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Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and
holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA
breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing
outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations
and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted
editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes
from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-
induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on
genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene
editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further
optimizing genome editing to enhance editing safety.
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Introduction
The bacterial clustered regularly interspaced short palindromic re-
peats (CRISPR)-CRISPR-associated protein (Cas) nucleases have
been engineered to achieve efficient gene editing in mammalian
cells [1–4]. Among the diverse editing toolboxes, Cas nucleases like
Cas9, Cas12a, Cas12e, and Cas12f generate DNA double-stranded
breaks (DSBs) to initiate gene disruptions (Figure 1A) [5–10], while
base editors were developed by fusing Cas nickase with a DNA
deaminase enzyme to directly modify DNA nucleotides instead of
inducing DSBs (Figure 1A) [11–13]. Of note, the Cas nickase em-
bedded in base editors can generate single-stranded breaks (SSBs)
during the base editing process [11–13]. The more recent prime
editors consist of a Cas9 nickase and a reverse transcriptase to in-
duce template-dependent insertions or deletions (Figure 1A) [14].
Regarding RNA editing, ADAR or nuclease-dead Cas13-fused ADAR
can modify RNA nucleotides for gene interference (Figure 1A)
[15,16]. The versatile CRISPR-Cas editing system has been widely
used in both scientific research and clinical therapeutics. Many
clinical trials employing CRISPR-Cas nucleases are underway and
the preliminary results are very promising (Table 1). These CRISPR-
based therapeutic schemes target some very intractable diseases,
including T cell, chimeric antigen receptor T cell (CAR T), or T cell

receptor-engineered T cell (TCR T) therapy for acquired im-
munodeficiency syndrome (AIDS) and malignancy [17–19], mod-
ified hematopoietic stem and progenitor cells (HSPCs) for
transfusion-dependent β-thalassemia and sickle cell disease [20,21],
correcting CEP290 for Leber Congenital Amaurosis type 10 [22], and
Duchenne muscular dystrophy [23–25].
Besides the great potential of CRISPR-Cas editing tools, unwanted

editing byproducts accompanied with intended editing products
have also attracted great attention recently, since they lend addi-
tional uncertainty to genome editing [26]. These unwanted editing
byproducts include but are not limited to off-target damages,
chromosomal structural variations, and exogenous DNA integra-
tions (Figure 1B). Many efforts have been made to further improve
the performance of CRISPR-Cas gene editing tools [27–29] and
various methods based on experiments or in silico prediction have
been developed to identify or evaluate off-target activity for Cas
nucleases (Table 2, see below for more details) [30–40]. Chromo-
somal translocations and large deletions have also been routinely
observed in different editing scenarios recently [31,37–39,41–45].
For example, chromosomal abnormalities have been discovered to
expand in a patient treated by CAR T cells manufactured by Allo-
gene, which leads to the hold on Allogene CAR T therapeutics. An
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effective method to reduce chromosomal abnormalities during gene
editing is still lacking.
The generation of both intended products and unwanted editing

byproducts during genome editing are stimulated by endogenous
DSB repair pathways, and understanding how these repair path-
ways work in depth could help to reduce the side effects of un-
wanted byproducts during gene editing.
In this review, we begin with the editing mechanism for CRISPR/

Cas editing system and then describe the involved DSB repair
pathways in the editing process. We next discuss the generation of
unwanted genome editing products and propose possible solutions
to improve the safety of gene editing.

CRISPR-Cas Induces DNA Breaks to Initiate Gene
Editing
The CRISPR-Cas enzyme is an RNA-guided endonuclease that in-
duces DSB at the phage genome. The CRISPR-Cas enzymes have
two distinct groups: class I, which applies multi-Cas proteins to
achieve DNA cleavage; and class II, which applies a single en-

