR-214, miR-21

Upregulated in patients with breast
cancer and benign disease than in
healthy women but only miR-214
discriminate malignant from benign
tumors and healthy controls

Serum (Schwarzenbach et al., 2012)

Diagnostic
miR-133a-3p, miR-497-5p, miR-24-3p,

and miR-125b-5p, miR-106a, miR-
182

Upregulated in early stage patients
compared with control

Serum (Wang et al., 2018b; Zou et
al., 2022)

Diagnostic
miR-127-3p, miR-148b, miR-409-3p,

miR-652 and miR-801, miR-1246,
miR-206, miR-24, miR-373, miR-
505-5p, miR-125b-5p, miR-21-5p,
miR-96-5p

Upregulated in early stage patients
compared with control

Plasma (Cuk et al., 2013; Jang et al.,
2021; Matamala et al.,
2015)

Diagnostic
miR-18a, miR-107, miR-133a, miR-

139-5p, miR-143, miR-145, Let-7c,
miR-365 and miR-425

Downregulated in early stage BC patients Serum (Kodahl et al., 2014; Li X-X et
al., 2015a)

Prognostic
miR-130b-5p, miR-151a-5p, miR-206,

miR-222-3p

Upregulated in patients with shorter
survival

Serum (Wang et al., 2018b)

Prognostic
miR-122, miR-148a-3p and miR-374a-

5p

Upregulated as a predictive markers of
metastatic recurrence in stages (II-III)

Serum (X. Wu et al., 2012)

Prognostic
miR-148a-3p, miR-374a-5p

Upregulated in patients with pathologic
complete response

Plasma (Di Cosimo et al., 2020)

Prognostic
miR-10b-3p, miR-940, miR-4310

Downregulated in metastatic patients
sensitive to trastuzumab

Serum (H. Li et al., 2018)

Colorectal cancer Clinical Correlation Sample References

Diagnostic
miR-29a, miR-92a, miR-182, miR-409

Upregulated in early stage patients
compared with control, miR-29a, miR-
92a also are upregulated in advanced
stage

Plasma (Huang et al., 2010; Liu et al.,
2018; S. Wang, Xiang, et
al., 2015b; Yamada et al.,
2015)

Diagnostic
miR-30a-5p, miR-7, miR-93

Downregulated in early stage patients
compared with control

Serum, plasma (Wang, Xiang, et al., 2015b)

Diagnostic
miR-506, miR-4316

Upregulated in early cancer patients
compared with control

Peripheral blood (Krawczyk et al., 2017)

Diagnostic
miR-21, miR-145, miR-203, miR-155,

miR-210, miR-31, miR-15b, miR-
29a, miR-345, and miR-106a-5p

Upregulated in advanced stage patients
compared with control.

Plasma (Herreros-Villanueva et al.,
2019; Kudelova et al., 2022;
Nassar et al., 2021)

Prognostic
miR-1290

Upregulated with tumor aggressiveness
and poor prognosis.

Serum (Imaoka et al., 2016)

Prognostic
miR-203, miR-30a-5p, miR-17-3p, miR-

106a, miR-21, miR-92a, miR-1290,
miR-210, miR-183, miR-885-5p,
miR-592, miR-196b, miR-155

Upregulated with lower patient survival
rate

Serum (Hur et al., 2017; Rapado-
Gonz�alez et al., 2019; Sun
et al., 2019)

Prognostic
miR-141

Upregulated in patients with lower
survival rate and in metastatic
patients

Plasma (H. Cheng et al., 2011)

Prognostic
miR-200c

Upregulated in stage IV patients
compared with control

Serum (Toiyama et al., 2014)

Prognostic
miR-21, miR-210

Upregulated in Stage IV patients Plasma (Nassar et al., 2021)

Prognostic
miR-200b, miR-31

upregulated in patients with increased
recurrence risk

Plasma (Yuan et al., 2017)

Prognostic
miR-19a, miR-19b, miR-15b

Upregulated in advanced stages Plasma (Gir�aldez et al., 2013)

Prognostic
miR-15b, miR-526, miR-96, miR-148a,

miR-22 miR-141, miR-628-5p, miR-
203 and miR-200b

Upregulated in advanced stages Plasma (Sun et al., 2016)

38 El-Daly Gouhar and Abd Elmageed



(Witwer, 2015). For example, Mitchell et al. (2008) reported
that miR-141 significantly differentiates prostate cancer pa-
tients from normal controls; however, the authors correctly
pointed out that abnormal expression has been documented in
other epithelial malignancies, such as breast, colon, and lung
cancers. Chim et al. (2008) found that miR-141 was upregu-
lated in the blood of pregnant women; thus, the upregulation
of miR-141 could be a sign of malignancy or a temporary ele-
vation during pregnancy. Another example of non-specificity is
the alterations in levels of circulating miR-16, -155, -21, -126,
and -223 that were linked to ten non-neoplastic disorders
(Haider et al., 2015).
miR-21 is highly expressed and is considered a reliable pros-

tate cancer biomarker according to several studies (Endzeliņ�s
et al., 2017; Stafford et al., 2022). It has been shown to directly
correlate with tumor volume in gastric cancer (Song et al.,
2013), and elevated miR-21 expression is associated with ag-
gressive lung cancer and relapse-free survival in diffuse large
B-cell lymphoma (Cortez et al., 2011; Wang and Zhang, 2012).
Therefore, elevated miR-21 in the blood may be considered an
indicator of general illness conditions, such as inflammation,
or associated with a variety of cancer types (Egidi et al., 2013).
With such low specificity toward specific diseases, miR-21 is
considered “the most nonspecific biomarker for all diseases”
(Jenike and Halushka, 2021).
Reproducibility is essential for the detection and validation

of tumor biomarkers. Misuse of sample methodologies, analyti-
cal processes, and statistical methods can all affect reproduc-
ibility. This is a significant limitation to the use of circulating
miRNAs as a diagnostic tool. Apart from head and neck squa-
mous cell carcinoma, most data generated for circulating
miRNAs in cancer has shown a lack of consistency. Many
studies have produced results that have later been determined
to be non-reproducible (Jarry et al., 2014). The expression pat-
tern of miR-200c is an example of such conflicting findings,
with one group reporting that enhanced miR-200c expression
is associated with a poor progression and overall survival rate
in patients with gastric cancer, whereas others reported a con-
nection with progression-free survival (Valladares-Ayerbes
et al., 2012; Williams et al., 2013).
miR-145 represents another example of inconsistency in the

