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Abstract 

Purpose  To evaluate whether deep learning reconstruction (DLR) accelerates the acquisition of 1.5-T magnetic reso-
nance imaging (MRI) knee data without image deterioration.

Materials and methods  Twenty-one healthy volunteers underwent MRI of the right knee on a 1.5-T MRI scanner. 
Proton-density-weighted images with one or four numbers of signal averages (NSAs) were obtained via compressed 
sensing, and DLR was applied to the images with 1 NSA to obtain 1NSA-DLR images. The 1NSA-DLR and 4NSA images 
were compared objectively (by deriving the signal-to-noise ratios of the lateral and the medial menisci and the 
contrast-to-noise ratios of the lateral and the medial menisci and articular cartilages) and subjectively (in terms of the 
visibility of the anterior cruciate ligament, the medial collateral ligament, the medial and lateral menisci, and bone) 
and in terms of image noise, artifacts, and overall diagnostic acceptability. The paired t-test and Wilcoxon signed-rank 
test were used for statistical analyses.

Results  The 1NSA-DLR images were obtained within 100 s. The signal-to-noise ratios (lateral: 3.27 ± 0.30 vs. 
1.90 ± 0.13, medial: 2.71 ± 0.24 vs. 1.80 ± 0.15, both p < 0.001) and contrast-to-noise ratios (lateral: 2.61 ± 0.51 vs. 
2.18 ± 0.58, medial 2.19 ± 0.32 vs. 1.97 ± 0.36, both p < 0.001) were significantly higher for 1NSA-DLR than 4NSA 
images. Subjectively, all anatomical structures (except bone) were significantly clearer on the 1NSA-DLR than on the 
4NSA images. Also, in the former images, the noise was lower, and the overall diagnostic acceptability was higher.

Conclusion  Compared with the 4NSA images, the 1NSA-DLR images exhibited less noise, higher overall image qual-
ity, and allowed more precise visualization of the menisci and ligaments.
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Introduction
Magnetic resonance imaging (MRI) plays a central role in 
knee evaluation and is commonly used in various clinical 
settings [1–3]. Acute or chronic knee pain is the princi-
pal indication for knee MRI [4, 5]. Patients in pain find 
it difficult to remain motionless during MRI; thus, the 
acceleration of the MRI scan is one of the key elements in 
successful knee MRI evaluation.

For the acceleration of knee MRI, various image acqui-
sition techniques have been applied. Parallel imaging was 
first employed to this end [6, 7], but the disadvantages 
included a reduced SNR, noise enhancement, aliasing, 
and reconstruction artifacts [8]. Several advanced paral-
lel imaging sequences as GeneRalized Autocalibrating 
Partially Parallel Acquisition (GRAPPA) and Controlled 
Aliasing in Parallel Imaging Results in Higher Accel-
eration (CAIPIRINHA) have also been applied to knee 
MRI overcoming some of these disadvantages [9]. Com-
pressed sensing allows rapid MRI because it recon-
structs highly undersampled k-space data and also has 
been successfully applied to knee MRI [10]. However, 
the disadvantages include image blurring and long post-
processing times [11]. Finally, multislice (or multiband) 
imaging (the simultaneous acquisition of multiple slices) 
was introduced [12]. These techniques can be used in 
combination; recently, Del Grande et al. achieved a four-
fold-accelerated 5-minute knee MRI protocol including 
five sequences by the combination of multislice imaging 
and parallel imaging [13].

Over the last decade, deep learning (DL) has found 
many applications (for example, in image processing, 
speech recognition, and natural language processing 
[14]). Radiologists have employed DL for image segmen-
tation [15, 16] and lesional evaluation [17, 18]. Recently, 
deep learning has been applied to image reconstruction, 
and DL-based reconstruction (DLR) of images effectively 
denoised the images without compromising contrast 
[19–21].