donuclease for DNA cleavage [46,47]. Class II is further subtyped
into three types: II, V, and VI. The type-II Cas9 recognizing 3′ G rich
protospacer adjacent motif (PAM) and type-V Cas12 recognizing 5′
T rich PAM have been engineered for efficient genome editing [48].
Among the engineered Cas9 enzymes, Streptococcus pyogenes
Cas9 (SpCas9) with an NGG (N= “A”, “T”, “C”, or “G”) PAM is the
first and most widely used Cas9 for genome editing [1–4,49]. A
smaller size Staphylococcus aureus Cas9 (SaCas9) was also devel-
oped for target sites with NNGRRT (R=“A” or “G”) PAM [50].
Several other Cas9 nucleases including Streptococcus thermophiles
Cas9 (StCas9), Campylobacter jejuni Cas9 (CjCas9), Francisella
novicida Cas9 (FnCas9), Geobacillus stearothermophilus Cas9
(GeoCas9), Neisseria Meningitides Cas9 (NmeCas9), and Strepto-
coccus canis (ScCas9) were subsequently engineered for genome
editing (Figure 2A) [51–57]. Regarding the Cas12 family, Acid-
aminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacter-
ium ND2006 Cas12a (LbCas12a) show great potential in gene
editing [6]. Recently, orthologs of small-size Cas12e and Cas12f
nucleases have been successfully used for gene editing and show

Figure 1. Genome editing tools and the arising concerns (A) Currently used CRISPR-Cas genome editing tools. CRISPR-Cas editing tools can be
subtyped into DSB-dependent nucleases, nickase-based base editors, nickase-based prime editors, and dCas13-based RNA editors. Cas9, Cas12a,
Cas12e, and Cas12f are widely-used nucleases for genome editing. Base editors can be classified into CBE (C to T), GBE (C to G), and ABE (A to G)
based on the conversion or transversion of the nucleotides. Prime editors induce specific insertions and deletions by using an RNA template in the
sgRNA scaffold. RNA base editors are designed by fusing dCas13 and ADAR to convert A to G. (B) Concerns in the genome editing field. Editing
efficiencies and off-target activities are early concerns in the field. Until recently, unwanted byproducts like large deletions and translocations are
appealed by NIH.
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advantages for adeno-associated virus (AAV) package for gene
therapy (Figure 2B) [7–10].

CRISPR-Cas9 system contains a CRISPR RNA (crRNA) for tar-
geting DNA and a trans-activating crRNA (tracrRNA) pairing with

Table 1. Application of Cas9 nuclease in clinical therapy*

Target gene Clinical ID Therapy Disease Stage

TRAC, B2M NCT03166878,
NCT03229876,
NCT03166878

CAR-T B cell leukemia Phase 1/2

TRAC, TRBC, B2M NCT04244656,
NCT03166878

T cell therapy, CAR-T Myeloma, B cell lymphoma –

TRAC, TRBC, PDCD1 NCT03399448,
NCT03545815

TCR-T B cell leukemia and solid tumor Phase 1

TRAC NCT03398967 CD19, CD20 or CD22 CAR-T therapy Relapsed or refractory hematological malignancies Phase 1/2

PDCD1 NCT02793856 T cell therapy Advanced Non-small Cell Lung Cancer Phase 1

NCT02863913 T cell therapy Stage IV bladder cancer Phase 1

NCT02867332 T cell therapy Metastatic renal cell carcinoma Phase 1

NCT03081715 T cell therapy Esophageal cancer Phase 1

NCT02867345 T cell therapy Hormone refractory prostate cancer Phase 1

CD7 NCT03690011 CAR-T T cell leukemia Phase 1

CD70 NCT04438083 T cell therapy Hematologic malignancies and renal cell carcinoma Phase 1

CCR5 NCT03164135 HSPC therapy HIV and leukemia –

BCL11A NCT03432364,
NCT03655678,
NCT03745287,
CRISPR_SCD001

HSC therapy Transfusion-dependent β-thalassemia (TDT) and
sickle cell disease (SCD)

Phase 1/2

HBB NCT03728322 HSC therapy TDT Phase 1

CEP290 NCT03872479 AAV therapy Leber congenital amaurosis type 10 (LCA10) Phase 2

CISH NCT03538613,
NCT04089891

T cell therapy Metastatic gastrointestinal epithelial cancer Phase 1/2

*Because of space limitation, only typical clinical trials are cited here.