expression of circulating miRNAs between studies. miR-145
was reported to be highly overexpressed in plasma from early-

stage cancer patients compared with healthy participants, ac-
cording to several comparable studies conducted in different
ethnic groups (Mar-Aguilar et al., 2013; Ashirbekov et al.,
2020; Itani et al., 2021). However, other studies have demon-
strated that this miRNA was downregulated in tissue and
plasma samples of breast cancer patients compared with con-
trols (Visone et al., 2009; Ng et al., 2013).
A limited sample size with poor statistical validity, specific-

ity of the detection method, or miRNA degradation may also
contribute to the inconsistencies in miRNA results (Ale�ckovi�c
& Kang, 2015). Before circulating miRNA profiles can be inte-
grated into tumor progression and clinical outcome, the find-
ings must be verified in large populations. Methodological
issues also contribute to this variation (Moldovan et al., 2014).
The techniques used by researchers to extract miRNAs from
blood samples differ widely, which raises a concern with re-
spect to reproducibility between and within miRNA detection
platforms (Cerkovnik et al., 2007; Ban et al., 2017a). In addi-
tion, the minimal concentration of circulating miRNAs compli-
cates reliable quantitation and detection (Hengen, 1996). In
general, protocols used for the detection of circulating miRNA
that require >100 ll of sera could be problematic for some pa-
tients (Moret et al., 2013; Niu et al., 2015). Even with the cur-
rent promise of miRNA biomarkers, the diagnostic specificity
and reproducibility of published indicators reveal that fulfill-
ing this promise remains a challenge, as illustrated in Fig. 1.
However, this concern is tempered by other studies that have
ensured the real power of circulating miRNAs as tumor
markers based on their sensitivity and specificity compared
with traditional tumor biomarkers.

3. Clinically Standard Biomarkers Versus
Circulating miRNAs

Carcinoembryonic antigen (CEA) and cancer antigen 15.3
(CA15.3) are two standard tumor markers used for the diagno-
sis and prognosis of breast cancer. The accuracy rates of tradi-
tional CA15-3 and CEA for the diagnosis of breast cancer are
substantially variable, which may be attributed to an ethnic
group, the number of participants, or cancer type (De Cock
et al., 2021). A study by Gao et al. (2013) demonstrated
that for the diagnosis of breast cancer, miR-21 exhibited
much higher sensitivity and specificity (87.6% and 87.3%,

Fig. 1. The advantages and disadvan-
tages of circulating miRNA as tumor
biomarkers.
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respectively) compared with CA153 and CEA, which had sensi-
tivities of 22.47% and 15.73%, respectively. Similarly, two recent
studies found that miR-27a, miR-29a, and miR-335 were supe-
rior to CEA and CA15.3 for the early diagnosis of breast cancer,
and miR-27a exhibited a higher specificity and accuracy for the
detection of early-stage and low grade BC, suggesting that miR-
27a is a potential biomarker for the early diagnosis of BC, par-
ticularly in high-risk patients with early-stage and low-grade
malignancies (Ali Ahmed et al., 2020; Swellam et al., 2021).
Bimanual pelvic check and transvaginal ultrasound are

widely used diagnostic methods for ovarian cancer (OC).
However, they have their own set of limitations, such as be-
ing time-consuming, expensive, aggressive, inconvenient, and
having poor specificity and sensitivity (Sundar et al., 2015).
Some studies have evaluated the efficacy of CA-125 in OC
and found an optimal sensitivity and specificity of 0.74 and
0.83, respectively (Wang et al., 2014a; Goff et al., 2017). In a
meta-analysis conducted by Zhou et al. (2018), the pooled
sensitivity and specificity a panel of circulating miRNAs was
0.76 and 0.81 (95% confidence interval 0.74–0.87), with a
high diagnostic accuracy corresponding to an area under the
curve (AUC) of up to 0.85. Thus, the accuracy of circulating
miRNAs for the diagnosis of OC may be greater compared
with traditional biomarkers.
CEA and CA-199 are common diagnostic markers for colorec-

tal cancer (CRC). Despite the fact that these indicators are fre-
quently used in clinical applications, several studies consider
CEA and CA 199 as late-stage markers because they are not
sufficiently selective to detect early-stage CRC (VukobratBijedic
et al., 2013). In a previous study by our group, a receiving oper-
ating characteristic curve analysis revealed that serum and tis-
sue miR-15b, miR-21, and miR-29a levels were promising early
noninvasive diagnostic markers for CRC as these miRNAs out-
performed CEA and CA-199 in terms of diagnosing early trans-
formative changes of the colonic crypt with high AUC values as
well as high sensitivity and specificity (El-Daly et al., 2019b).
Commonly used biomarkers for muscle and liver injury are ala-

nine aminotransferase (ALT) and aspartate aminotransferase
(AST), which are increased, especially for drug-induced toxicities
viral hepatitis, metastatic tumors, and alcohol consumption (Law
and Rudnicka, 2006). In a study by Laterza et al. (2009), miR-122
and miR-133a exhibited high specificity for liver and muscle toxic-
ity, but they were not detected in the plasma of animals with
other organ toxicities. This was not the case for ALT and AST, in
which both were elevated in response to organ toxicity. Further-
more, when the data were analyzed in conjunction with the histo-
pathology of liver sections, miR-122 demonstrated superior
diagnostic sensitivity compared with ALT (Laterza et al., 2009).
The standard indicators used for the diagnosis of gastric

cancer (GC) include CEA and CA19-9; however, because these
biomarkers are not elevated in early-stage GC, they are not ef-
fective for early-stage diagnosis (Zheng et al., 2021). Izumi
et al. (2021) evaluated the diagnostic performance of a 10-mi-
RNA signature in over 1900 tissue and serum samples col-
lected from patients with GC at different tumor stages and
healthy volunteers. The results indicated that miR-18a, miR-
181b, and miR-335 had a high diagnostic precision at all
stages with an AUC value of 0.86 (95%CI 0.83–0.90), specifi-
cally in stage I patients with an AUC of 0.85 (95%CI,
0.79–0.91). Moreover, this miRNA signature outperformed the
commonly used blood biomarkers and surpassed endoscopic
screening with respect to cost-effectiveness.