We hypothesized that we could accelerate the MRI 
scan by using DLR without deteriorating the image qual-
ity. For routine 1.5T knee MRI, usually number of signal 
averages (NSA) of 2 or 3 is applied [22, 23]. Therefore, in 
the present study, we accelerated MRI four-fold, applied 
DLR, and compared objective and subjective image fea-
tures with those of conventional images.

Materials and methods
The research ethics committee of our institution (Inter-
national University of Health and Welfare Chiba Dis-
trict Ethics Review Committee) approved the study 
(approval no. 20-Nr-059), and all subjects provided writ-
ten informed consent. Twenty-one healthy volunteers (17 

men and 4 women; mean age ± standard deviation [SD] 
44.7 ± 10.9 years) were enrolled. The inclusion criteria 
were (1) age over 20, (2) no medical history of the knee 
(e.g., surgery, intra-articular injection), and (3) no appar-
ent knee pain.

MRI examination
All volunteers underwent 1.5-T MRI (Vantage Orian, 
Canon Medical Systems Corporation) using a 16-chan-
nel knee coil; proton-density-weighted images of the 
right knee were obtained in the coronal plane using the 
following parameters (repetition time 2,000 ms; echo 
time 33 ms; NSA 1 or 4; echo train length 8; flip angle 
90°; pixel bandwidth 217 Hz; field of view 160 mm; acqui-
sition matrix 512 × 512; slice thickness 1.5  mm; spacing 
between slices 2 mm; and slice number 18). Compressed 
sensing with parallel imaging (Compressed SPEEDER: 
Canon Medical Systems Corporation) was employed 
in this study. This technique first processes the image 
domain parallel imaging with random undersampling 
(k space undersampling rate = 64.1%) in phase encod-
ing, followed by compressed sensing implemented with 
wavelet transform to remove the artifacts. The scan times 
were 100 s for a NSA of 1 (1NSA) and 390 s for a NSA 
of 4 (4NSA). The 1NSA images were subjected to DLR, 
yielding 1NSA-DLR images. DLR was implemented 
using the Advanced Intelligent Clear IQ Engine (Canon 
Medical Systems Corporation) [19]. Briefly, this convo-
lutional neural network-based technique uses 7 × 7 dis-
crete cosine transform to divide the image data into a 
zero-frequency component and other high-frequency 
components at the feature extraction layer. The former 
component follows a separate collateral path to main-
tain the image contrast, and the latter components are 
processed to 22 subsequent feature conversion layers 
for denoising. This DLR technique has also been shown 
to improve the image quality of cervical spine MRI [24] 
and diffusion-weighted whole-body imaging with back-
ground body signal suppression [25].

Objective evaluation of image quality
For the objective evaluation of image noise, SNRs of the 
medial meniscus (MM) and lateral meniscus (LM) were 
calculated. As we used a compressed sensing technique, 
the SNR could not be derived using the background SD. 
Thus, we calculated the SNR of the meniscus by employ-
ing the SD of the meniscus per se [26]. We chose menis-
cus as target since (1) meniscus is the one of the main 
structures in the knee MRI evaluation,　and (2) a struc-
ture with low signal intensity will clearly show the effect 
of denoising. First, we manually defined a regions of 
interest (ROIs) that included the entire meniscus in the 
slices of the middle body showing the smallest meniscus 
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area (Fig.  1A). The SNR was calculated by dividing the 
mean signal intensity of the ROI by the SD of the ROI.

For objective evaluation of contrast, the contrast-to-
noise ratios (CNRs) of the LM and the articular cartilage 
of the lateral femoral condyle and the CNRs of MM and 
the articular cartilage of the medial femoral condyle were 
calculated. We defined ROIs that covered the entire areas 
of cartilage in the slices with the most prominent image 
slice in the posterior part (Fig.  1B). This tissue-specific 
CNR was [26]:

We used ImageJ software (National Institutes of 
Health) for quantitative image analysis. All ROIs were 
placed by a board-certified radiologist with 18 years of 
experience.