Table 2. Methods for the detection of byproducts generated by Cas9*

Method
In vivo/
In vitro/
In silico

Assay type Comment

Cas-OFFinder In silico Off-target Sequence alignment High false positive

CAST-seq In vivo Chromosomal structural variations,
indels

Map translocations with induced DSBs High-sensitivity;
not applicable to limited material

CIRCLE-seq In vitro Off-target Sequence cleaved linear DNA from circu-
larized genomic DNA

High-sensitivity; Requires in vivo
cleavage confirmation

Dig-seq In vitro Off-target Whole-genome sequencing for cleaved
chromatin

High-sensitivity;

Digenome-seq In vitro Off-target Whole-genome sequencing for cleaved
naked genomic DNA

High-sensitivity; Requires in vivo
cleavage confirmation

DISCOVER-seq In vivo Off-target Pull down Mre11 binding to broken ends Narrow time-window (only maps
unjoined ends); low resolution

GUIDE-seq In vivo Off-target Integrate dsODNs into DSB sites Unbiased; limited use for blunt-
ended DSBs

LAM-HTGTS In vivo Off-target, chromosomal structural
variations

Map translocations with induced DSBs or
recurrent DSBs

High-sensitivity;
not applicable to limited material

PEM-seq In vivo Off-target, chromosomal structural
variations, indels

Map translocations with induced DSBs or
recurrent DSBs

High-sensitivity;
not applicable to limited material

SITE-seq In vitro Off-target Map broken ends with biotinylated
adapters

High-sensitivity; Requires in vivo
cleavage confirmation

UDiTaS In vivo Chromosomal structural variations,
indels

Map translocations with induced DSBs Low sensitivity due to no nested PCR

*Because of space limitation, only typical methods are cited here.
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crRNA for Cas9 ribonucleoprotein (RNP) package [58]. The crRNA
and tracrRNA are further combined into a chimeric single guide
RNA (sgRNA), which reserves the high cleavage capacity [5]. Cas9
cleavage begins with the recognition for the PAM sequence located
at 3′ of the target DNA, followed by the formation of RNA-DNA
hybrid (R loop), Cas9 conformation change, and DNA strand clea-
vage [5,59,60]. The target strand (pair with sgRNA) is cleaved by
the HNH domain and the non-target strand is cleaved by the RuvC
domain and both cleavages occur between the third and fourth
nucleotides upstream of PAM, which eventually leads to a blunt-
ended DSB (Figure 2A) [5]. Cas9 can also generate 1-bp staggered
ends at some target sequences due to the flexible cleavage position
of the RuvC domain, resulting in predictable 1-bp insertions [43,61–
64]. Mutation in either of the two cleavage domains generates Cas9
nickase and mutations in both the cleavage domains generate nu-

clease-dead Cas9 (dCas9) but reserve DNA-binding activity [65,66].
After cleavage, Cas9 nuclease may stay at the PAM-distal ends until
the DNA repair proteins are recruited to seal the broken ends
[59,67]. In contrast to Cas9 nucleases, most Cas12 nucleases are
guided by a single crRNA and equipped with only a RuvC domain to
cleave the DNA strands [6,68]. The RuvC domain of Cas12 nuclease
cuts the two DNA strands at varied nucleotides and thus results in
sticky-ended DSBs (Figure 2B).
In addition to CRISPR-Cas nucleases, CRISPR-based base editors

and prime editors were mainly developed for mutation corrections.
The base editor consists of a Cas9 nickase, a DNA deaminase en-
zyme, and a uracil-DNA glycosylase inhibitor or uracil-DNA gly-
cosylase, which converts C to T, C to G, or A to G without causing
DSBs [11–13]. In this context, AID, APOBEC1, APOBEC3A, and
APOBEC3B were used as cytosine base editors (CBEs) for C to T

Figure 2. Two main Cas nucleases for genome editing Cas nucleases are guided by sgRNA to the target site by forming an “R loop”. (A) Cas9
nucleases use the HNH domain to cleave the target strand and RuvC domain to cleave non-target strand both upstream PAM. Cas9 nucleases tend
to generate blunt ends. (B) Unlike Cas9, Cas12 nucleases use only the RuvC domain to cleave both target and on-target strand downstream PAM,
and Cas12 nucleases generate sticky end. Currently-developed Cas9 and Cas12 nucleases with their size and PAM are displayed on the bottom.
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conversion or used as glycosylase base editors (GBEs) for C to G
transversion [11,13,69–71]. In addition, TadA was engineered as an
adenine base editor (ABE) for A to G conversion [12]. ABE was
further combined with CBE to generate dual base editors for si-
multaneous C to T and A to G conversions by several research
groups [72–74]. Instead of DNA deaminase enzymes, the prime
editors fuse a reverse transcriptase with Cas9 nickase to introduce
point mutations not covered by CBEs or ABEs, short insertions, and
deletions of several nucleotides by using a template RNA within the
sgRNA scaffold [14]. The two base editing systems are com-
plementary to Cas9 nucleases for different editing scenarios but also
face several problems. First, the Cas9 nickase-induced SSBs can be
converted to DSBs at a frequency of 1 out of 100 [75,76], which may
also lead to chromosomal structural variations as Cas9 nucleases
though at a low level. Second, base editors have been reported to
have collateral DNA and RNA activities besides off-target activities
[77–81].