Based on the previously mentioned studies and others as
listed in Table 2, circulating miRNAs have a good overall diag-
nostic accuracy over standard biomarkers used in the clinic.

4. Single Versus Multiple Biomarkers
In most cases, the alteration of biomarker expression in

non-malignant disorders is temporary; however, in cancer,
dysregulation is either stable or continuously increasing. Be-
cause of the issue of non-specificity, diagnosing a patient based
on a single tumor biomarker is filled with hazards (McPherson
et al., 2021). The use of serial testing and multiple biomarkers
can assist in the detection of abnormally increased levels re-
sulting from temporary elevation. Combining traditional tu-
mor markers with highly specific and sensitive miRNAs may
be a good option to more accurately reflect the patient’s case
and enhance the use of circulating miRNAs as clinical bio-
markers (Table 2). A study by Qu et al. (2011) focused on the
diagnosis of hepatocellular carcinoma (HCC) using three se-
rum miRNAs, miR-16, miR-195, and miR-199a, alone or in
combination with the clinically standard serum indicators, al-
pha-fetoprotein (AFP), alpha-fetoprotein L3 (AFP-L3), and
des-gamma-carboxy prothrombin (DCP). The results indicated
that miR-16 was a more sensitive biomarker for HCC, whereas
the combination of miR-16, AFP, AFP-L3, and DCP correctly
identified approximately 92.4% of the HCC patients with 78.5%
specificity. These results indicate that combining circulating
miRNAs with standard markers, such as AFP, may improve the
accuracy of HCC diagnosis (Qu et al., 2011).
In a lung cancer study, a receiving operating characteristic

curve analysis for serum miR-182, miR-183, miR-210, and miR-
126 levels revealed their power as a diagnostic biomarker for the
early detection of non-small cell lung carcinoma with high sensi-
tivity and specificity. The combination of these four miRNAs
with CEA further increased the diagnostic value, which resulted
in an AUC of 0.965, a sensitivity of 81.3%, a specificity of 100%,
and an accuracy of 90.8% by logistic regression model analysis.
The same authors also reported that these miRNAs may be used
to differentiate early-stage non-small cell lung carcinoma from
cigarette smokers without lung cancer, pneumonia, or GC pa-
tients with high sensitivity and specificity (Zhu et al., 2016).
The idea of using miRNAs in combination with other markers

was also evaluated in CRC by Cheng et al. (2011). They reported
that the combination of miR-141 with CEA increased diagnostic
accuracy as the sensitivity was higher compared with applying
each marker individually. MiR-141 recognized seven Stage IV
colon cancer cases that CEA missed, whereas CEA diagnosed
four Stage IV metastatic colon cancer cases that miR-141 did not
recognize when the specificity was set to 100%. The combination
of multiple miRNAs is also more promising as biomarkers for
BC detection compared with individual miRNAs. The supporting
evidence demonstrates that a combination of miR-145, miR-155,
and miR-382 is a more powerful diagnostic approach for distin-
guishing BC patients from healthy subjects, with a sensitivity of
0.97 and a specificity of 1.0 compared with individual classifiers
(Cui et al., 2015). In a recent work by Jang et al. (2021), a total
of 226 plasma samples from patients with BC and 146 healthy
non-cancerous controls were evaluated to determine the effi-
ciency of circulating miRNAs as early diagnostic biomarkers.
The levels of 9 miRNAs, miR-21, miR-24, miR-202, miR-206,
miR-223, miR-246, mi -373, miR-6875, and miR-219B were sig-
nificantly dysregulated and distinguished healthy subjects from
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breast cancer patients. Of the nine miRNAs, a combination of
four (miR-24, miR-206, miR-373, and miR-1246) exhibited 98%
sensitivity, 96% specificity, and an accuracy of 97% for breast
cancer diagnosis. This suggests the efficient use of multiple
miRNAs as potential biomarkers for the early detection of BC
compared with using a single miRNA (Jang et al., 2021).
Overall, these studies clearly demonstrate that using

several biomarkers (either a panel of multiple miRNAs or
miRNAs plus conventional biomarkers) yields superior
diagnostic results compared with the measurement of a
single miRNA.

5. Challenges in the Clinical Applications of
Circulating miRNAs

Despite the immense progress focused on the role of distinct
circulating miRNAs signatures in diverse diseases, a large va-
riety of experimental parameters used for the evaluation pro-
cess has contributed to the widespread inconsistency in the
results. We will discuss the most common (pre-analytical, ana-
lytical, and post-analytical) factors contributing to the discrep-
ancies in the circulating miRNAs results.
5.1. Starting Material (Sample Type). Evaluating the

differential expression of miRNAs in circulation may be done
using various body fluids. In most cases, whole blood, plasma,
or serum samples are used. However, the sample type can have
a significant effect on the levels of circulating miRNAs, and it is
considered the most important factor responsible for inconsis-
tent results. A large number of studies have revealed that even
within the same individual, the expression of circulating miR-
NAs differs between serum and plasma samples (Table 3). Sev-
eral studies have conducted a paired comparative analysis to
delineate the differences in miRNA expression between serum
and plasma of the same patient. Although circulating miRNA
yield was comparable in plasma and serum, significantly differ-
ent miRNA expression profiles between serum and plasma
were detected when normalized to an internal reference, and
plasma showed more variation than serum (Mompe�on et al.,
2020). For example, McDonald et al., (2011) reported that the
levels of miR-15b, -16, and -24 in plasma were higher compared
with that detected in serum. However) observed a different pat-
tern, in which the miRNA levels detected in serum were higher
compared with the corresponding plasma samples.