Subjective evaluation of image quality
Three board-certified radiologists (with 17, 12, and 8 
years of experience) assessed image quality. The images 

CNR = (Meancartilage −Meanmeniscus)/ (SD2
cartilage + SD2

meniscus).

were presented in a random order to minimize recall bias; 
the observers were blinded to the acquisition method. All 
acquired image slices were assigned for the assessment. 
The visibilities of the anterior cruciate ligament (ACL), 
medial collateral ligament (MCL), MM, LM, and bone, 
as well as image noise, artifacts, and overall diagnostic 
acceptability, were scored using a five-point Likert scale 
(Table 1).

Statistical analysis
The 1NSA-DLR and 4NSA images were compared. All 
results are expressed as means ± SDs. The objective 
noises and contrasts were compared using the paired 
t-test because the Shapiro–Wilk test confirmed that the 
data were normally distributed. The subjective image 
qualities were compared employing the Wilcoxon signed-
rank test. A p value < 0.05 was considered to indicate 
statistical significance. We evaluated interobserver agree-
ment by calculating the Cohen weighted kappa values 
(quadratic weights); values of 0–0.20 indicate poor agree-
ment, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 

Fig. 1  Examples of the ROIs used for subjective analysis of 1NSA-DLR image quality. A The middle body of the lateral meniscus. B The articular 
cartilage of the lateral femoral condyle

Table 1  The scale used for subjective image quality analysis

Grade Visibility Noise Artifact Overall

1 Not visible Undiagnostic Undiagnostic Unacceptable

2 Mostly not visible or blurred Strong noise but still diag-
nostic

Strong artifacts but still diag-
nostic

Average

3 Mostly visible but partially blurred Acceptable noise Acceptable artifacts Fair

4 Subtle heterogeneity or blurring Minimal noise Minimal artifacts Very good

5 Homogeneous internal intensity with sharp 
edges

No noise No artifact Excellent



Page 4 of 6Akai et al. BMC Medical Imaging            (2023) 23:5 

good, and 0.81–1.00 excellent. All analyses were per-
formed using R software (version 4.0.5; R Foundation for 
Statistical Computing).

Results
Representative 1NSA-DLR and 4NSA images are shown 
in Fig. 2.

Objective analysis of image quality
The SNR of the LM was significantly higher in the 1NSA-
DLR than in 4NSA images (3.27 ± 0.30 vs. 1.90 ± 0.13, 
p < 0.001). Similarly, the SNR of the MM was signifi-
cantly higher in the 1NSA-DLR than in 4NSA images 
(2.71 ± 0.24 vs. 1.80 ± 0.15, p < 0.001). The CNR between 
the articular cartilage of the femoral condyle and the 
meniscus was significantly higher in the 1NSA-DLR 
than in 4NSA images in both lateral (2.61 ± 0.51 vs. 
2.18 ± 0.58, p < 0.001) and medial sides (2.19 ± 0.32 vs. 
1.97 ± 0.36, p < 0.001) (Table 2).

Subjective analysis of image quality
The results of the subjective analysis are listed in 
Table  3. All the observers reported that all anatomi-
cal structures except bone were better visualized on 
1NSA-DLR than 4NSA images (all p < 0.05). Bone visu-
alization was in fact better, and the extent of artifacts 
was lower in 1NSA-DLR images (all observers), but the 
differences were not significant (p > 0.05). Noise was 
lower (p ≤ 0.001) and the overall diagnostic accept-
ability was higher on the 1NSA-DLR than on 4NSA 
images (p < 0.01) (all observers). Cohen’s kappa analy-
sis revealed that the extent of interobserver agree-
ment was moderate-to-excellent in terms of structural 
visibilities (0.45–0.54 for ACL, 0.47–0.59 for MCL, 
0.65–0.72 for MM, 0.59–0.68 for LM, and 0.66–0.85 
for bone) and fair-to-excellent in terms of noise (0.32–
0.61), artifacts (0.84–0.85), and overall image quality 
(0.60–0.77).