DSB Repair Pathways Are Involved in Gene Editing
DSBs are the most deleterious type of DNA lesions, leading to ge-
netic mutations or complex chromosomal rearrangements asso-
ciated with oncogenesis [75,82–87]. Each human cell is subjected to
25 endogenous DSBs per day in estimation [75], and thereby robust
DSB repair pathways evolve in mammalian cells to recognize and
repair emerging DSBs. Typically, the entire process of DSB repair
consists of three or four steps: end recognition, end tethering, end
processing if necessary, and end joining (Figure 3A) [82]. The initial
end-recognizing and end-binding proteins determine the choice of
the DSB pathways, and then other repair proteins are recruited into
the DSBs step-by-step until end joining [82,88–91]. The mammalian
cells mainly evolve two types of DSB repair pathways: template-
independent end joining repair and template-dependent homology-
directed repair (Figure 3B). These repair pathways compete with
each other and are influenced by cell type, cell state, and the nature
of the DSBs [92]. The repair of Cas-induced DSBs shares main fea-
tures with endogenous DSBs except that Cas9 residence at broken
ends may have a weak impact on DSB repair [67]. Here we provided
a brief overview of these DSB repair pathways involved in gene
editing in mammalian cells.

Non-homologous end joining
Classical non-homologous end joining (C-NHEJ) directly re-joins
two broken ends and is considered to be the default choice for DSB
repair in mammalian cells through cell cycles [93]. In estimation,
more than 50% of Cas9-induced DSBs are repaired by NHEJ in
human pluripotent stem cells or human cell lines within the first
10 h of DSBs [67,94,95]. C-NHEJ is an error-prone repair process
and usually introduces small nucleotide insertions and deletions
(indels). Therefore, the CRISPR-Cas targeting at open reading
frames can readily induce gene disruption by C-NHEJ-mediated
frameshift. However, it is notable that more than 50% of Cas9-
induced breaks are perfectly re-joined without end processing in
mouse embryonic stem cells (mESCs) and HEK293T cells [96,97]. In
this context, the perfectly re-joined products can be targeted re-
peatedly by CRISPR-Cas enzymes to accumulate desired editing
outcomes.
During C-NHEJ, KU70-KU80 heterodimer immediately binds to

the broken ends and recruits the DNA-dependent protein kinase
catalytic subunit (DNA-PKcs) and/or Artemis endonuclease to

mildly process broken ends if needed [98–104]. Next, XRCC4, LIG4,
XLF, and recently-identified PAXX proteins are recruited to tether
and seal the broken ends [105–112]. Besides Artemis, nucleases
such as PALF, MRN complex, and polymerases including the
terminal deoxynucleotidyltransferase (TdT), Pol μ, and Pol λ also
contribute to the end processing to introduce indels within final
products [113–119]. In this context, fusing Cas nucleases with end
processing enzymes including T5 and TREX2 facilitates indel for-
mation [120,121].

Alternative end joining
Alternative end joining (A-EJ) dominates end joining repair when
core factors of C-NHEJ are deficient [122,123]. According to the
length of microhomology used, A-EJ can be further divided into two
subtypes: microhomology-mediated end joining (MMEJ) with
homology at approximately 2–20 bp and single-strand annealing
(SSA) pathway which requires large homology (>20 bp) (Figure
3B) [43,124]. In comparison, C-NHEJ only uses microhomology less
than 4 bp (Figure 3B) [43,124,125]. A-EJ also functions in the pre-
sence of C-NHEJ and competes with C-NHEJ to repair Cas9-induced
DSBs [126,127]. By examining over 1000 loci cleaved by Cas9, van
Steensel and colleagues recently reported that the choice for MMEJ
and C-NHEJ may be influenced by chromatin accessibility and
MMEJ tends to occur in heterochromatin regions associated with
H3K37me3 modification [127]. Moreover, it has been reported that
MMEJ displays delayed activity in comparison with C-NHEJ de-
tected by a quantitative time-course study [67].
MMEJ prevalently contributes to the formation of indels during