The difference in the miRNA levels between serum and
plasma samples may be attributed to the RNA produced by
blood cells, leukocytes, and platelets during the coagulation pro-
cess (Pritchard et al., 2012a). Cell lysis during the coagulation
process, particularly red blood cells, may also contribute to the
RNA content discrepancy between serum and plasma.
The transfer of miRNAs through extracellular vesicles can

control the expression of several genes and reduce the efficiency
of miRNAs as disease biomarkers. Therefore, the use of whole
blood still faces several limitations for evaluating circulating
miRNAs (Tiberio et al., 2015). The discrepancy may also be ad-
dressed by the procedures used to separate plasma and serum
from whole blood, which results in varying quantities of blood
cell contamination in the two fluids. These procedures will be
further discussed.
5.2. Sample Processing and Storage. The time interval

between sample collection and further processing can influ-
ence the miRNA levels, as the cellular components in the
blood can contribute irrelevant miRNAs to serum or plasma
during storage. Moreover, hemoglobin and lactoferrin may
hinder downstream applications of miRNAs (Kim et al., 2012).
Therefore, processing a sample within a few hours is highly
recommended to reduce the undesired contribution of other
components. However, once the sample is processed into se-
rum or plasma, several studies have indicated that the
miRNAs are stable from either fresh or frozen specimens.
Even after several freeze-thaw cycles, minor to no alterations
between fresh and frozen specimens were observed, which con-
firms that miRNAs are quite stable in circulation (Page et al.,
2013b; Glinge et al., 2017; Chorley et al., 2021).
In a study by Grasedieck et al. (2012), the stability of serum

miRNAs was detected following short-term (10 days), interme-
diate (up to 20 months), and long-term (up to 10 years) storage
at -80�C and -20�C. Interestingly, storing samples at -20�C
had relatively negligible effects on the cycle threshold (ct) val-
ues of the measured miRNAs. These results further emphasize
the potential use of miRNAs as biomarkers due to their stabil-
ity during long-term storage. Nevertheless, repeated freeze-
thaw cycles should be avoided since minimally represented
miRNAs could be affected to some extent if any miRNA degra-
dation occurs (Glinge et al., 2017; Matias-Garcia et al., 2020).
5.3. Centrifugation. The centrifugation settings, such as

speed, duration, and temperature, are critical factors that are

TABLE 3
Comparing levels of circulating miRNAs in serum and plasma for same individuals

miRNA Serum versus Plasma Condition Detection Method References

miR-1 Higher in plasma than in serum AMI TaqMan RT-
qPCR

(C. Li et al., 2013; Liu
et al., 2015)

miR-133a, miR-26a,
miR-499a

miR-133a and miR-26a levels were
significantly upregulated only in
serum & miR-499a upregulated
only in plasma

AMI TaqMan RT-
qPCR

(Mompe�on et al., 2020)

miR-1, miR-208b These miRNAs showed a higher
coefficient of variation in plasma
samples

AMI TaqMan RT-
qPCR

(Mompe�on et al., 2020)

miR-21 Increased in serum, decreased in
plasma

AMI TaqMan RT-
qPCR

(Mompe�on et al., 2020)

miR-15b, miR-16, miR-24,
miR-122

Higher in plasma than in serum healthy individuals TaqMan RT-
qPCR

(McDonald et al., 2011)

Higher in serum than in plasma healthy individuals TaqMan RT-
qPCR

(Wang et al., 2012a)

AMI, acute myocardial infarction.
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often underestimated and may influence the miRNA expres-
sion profile of the processed samples. Prolonged high-speed
centrifugation may increase sample hemolysis and, as a result,
miRNA release from platelets. On the other hand, low-speed
and brief centrifugation might result in an inadequate separa-
tion of serum or plasma from cellular fractions (Duttagupta
et al., 2011). Therefore, standardized centrifugation conditions
to separate serum/plasma are necessary for a reliable evalua-
tion. A double step of centrifugation, with a high speed at the
second, is usually applied to effectively remove residual plate-
lets from samples and facilitate the assessments of cell-free
miRNAs (McDonald et al., 2011; Page et al., 2013a).
5.4. Type of Anticoagulant. The anticoagulant used to

collect blood for plasma separation might affect the accuracy
of the RNA analysis (Fig. 2). Salts of EDTA, citrate, or heparin
are the most common anticoagulants used for plasma collec-
tion. Although EDTA and citrate are more likely to be used for
miRNA analysis, EDTA collection tubes are preferred over cit-
rate as the chance of hemolysis induction is less if EDTA is
used. Heparin is not suggested in blood collection for analysis
of circulating miRNAs as it hinders the activity of reverse
transcriptase and polymerases in different RNA measurement
methodologies (Mitchell et al., 2016; Glinge et al., 2017). How-
ever, heparinase treatment of the RNA samples extracted
from blood collected with heparin tubes significantly reverses
the heparin-induced inhibition of downstream enzymatic as-
says, enabling a reliable miRNA quantification (Kondratov
et al., 2016). This approach comes at a cost, as heparinase con-
centration and timing should be tuned for each set of samples
(Johnson et al., 2003), suggesting the preference of avoiding
heparin as an anticoagulant. In a previous study by (Glinge
et al., 2017), the expression level of miR-1, miR-21, and miR-
29 did not significantly vary in serum or plasma samples col-
lected using either EDTA or citrate for the same individuals.
However, in collected lithium-heparin plasma, no expression
levels were detected for these miRNAs.
5.5. Sample Volume. The initial volume of the sample

used for RNA extraction is another factor to be considered
which has a significant influence on the quality of miRNA
quantification. Although miRNA concentrations in the liquid

biopsies are relatively low, this does not justify the use of a
higher amount of the startup material as it can enhance RNA
contamination with the higher number of contaminants car-
ried over with the starting sample. Moreover, a saturation of
the purification columns would commonly occur (Androvic
et al., 2019). Most RNA isolation kits recommended a starting
input sample of 200 ml. However, this can vary based on the
sample type. In the study conducted by Androvic et al. (2019),
the authors evaluated the impact of the sample volume and the
type of the startup sample using an miRNeasy Serum/Plasma
Advanced Kit (Qiagen Corp). According to this study, the opti-
mal input volume varies depending on the sample type, human
plasma or serum, or rat serum. Higher input volumes of >300 ml
for human samples and >150 ml for rat serum samples resulted
in poor RNA isolation efficiency and less reproducible results
when compared with moderate input volumes of 200–300 ml for
human serum or plasma and 100–150 ml for rat serum.
5.6. Hemolysis Effect. Since blood cells significantly con-