Fig. 2  Representative MR images from a 32-year-old healthy male volunteer: A 1NSA image, B 1NSA-DLR image, C 4NSA image. The 1NSA-DLR 
image exhibits less noise compared with the 4NSA image; the overall diagnostic acceptability scores were 4 for the 1NSA-DLR image and 3 for the 
4NSA image (all readers)

Table 2  The results of objective image quality analysis

For meniscus and cartilage, mean and SD of the signal intensity of each structure is described. Diff(Cart – Meni) represents the difference in signal intensity of cartilage 
and meniscus. SDs are expressed as their mean and CNRs are expressed as the mean ± standard deviation. p values are shown for the comparison of CNR and the p 
values that indicate significant differences are shown in bold

Meniscus Cartilage Diff(Cart – Meni) CNR p value

Mean SD Mean SD Mean

Lateral side

 1NSA-DLR 869.7 267.1 3029.3 797.0 2159.6 2.61 ± 0.51 < 0.001
 4NSA 721.0 382.5 2857.7 921.7 2136.7 2.18 ± 0.58

Medial side

 1NSA-DLR 1030.8 380.1 3440.6 1032.7 2409.7 2.19 ± 0.32 < 0.001
 4NSA 864.6 484.7 3248.8 1124.8 2384.2 1.97 ± 0.36



Page 5 of 6Akai et al. BMC Medical Imaging            (2023) 23:5 	

Discussion
We found that knee MRI could be accelerated four-fold 
using DLR. Objectively, the 1NSA-DLR images were 
more uniform and showed higher CNR than the 4NSA 
images; subjectively, the 1NSA-DLR images revealed all 
studied structures more clearly than the 4NSA images, 
regardless of structure size. Although statistical signifi-
cance was not attained, bone visibility was better and 
artifacts fewer on 1NSA-DLR images; noise was also sig-
nificantly lower, imparting better overall image quality.

DL is relatively new, and its clinical applications are few 
in number. One study employed DLR to comprehensively 
examine the knee in 5 min without compromising image 
quality or diagnostic accuracy. Recht et al. performed 406 
consecutive knee examinations using a 3-T MRI scanner 
and found that standard images and deep-learning-based 
accelerated images were largely equivalent [27]. This was 
also our experience; DLR accelerated 1.5-T knee MRI 
four-fold.

One of the advantages of the DLR technique is that this 
is a post-processing technique, so DLR can be applied 
to the image obtained by accelerating image acquisition 
techniques. In the present study, we used a compressed 
sensing technique in image acquisition. And by combi-
nation with DLR, clear coronal proton-density-weighted 
knee MR images were able to obtain within only 100s. 
This short acquisition time can reduce motion-related 
artifacts, and indeed the level of artifacts was scored 
better for 1NSA-DLR images in the present study. We 
believe that a combination of accelerating image acqui-
sition techniques and DLR would also be beneficial for 
patients with knee pain.

Our work had several limitations. First, the number 
of volunteers was small. Second, all volunteers were 
recruited from one institution. Selection bias may have 

been in play. Third, we assessed only proton-density-
weighted images because these are optimal for detect-
ing meniscal lesions [28]. DLR is useful for processing 
T1- and T2-weighted images, fluid-attenuated inversion 
recovery images, and magnetic resonance cholangiopan-
creatographic images [19, 29]. Thus, DLR can effectively 
process other knee MRI sequences as well. Finally, we did 
not evaluate the disease detectability of DLR. We assume 
that DLR would facilitate the detection of abnormalities 
by radiologists, given the high image quality, but further 
investigations are needed.

Conclusion
In conclusion, DLR significantly improved knee MR 
image quality. 1NSA-DLR images exhibited less noise, 
better visualization of menisci and ligaments, and higher 
overall image quality compared with 4NSA images.
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