genome editing by generating short deletions between two micro-
homologous sequences (Figure 3B). MMEJ-mediated deletions are
relatively predictable in the context of embedded microhomology in
local sequence [61,62,64,127,128]. MMEJ enhancement by placing
two designed microhomologous sequences spanning the CRISPR-
Cas9 target site can efficiently induce programmed fragment inser-
tions and deletions during genome editing [129–132]. SSA is useful
for large DNA fragment deletion in genome editing and is mainly
active in the S/G2 phase for the need of long exposed homology.
Zhang and Matlashewski found that up to 90% of editing products
in Leishmania were repaired by SSA, and thereby SSA was en-
hanced to achieve large fragment deletion up to 29 kb [133]. Pol θ,
MRN complex and poly (ADP-ribose) polymerase 1 (PARP1) are
required in MMEJ [134–137]. SSA shares end resection steps with
homologous recombination (HR) to repair DSBs in mammalian
cells. For example, CtIP, EXO1, and DNA2 function in both SSA and
HR [138–140].

Homologous recombination
HR requires a homologous template to finish DSB repair and
therefore is a relatively precise DNA repair pathway. HR is mainly
active in the S and G2 phases in dividing cells, exhibiting a lower
utilization rate in comparison with NHEJ in most cells. The deac-
tivation of C-NHEJ makes Cas-induced DSBs prone to be repaired by
A-EJ or HR [43,141–146]. HR is characterized by extended DNA
resection and thereby EXO1 and DNA2 responsible for long-distance
DNA resection are critical for HR [138,147–149]. The highly-pro-
cessed broken ends are then protected by RPA, followed by RAD51-
mediated strand invasion and polymerase-mediated fill-in [150–
152]. Recently, RNA polymerase III was also reported to function in
HR and protect the processed DNA ends [153].
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Figure 3. DSB repair pathways involved in genome editing (A) General steps for DSB repair. End recognition, end tethering, end processing, and
end joining. (B) DSB repair pathways for genome editing. DSB repairs are mainly subtyped into end-joining and template-dependent repair. C-
NHEJ directly joins two broken ends with small indels in the final products due to limited end processing. Note that more than 50% of products
generated by C-NHEJ are re-joinings and will undergo several cycles of repeated cleavage until the formation of indels. The process of end-joining
may use homology on the broken ends to generate defined deletion or insertions. Due to the length of the homology, homology length from 2 to
20 bp is recognized as MMEJ and more than 20 bp is recognized as SSA. Template-dependent repair needs extensive resection and uses dsDNA
template or ssDNA template. (C) RAD51-Cas9 enhances ssDNA integration. ssDNA template with a SacI cleavage site and homologous arm is co-
transfected with Cas9 or RAD51-Cas9. If integration occurs, the DNA bands can be cleaved by the restriction enzyme SacI.
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To introduce intended mutations at target sites during gene
editing, a double-stranded (ds) or single-stranded (ss) donor DNA is
transfected with CRISPR-Cas to activate the HR pathway to induce
homology-directed repair (HDR) (Figure 3B) [154,155]. The
homologous sequence for dsDNA donors is usually hundreds in
length while the length of the homologous sequence for ssDNA can
be as short as dozens of nucleotides [156]. HDR with ssDNA donor
is more frequently used for gene editing, due to moderate adverse
cellular responses such as avoiding cGAS activation [157]. Given
that HDR is at such a low usage rate, inhibitors for C-NHEJ core
factors have been used to enhance HDR during gene editing. For
example, the small molecule inhibitors 5102 and 5135 were applied
to enhance HDR at a 6-fold increase by suppressing the DNA-
binding activity of the KU70/KU80 complex [158]. And the in-
hibitors of DNA-PKcs, NU7026, and KU-0060648 were used to en-
hance the HDR by 3 folds [143]. Moreover, applying SCR7 to inhibit
the LIG4 showed an increase of 5- to 19-fold for HDR usage in
mammalian cell lines [141,142]. In addition to C-NHEJ inhibitors, a
dominant-negative form of 53BP1 was expressed with CRISPR-Cas9
to enhance HDR frequency up to 86% in various human cell types
[159]. Besides suppression of C-NHEJ, stimulating HR can also
enhance HDR. In this context, small molecule RS-1, by activating
RAD51, could improve HDR usage up to 5 folds in rabbit embryos
[160]. Alternatively, fused or co-expressed RAD51 with Cas9 could
also improve HDR (Figure 3C) [161–164]. In addition, a fusion of
truncated CtIP and Cas9 also showed at least 2-fold enhancement