tribute to circulating miRNAs, any perturbations in blood cell
counts or hemolysis can alter the levels of circulating miRNAs,
reflecting a blood cell-based feature instead of a disease-related
cause (Kirschner et al., 2013). Hemolysis can usually happen
throughout sampling and handling procedures, and the released
cellular miRNAs can alter the measured miRNA levels up to 50-
fold, according to Pritchard et al. (2012b), making it difficult to
understand the findings biologically. Moreover, hemolysis can al-
ter the normalization step. For example, miR-16-5p, the most of-
ten miRNA used as an internal reference, is an abundant
miRNA in erythrocytes. Thus, its level is altered even at a low
level of hemolysis (Kirschner et al., 2011). Hemolysis can be lim-
ited by following the standard operating procedures of blood col-
lection. This includes using proper diameter needles (not too
small to prevent blood cell damage), avoiding improper tube mix-
ing, and prolonged tourniquet in addition to other standard pro-
cedures (Khan et al., 2017).
Unless the investigated cell-free miRNAs are not impacted

by hemolysis, excluding hemolyzed samples from further pro-
cedures is a critical step. Usually, hemolysis can be evaluated
through visual inspection or measuring the sample's absorp-
tion spectroscopically through scanning at a wavelength of

Fig. 2. General concerns and sugges-
tions regarding sample collection.
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350 to 650nm (Khan et al., 2017). The optical density at
414 nm (free oxyhemoglobin absorption peak) is used to esti-
mate the degree of hemolysis, with secondary peaks at 541
and 576 nm reflecting elevated levels of hemolysis. If the ab-
sorption at 414 nm is more than 0.2, the sample is considered
hemolyzed (Kirschner et al., 2013). However, this approach is
not optimal since lipemic plasma samples create an invalid
rise in absorbance values at 414 nm even though no hemoglo-
bin-related peak is present (Heckl et al., 2021). A hemolysis
biomarker based on miRNA expression is suggested if the
original serum or plasma sample is no longer accessible. It
was reported that miRNAs are abundant in erythrocytes,
such as miR-144, miR-451, or miR-23a, which could be used
to detect potential hemolyzed samples (Rasmussen et al.,
2010; Blondal et al., 2013). Blondal et al. (2013) suggested
that a DCq of more than 7 for the ratio of miR-23a/miR-451
is an indication of high hemolysis. miR-23a is a prevalent
miRNA in plasma and serum and is unaffected by hemolysis.
However, miR-451a is exceptionally abundant in erythro-
cytes and rises extremely in response to hemolysis (Pritchard
et al., 2012b; Blondal et al., 2013). A two-tailed quality control
technique, suggested by Androvic et al. (2019), combines two
sets of exogenous synthetic spike-in molecules and three en-
dogenous miRNAs; let-7a, miR-23a, and miR-451a, all quanti-
fied with the two-tailed RT-qPCR method, have been offered as
a cost-effective and accurate technique to assess the quality of
isolated miRNAs and potential erythrocyte contamination.
To conclude, data from studies using various blood fractions

should not be directly compared, and only miRNAs that are not
slightly up- or downregulated will be useful as clinical biomarkers.
5.7. RNA Extraction Protocols. Biofluids have a mar-

ginal amount of RNA. As a result, RNA isolation protocols im-
pact the outcomes of circulating miRNA measurement. Although
there is no consensus regarding the optimum extraction protocol,
nucleic acid extraction protocols are generally divided into three
main categories; 1) guanidine-phenol-chloroform-based protocols,
2) commercial kits utilizing columns or beads, and 3) a combina-
tion of the two previously mentioned protocols (Tiberio et al.,
2015). The ideal RNA extraction technique is one that is uncom-
plicated, fast, inexpensive, and, most importantly, reproducible,
with minimal variability across samples, and capable of preserv-
ing RNA purity and integrity. In the past few years, several
studies focused on comparing the efficiency of the various RNA
extraction protocols and commercial kits. Comparative studies
developed by researchers used several RNA extraction methods
(Moret et al., 2013; Page et al., 2013a; Sourvinou et al., 2013;
Monleau et al., 2014; Li et al., 2015b; Tan et al., 2015), including
manual protocol, such as TRIzol (Invitrogen), or the following
commercial kits:

� Phenol and column methods, such as miRNeasy Serum/
Plasma kit (Qiagen) and mirVana PARIS kit (Life
Technologies).

� Protein precipitation and column methods, such as miR-
CURY RNA Isolation Kit from Qiagen and HigherPurity
Total RNA Extraction Kit from Canvax.

� Proteinase K and column methods, such as Quick-RNA
Miniprep Kit (Zymo Research) and Monarch RNA Purifi-
cation Kit (New England Biolabs).

� Magnetic beads method, such as Agencourt RNAdvance
Blood Kit (Beckman Coulter Life Sciences).

Although there is no consensus on which approach is the best
(considering that some studies recommended miRNeasy
Serum/Plasma kit to produce an enriched miRNA fraction
from plasma samples), most of the comparative publications
highlighted the merits of column-based extraction techniques
over Trizol (Moret et al., 2013; Felekkis and Papaneophytou,
2020). In addition, increasing the volume of starting material
produces a less efficient recovery of miRNAs (McAlexander
et al., 2013b; El-Khoury et al., 2016), and adding modest doses
of an RNA carrier et (Moret et al., 2013). There is an agreement
that the different isolation methods provide different yields and/
or quality of miRNAs (Felekkis abd Papaneophytou, 2020).
Even different kits using the same isolation method provide dif-
ferent miRNA yields and quality. El-Khoury et al, (2016) com-
pared the results from the most commercially available isolation
kits miRCURY and miRNeasy, and their recommendations are
summarized in Fig. 3.
In the extraction protocol, precipitation is the most important