for HDR in human cell lines, pluripotent stem cells, and rat zygotes
[165]. Furthermore, Chin and colleagues fused human GEMININ to
the N terminal of Cas9 to specifically express Cas9 in the S/G2/M
phase and increased the rate of HDR by up to 87% [166]. Moreover,
arresting cells in S or G2/M phase or inhibiting mismatch repair
(MMR) has also been reported to enhance single-stranded DNA
oligonucleotide-mediated integration for gene editing [167–172].

Unwanted Editing Byproducts of CRISPR-Cas Increase
Genome Instability
Given that the repair of Cas9-induced DSBs is consistent with the
repair of endogenous general DSBs, it is inevitable that the sealing of
Cas9-induced DSBs results in many diverse outcomes. Besides the
intended mutations at the target site, other unwanted byproducts are
routinely identified. CRISPR-Cas activities at off-target sites are well
explored by developed methods and a dozen of high-fidelity Cas9
variants have been engineered to reduce the off-target activities of
CRISPR-Cas9 [32,34–38,173–179]. Chromosomal structural varia-
tions such as chromosomal translocations and large deletions have
also attracted great attention recently, which may cause genome
instability and have pathogenic consequences [37,38,41–45]. Fur-
thermore, vector integrations are also frequently detected when AAV
or other DNA-based delivery methods are used (Figure 4)
[44,180,181]. In this section, we will discuss the mechanism under-
lying the unwanted editing byproducts and summarize the currently
used methods for the detection of unwanted editing byproducts.

Figure 4. Products and byproducts generated during genome editing In addition to small indels (top left), vector DNA from plasmid or virus can be
integrated into the target site. ITR elements from AAV have been reported to function as enhancers (top right). The juxtaposition of two DSBs
forms chromosomal translocations. Both DSBs frequency and spatial distance contribute to the translocation formation (bottom left). Large
deletions are generated by end-joining after extensive DNA resection at the target site (bottom right).
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Off-target activities
Off-target sites of CRISPR-Cas9 are highly homologous to the target
sites with higher mutation tolerance at the PAM-distal region [182].
The seed sequence in the target DNA (10–12 nucleotides located in
the 3 prime ends of the 20-nt sgRNA) is vital for Cas9 cleavage, and
mutations in the seed region nearly block Cas9 cleavage, yet mu-
tations in other regions cause off-target cleavage [183–185]. To
improve the specificity of Cas proteins, a dozen of high-fidelity
variants have been developed to obtain lower off-target activities.
eSpCas9(1.1), SpCas9-HF1, and HypaCas9 were developed based
on Cas9-DNA structures and Cas9 conformation change before
cleavage [177–179]. Sniper-Cas9, evo-Cas9, and xCas9 were de-
veloped by high-throughput screening methods [174,176,186].
These high-fidelity variants perform well at some target loci, how-
ever, the sacrifice of the editing efficiency was also detected at
certain loci for some variants [44,173]. Moreover, because chro-
mosomal structural variations are byproducts during the process of
DSB repair and mainly occur at the target sites, high-fidelity variants
could not reduce chromosomal translocations and large deletions
caused by Cas nuclease [44].

Chromosomal translocations
The juxtaposition of two DSBs can form translocation at a very low
frequency. A single DSB generated by meganuclease I-SceI or
CRISPR-Cas9 could join to any DSB induced by ion irradiation,
implying that any two escaped DSBs can form translocation
[37,43,187]. High levels of chromosomal translocations were iden-
tified in the presence or absence of C-NHEJ, indicating that both C-
NHEJ and MMEJ are involved in translocation formation [43].
Chromosomal translocations may generate new fusion oncogenes
or significantly change the expression levels of genes related to
cancer, which possibly results in oncogenesis (Figure 4, bottom
left).
During genome editing, DSBs at the target sites are the dominant