step that may affect the final yield. As a result, optimal precipita-
tion conditions are required to enhance miRNA recovery from bi-
ofluids. Carriers such as glycogen, RNA bacteriophage carrier
(MS2), linear acrylamide, and yeast transfer RNA (tRNA) are of-
ten used to enhance extraction efficiency and improve reproduc-
ibility (McAlexander et al., 2013a). These carriers function by
trapping RNA, and since they are insoluble, they form a visible
pellet which facilitates the RNA extraction (Wang et al., 2002;
Cuk et al., 2013; McAlexander et al., 2013b; Moret et al., 2013).
Glycogen is the most frequent carrier used; however, coupling
yeast transfer RNA with glycogen has been found to considerably
enhance RNA yield, as well as boost miRNA extraction rather
than either using glycogen or yeast transfer RNA alone (Ban
et al., 2017b). In this context, it is also suggested that the use of
glycogen alone is preferred in some experiments since other car-
riers, that include nucleic acid components, may interfere with
downstream analysis such as next-generation sequencing, and
the exogenous RNAs of the added carriers could consume se-
quencing reads (Androvic et al., 2019; Bryzgunova et al., 2021).
5.8. miRNA Quantification. Developing an accurate

miRNA quantification approach is a critical factor to obtaining
valid results, especially using array hybridization platforms
that require a precise quantity of starting material (Lee et al.,
2014). Spectrophotometry quantitation platforms, such as
Nanodrop or NanoQuant, used to measure RNA quantity and
quality could be unreliable when applied to serum and plasma
samples that contain low concentrations of RNA. Spectropho-
tometry quantitation platforms function by measuring the ab-
sorbance at 260 nm, which could also detect free nucleotides
and DNA (El-Khoury et al., 2016). Contaminants from freeze-
thaw cycles or isolation reagents, such as phenols (absorbs at
270 nm) or EDTA, could also interfere with the absorbance
(Garcia-Elias et al., 2017). Moreover, RNA measurements of
samples that are extracted using RNA carriers will be invalid
because the contribution of signal from the RNA carrier is
much stronger compared with that of the sample itself and con-
sequently masks the signal of the RNA of interest (Ram�on-
N�u~nez et al., 2017). Other quantitation techniques, such as
fluorometric analysis, may be more suitable than spectropho-
tometry. Unlike the NanoQuant and Nanodrop assays, the Qu-
bit fluorometer (Life Technologies, Thermo Fisher Scientific,
Inc.) incorporates fluorescent dyes that are selective for short
RNA sequences, even at low concentrations, over other forms of
RNA. As a result, the values produced using this platform
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correspond primarily to the miRNA component of the sample
(Mauger et al., 2015). Garcia-Elias et al. (2017) compared the
optimal methodology for miRNA quantitation in plasma sam-
ples using different platforms, including the NanoQuant spec-
trophotometer (Tecan Infinite 200 PRO), Nanodrop 2000
spectrophotometer (Thermo Scientific TM) and Qubit 2.0 fluo-
rometer (Life Technologies). Based on the data, both spectro-
photometer-based platforms overestimated the level of
miRNAs compared with the fluorometric approach by detect-
ing nucleotides and other contaminants. In this context, using
an RNA isolation protocol that is more specific to miRNA will
decrease contaminating RNA species and reduce the quantita-
tive discrepancies between the Qubit and spectrophotometric
techniques. The Qubit 2.0 Fluorometer also enabled a lower
detection range for miRNAs (0.05 ng/ml) compared with the
common spectrophotometry platforms (2 ng/ml for Nanodrop,
and 3 ng/ml for Nano- quant), which is essential for biofluids.
These findings suggest that the Qubit-based miRNA technique
produces a more accurate estimate of miRNA levels, particu-
larly for plasma samples. Of note, Qubit was more suitable
compared with spectrophotometer-based platforms for miRNA
quantification, even from tissue samples in a comparison of
different quantitation platforms Deben et al., (2013).
5.9. miRNA Detection Platforms. Because circulating

miRNAs are promising biomarkers for various human disor-
ders, the development of a reliable and relatively simple detec-
tion method remains a challenging because of the intrinsic
characteristics of miRNAs, which include small size, low quan-
titation in biofluids, and a high sequence similarity among mi-
RNA family members (Tiberio et al., 2015). With the
abundance of techniques available for miRNA detection, such
as northern blot, quantitative polymerase chain reaction (RT-
qPCR), microarray, and next-generation sequencing, choosing
the appropriate detection technique depends upon the nature of
the samples and the study target. Each detection platform has
advantages and disadvantages that must be evaluated before
developing an application (Table 4).

5.9.1. Amplification-based technique. The quantitative re-
verse transcription polymerase chain reaction (RT-qPCR) plat-
form is the most applied method, referred to as the “gold

standard” to quantify specific miRNA due to its sensitivity,
simplicity of use, and relatively low cost. RT-qPCR is mostly
the validation technique that is applied following miRNA pro-
filing obtained from platforms, such as arrays and sequencing
(Mestdagh et al., 2008; Schmittgen et al., 2008).

5.9.2. Hybridization-based microarrays. Array-based plat-
forms are a common approach for miRNA profiling available
from several suppliers. Among the most popular hybridiza-
tion-based arrays is Affymetrix Gene Chip miRNA Array, Agi-
lent Human miRNA Microarray, and miRCURY LNA miRNA
Arrays (Li and Ruan, 2009). The microarray-based approaches
are especially appealing because of their high-throughput pro-
filing ability, allowing for simultaneous detection of a broad
number of diverse miRNAs in several samples processed in
parallel in a single test. The arrays are designed based on mi-
RNA sequences deposited in the miRBase database (Reid
et al., 2011; Schwarzenbach et al., 2014).

5.9.3. Sequencing. Detection of miRNAs through sequenc-
ing is a promising approach that has recently become the pre-
ferred method as it avoids several challenges faced by the
other detection platforms. The identification of novel
miRNAs has been considerably boosted with the use of se-
quencing as a detection platform (Fox et al., 2009). Over the
last years, Illumina's Genome Analyzer (GA), HiSeq, Roche
454 Genome sequencing system, and Applied Biosystems
SOLiD technologies have been commercially accessible. How-
ever, next-generation sequencing-based methods suffer from
drawbacks, including requiring bioinformatician support for
data analysis, tedious sequencing library construction pro-
cesses, and a potential sequence bias resulting from the se-
quencing library construction process (Johansen et al., 2011).