DSBs and thereby the vast majority of editing outcomes are re-
joinings of the two broken ends of the target DSBs. However, other
broken ends that occur simultaneously within the edited cells may
also have a chance to join with target DSBs to form translocations.
These involved DSBs can be categorized into three types: other
target DSBs, off-target DSBs, and general DSBs. Correspondingly,
the translocations involving these DSBs are referred to as target
translocations, off-target translocations, and general translocations,
respectively. The target translocation mainly occurs in the multiplex
gene editing system and multiple CRISPR-Cas-induced target DSBs
join together to induce a high level of chromosomal translocations.
The off-target translocations involving DSBs at off-target sites are
also dependent on CRISPR-Cas enzymes. As for general transloca-
tions, general DSBs induced by various DNA metabolism activities
arise randomly in the genome and can also be captured by CRISPR-
Cas-induced target DSBs to form chromosomal translocations.
These general DSBs may occur in certain physiological processes
including V(D)J recombination or class switch recombination in
lymphocytes [187–192], or are triggered by genomic transcription or
DNA replication [37,38,43,44,193–197]. General translocations are
distributed widely over the genome with an obvious accumulation
at the transcription start site (TSS) [38,43,44,187]. Generally, the
frequencies of these translocations are in an order of target trans-
locations > off-target translocations >> general translocations.
Several previous reports showed that target chromosomal trans-

locations frequently arose during multiplex genome editing in CAR
T manufacturing [18,198–200]. Chromosomal translocations are
also occasionally captured during single-gene editing by many la-
boratories [201,202]. Using the high-throughput primer-extension-
mediated sequencing (PEM-seq), we found that chromosomal
translocations occur at a frequency of 1.0%–2.4% in embryonic
stem cells (ESCs) and up to 10% in HEK293T during genome editing
[43,44]. Cathomen and colleagues also found that chromosomal
rearrangements occurred at a ratio of up to 1.6% in edited stem cells
[31]. Off-target translocations can be largely suppressed by using
high-fidelity Cas9 variants to reduce the break frequency at off-
target sites, but the solution to reduce general translocations or
translocations among multiple editing loci is still lacking [44]. A
recent clinical trial on TCR T therapy indicated that engineered T
cells containing translocations among TRAC-TRBC-PDCD1 re-
mained in the blood at even hundreds of days post-infusion into the
patients [18], raising a great concern for these chromosomal ab-
normalities.

Chromosomal large deletions
Chromosomal large deletions induced by CRISPR-Cas routinely
occur at the target site and range from several hundred bases to
megabases, resulting in the loss of a large chromosome fragment
around the target site or even the entire chromosome [43,44,193].
Large deletions arise at a frequency of up to 10% in various human
and mouse cell lines based on the sequencing data of PEM-seq or
Nanopore DNA sequencing [38,43,44,203]; Bradley and colleagues
found that more than 20% of edited mESCs contained deletions
more than 250 bp, extending up to 6 kb [41]; Thomas and collea-
gues found that about 57% edited mouse zygotes contained large
deletions up to 2.3 kb [45]. A 3.5 Mb deletion was also identified at
the UROS loci in HEK293T cells [42]. The mechanism underlying
the generation of chromosomal large deletions is not fully under-
stood. We and others found that MMEJ contributes to the formation
of large deletions (up to 76.7%) in mESCs and other cells [43,204].
C-NHEJ deficiency could increase the large deletions up to 3 folds
[43]. Yet no solutions have been proposed to reduce large deletions
during CRISPR-Cas-mediated genome editing (Figure 4, bottom
right).

Exogenous vector DNA integration
Integration of exogenous DNA originating from vectors or viruses
into the genome was another concern of genome editing (Figure 4,
top right). Specifically, the target site is the most frequent integra-
tion site [44,180]. György and colleagues found high level of AAV
integration (up to 47%) in murine neurons, mouse brain (APPSW,
Mecp2, and Dnmt3b), and moused muscle (Dmd) [180]. As in
HEK293T cells, up to 41.3% of edited cells contain vector integra-
tion at RAG1, DNMT1, EMX1, VEGFA, and C-MYC loci, for both
Cas9 and its variants [43,44]. Microhomology is widely detected
between the integration sites and the integrated fragments, in-
dicating the involvement of MMEJ in vector integration [43]. Ad-
ditionally, some fragile elements at vectors such as the AAV
inverted terminal repeat (ITR) regions can greatly elevate the vector
integration level [43,180].