5.9.4 Nanopore sensing. Several research studies have
described a unique approach for electrically detecting miRNAs
in tissue or biofluids that do not involve labeling, enzyme reac-
tions, or amplification (Chen et al., 2009; Garcia-Elias et al.,
2017; Asano et al., 2019). Wang et al. (2011) demonstrated a
nanopore sensor capable of detecting subpicomolar levels of
cancer-associated miRNAs and differentiating single nucleotide
variants across miRNA family members by employing a
programmable oligonucleotide probe.

Fig. 3. Factors affecting miRNA recovery during the process of extraction.
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5.10. Lack of Standard miRNA as an Internal Refer-
ence. Technical variability between samples is more preva-
lent as a result of several factors, such as differences in
starting material, RNA extraction method, or reaction effi-
ciency during the labeling or hybridization techniques. To ob-
tain an accurate determination of miRNA levels in a specific
tissue, body fluid, or cell type and to ensure that the data are
reliable, it is important to normalize the data once it is gener-
ated (Witwer, 2015; Wang et al., 2018a).
Currently, there is no housekeeping circulating miRNA that

could be accurately used as an internal control. Reference miR-
NAs used for tissue miRNA analysis, such as RNU6 and RNU48,
cannot be continuously recognized in the circulation because of
their significant RNAse-mediated degradation (Wang et al.,
2012b). miR-16 has been considered a miRNA housekeeping, and
it is the most popular in the literature. However, it is also among
the most severely affected by hemolysis (Pritchard et al., 2012b)
and thus should not be used as an miRNA reference for data nor-
malization. Several miRNAs have been proposed as possible inter-
nal references in multiple studies (Chen et al., 2013). For
example, Faraldi et al. (2019) tested a panel of 179 miRNAs fol-
lowing RNA extraction from plasma using RT-qPCR and used
multiple normalization procedures based on endogenous miRNAs
and exogenous oligonucleotides for quantitation. Based on the re-
sults, miR-320d was identified as the most suitable reference mi-
RNA for eliminating technical variability across replicates.
A collection of non-human spike-in RNAs is often used for nor-

malization in miRNA measurements, particularly for qPCR-
based profiling (Vigneron et al., 2016). However, a global agree-
ment for a reliable internal reference is lacking. Correcting the
plasma/serum volume has also been suggested as an option for
normalization, as volume is a clinical standard for other bio-
markers (Faraldi et al., 2019). Although defining a normalizing
miRNA with broad applicability would be more accurate, shift-
ing focus from normalizers to normalizing the techniques is
more realistic. The introduction of consistent methodological in-
structions, rather than a universal set of normalizers, will im-
prove the accurate quantitation and comparison of circulating
miRNAs (Marabita et al., 2016).

6. Other Individual Factors (External Factors)
Other important variables that may significantly affect the

appropriate interpretation of circulating miRNAs in disease
biomarker studies are linked to inter-individual variability
and the impact of disease-independent factors. Individual fac-
tors, such as race (Wang et al., 2018a), gender, ethnicity, age,
physical activity, drug use (de Boer et al., 2013), smoking
(Badrnya et al., 2014), and lifestyle may all have an impact on
the level of circulating miRNAs (XenomiRs, 2012; Becker and
Lockwood, 2013).
- Gender variations have a significant impact on the biologic
composition of bodily fluids (Wang et al., 2013). In addition,
sex-biased expression of circulating miRNAs has been re-
ported. A clear example was reported by Wang et al. (2013)
in which circulating levels of let-7g and miR-221 exhibited a
female-specific increase in patients with metabolic syn-
drome, but this increase was not observed in male patients.
Several studies have reported an effect of gonadal steroids
on miRNA expression (Morgan and Bale, 2012). Menstrual
cycles and pregnancy are among the events that also have
an effect on total circulating miRNA profiles (Rekker et al.,
2013; Luizon et al., 2021).

- The type of diet consumed prior to sampling may also influ-
ence circulating miRNA expression. Because of the remark-
able sequence conservation of several miRNAs across
species, it is possible that some circulating miRNAs are not
produced in cells of the body, but from external sources.
Many miRNAs are present in dietary supplements, such as
catechins, indoles, curcumin, and resveratrol, that could be
indistinguishable from endogenous miRNAs at the sequence
and/or functional level in the circulation (Witwer and
Hirschi, 2014; Witwer, 2015; Lee et al., 2017; El-
Daly et al., 2020b; Salem et al., 2021).

- Circadian cycles represent an external factor that has
an impact on the release of extracellular vesicles and
miRNAs in the circulation (Heegaard et al., 2016; Kor-
itzinsky et al., 2019). Shende et al. (2011) evaluated a
panel of miRNAs targeting the clock gene, Bmal1, in
the serum of mice exposed to a standard 12 hour light/

TABLE 4
Common detection platform currently applied for circulating miRNAs

Detection platform Advantages/strengths Pitfalls/weaknesses References

Amplification-based
methods

- Reasonable specificity, sensitivity,
reproducibility, low cost,
and easily conducted technique

- Detect only annotated miRNAs
- Inner reference gene is necessary for

data normalization

(Mestdagh et al., 2008;
Schmittgen et al.,
2008)

Hybridization-based
arrays

- Profiling a large number of miRNAs
in a high-throughput technique

- Require a relatively small volume of
RNA as input (100 ng or less)

- Reasonable reproducibility

- Difficulty in distinguishing the
difference between mature and
unprocessed miRNA

- Cross-hybridization within miRNA
family members due to sequence
homology

- Lower specificity than RT-qPCR and
sequencing

- Detect only annotated miRNAs
- Hard to detect low abundant

miRNAs

(Reid et al., 2011;
Schwarzenbach et al.,
2014)

Sequencing (next-
generation sequencing
and deep sequencing)

- Higher specificity and more precise
than other platforms

- Identifying novel miRNAs with
unknown sequences

- Discriminate between isomiRs

- Data processing needs bioinformatics
analysis

- A relatively high-cost technique
- Time-consuming

(Johansen et al., 2011)
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12 hour dark cycle. Of these, miR-152 and miR-494
were expressed in diurnal oscillations with expression
peaks detected near the middle of the day and 8 h or 12
h later during the night. This study and others connect
miRNAs with the control of the circadian timekeeping
system (Cheng et al., 2007; Heegaard et al., 2016;
Khalyfa et al., 2020) and highlights the necessity of
considering biooscillations in circulating miRNA stud-
ies to reduce any potential variability.

- Gravitational change is also considered a variant factor that
affects the expression of circulating miRNAs. In the study
by Jirak et al., (2020), profiling 213 miRNAs by next-gener-
ation sequencing following exposure of healthy volunteers
to gravitational changes revealed a significant alteration in
the expression of four miRNAs, miR-24-3p, miR-941, miR-
486-5p, and miR-223-3p, suggesting that the secretion pat-
tern of some miRNAs are affected by changes in gravity.

- Physical activity has also been found to affect circulating
miRNA levels as diagnostic markers. Activities ranging
from a marathon run as well as acute aerobic or endurance
exercises have been reported to induce significant changes
in the expression of different miRNA panels (Gomes et al.,
2014; Nielsen et al., 2014; Horak et al., 2018). Horak et al.
(2018) demonstrated that the expression of plasma miR-93,
miR-222, and miR-16 were significantly changed (down- or
upregulated) in young athletes that performed high-inten-
sity interval training and hypertrophic or explosive
strength training for eight weeks compared with baseline
expression. In a recent study by Eyileten et al. (2022), en-
gaging in extreme physical exercises, such as an Eileen ul-
tramarathon, was coupled to alterations in the expression
of a panel of circulating miRNAs associated with fibrosis,
inflammation, and cardiac muscle function. From the de-
regulated list of miRNAs, the expression of miR-1-3p was
altered by race duration. miR-1-3p was significantly higher
in participants who completed the event in under 10 hours
compared with runners that required more than 10 hours.
The type of exercise also affects the expression of circulat-

ing miRNAs (Uhlemann et al., 2014; Horak et al., 2018).
For example, running a marathon resulted in a significant
elevation of plasma miR-126 and miR-133 (Uhlemann et al.,
2014). In contrast, performing a maximal symptom-limited
exercise or bicycling for four hours under an anaerobic
threshold raised the level of plasma miR-126 with no effect
on plasma levels of miR-133. In contrast, eccentric resis-
tance exercise caused an isolated elevation in plasma miR-
133 with no effect on miR-126 levels (Uhlemann et al.,
2014).
- Disease conditions and pharmacological treatment can affect
the circulating miRNA expression profiles. For example,
miR-122 is known to be elevated in most hepatocellular can-
cer cases, but it is also elevated during hepatitis B or C in-
fection or liver damage. Moreover, miR-122 levels may
change in response to hepatitis medications. The adminis-
tration of some drugs that target platelets can modulate the
expression pattern of platelet-derived miRNAs. Aspirin has
been reported to dysregulate the expression levels of platelet
miRNAs, such as miR-126, miR-191, miR-223, miR-126,
and miR-150 (de Boer et al., 2013; Willeit et al., 2013).

Although some of the above-mentioned individual aspects
may be addressed and taken into account during the evaluation
of circulating miRNAs as biomarkers, some external factors may

be difficult to control or adequately take into consideration.
Thus, while evaluating circulating miRNA data, their expression
levels may be affected by the sum of individual behavior in addi-
tion to disease factors.

7. Circulating miRNAs in Clinical Trials
The necessary requirements for the clinical validation of circu-

lating miRNAs include specificity, consistent expression across
blood and tissue samples, and reproducibility (Grimaldi and In-
coronato, 2019). Because these requirements have not been veri-
fied, translation to the clinic has not yet been realized. To
present an overview of the current advances in the clinical trans-
lation of circulating miRNAs as cancer diagnostic biomarkers,
we searched the database, ClinicalTrials.gov, for the terms
“tumor,” “cancer,” and “neoplasm” in the disease field and
“miRNA,” “circulating,” “blood” in the other terms field. Our
search yielded 36 studies, which included 13 interventional stud-
ies, 21 observational studies, and 5 studies listed as observa-
tional, Patient Registry Studies. Most of these studies focused on
assessing the role of circulating miRNAs in predicting response
to therapeutic interventions. The majority were done on female
participants, with the main focus on breast cancer. The study
phase was not applicable for most of these studies. However, one
study was in phase I, two studies in phase II, and one study was
in phase IV. For 34 clinical trials, no results have been uploaded
or introduced, whereas 10 studies were listed as completed. The
most recent clinical study started on May 12, 2021, by Fonda-
zione IRCCS Istituto Nazionale dei Tumori, Milano with the aim
of collecting genetic data from primary tissues and blood to de-
termine whether certain mutations and/or miRNA overexpres-
sion were linked to limited iodine absorption or radioresistance
in patients with metastatic differentiated thyroid cancer.

Conclusion and Future Directions
Based on the challenges described above, there is a need to

create standard operating protocols for the evaluation of miR-
NAs in circulation, including the selection of a starting mate-
rial, sample isolation protocols, detection, and normalization
methods. In this review, we attempted to summarize the stan-
dard operating procedures that have been suggested by multi-
ple studies as optimal procedures, which may help to improve
the detection of circulating miRNAs as tumor biomarkers in
the clinic. However, there are currently no optimal strategies
for analyzing circulating miRNAs, and research into develop-
ing and optimizing novel methods is ongoing. Efforts to im-
prove and standardize existing technologies and the discovery
of novel strategies have the potential to shift this approach
from the laboratory to clinical practice (bench to bedside).
Finally, the scientific community has the burden of develop-

ing standardized procedures through which the reproducibility
of miRNA results can be improved. Acknowledging the experi-
mental limitations of any study will alert other researchers to
conduct their studies using standard guidelines set by the sci-
entific community. A final important point to be considered is
the transparency and reporting of the exact experimental pro-
cedures followed by each study.
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