Methods for the Detection of Unwanted Editing
Byproducts
Many methods have been developed to detect off-target activities of
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CRISPR-Cas enzymes, both in vivo and in vitro. The in vivo or ex
vivo methods include LAM-HTGTS, GUIDE-seq, DISCOVER-seq,
and PEM-seq, while the in vitro methods include but are not limited
to Digenome-seq, Dig-seq, CIRCLE-seq, and SITE-seq (Table 2).
These methods have been summarized very well in previous lit-
erature [28,35,38]. Here we focus on the methods to detect other
unwanted editing byproducts including chromosomal transloca-
tions and large deletions. Quantitative RT-PCR has been widely
used to detect chromosomal translocations between two target sites
[18,198,205], but the resolution is very limited. Whole-genome se-
quencing or exon sequencing have also been used to identify
chromosomal structural variations [78,206], but these methods are
costly and difficult to analyze. Recently, enrichment of target
chromatin fragments before sequencing has been introduced to
develop several new methods including PEM-seq, LAM-HTGTS,
UDiTaS, and CAST-seq (see below for more details). Better en-
richment assay or the third-generation sequencing may further fa-
cilitate the development of new assays to detect chromosomal
translocations or large deletions.

PEM-seq and LAM-HTGTS
Based on chromosomal translocation capture, both PEM-seq and
LAM-HTGTS rely on a Cas enzyme-generated “bait” DSB to capture
genome-wide “prey” DSBs in vivo [37,38,207,208]. The prey-bait
junctions are cloned using 1-cycle primer extension for PEM-seq
and 80-cycle linear amplification for LAM-HTGTS, followed by li-
gation with bridge adapters. Subsequent PCR further amplifies the
products for next-generation sequencing. Both methods can be used
to detect off-target sites that form chromosomal translocations with
the bait DSBs as well as large deletions and genome-wide translo-
cations. The LAM-HTGTS was further improved as iHTGTS after
optimization of the experimental procedures and the introduction of
the random molecular barcode [193,209]. In comparison to LAM-
HTGTS and iHTGTS, PEM-seq is a quantitative method which can
be used to calculate the frequency of different editing outcomes
including vector integrations [38,43]. These methods have been
widely applied in mESCs, hESCs, human andmouse primary T cells,
various tumor cell lines, andmouse tissues to evaluate the fidelity of
Cas9 and Cas12a and their orthologs [38,43,44,193,194].

UDiTaS and CAST-seq
UDiTaS, which is based on Tn5 shearing, employs primers on bait
and Tn5-introduced adapters to amplify target DSB-involved junc-
tions to identify both chromosomal structural variations and on-
target indels [39]. UDiTas was used to identify complex chromo-
somal rearrangements for CEP290 and TCR loci in HEK293T cells. A
recently developed method CAST-seq employs decoy primers to
amplify bait-prey junctions and can be used to detect chromosomal
structural variations [31].

Perspectives
The great improvement of CRISPR-Cas nucleases in clinics shows
great potential in the treatment of intractable diseases. Yet DSB is a
double-edged sword: off-target damages, chromosomal transloca-
tions, large deletions are other non-negligible unwanted editing
byproducts that consist of up to 10% of total editing events. The
high-fidelity Cas9 variants, especially eSpCas9(1.1), SpCas9-HF1,
FeCas9, and HypaCas9, are indeed able to effectively reduce off-
target activities [44]. However, the solution for other unwanted

editing byproducts is still lacking. The decrease of chromosomal
translocations or large deletions is usually accompanied by the
decline of editing efficiency in previous reports [38]. Given that
more than 50% of Cas-induced DSBs are perfect re-joinings and can
be cleaved again by CRISPR-Cas until the formation for final indels
or degradation of CRISPR-Cas, a Cas enzyme prefers to generate
indels rather than perfect re-joinings may narrow the time windows
of free DSBs and restrict the generation of various unwanted editing
byproducts. On this basis, Cas9TX has been recently developed by
our group to greatly reduce chromosomal structural variations by
fusing an optimized TREX2 with Cas9. We applied Cas9TX to the
next-generation chimeric antigen receptor T (CAR T) engineering
and found the levels of deleterious translocations were decreased by
tens of folds among multiple targeting sites [210].
Many methods employ inhibitors for DNA repair proteins to

change the choice of DNA repair pathways in editing cells [141–
143,158,159,211]. However, the perturbation of DNA repair path-
ways may bring unpredicted editing byproducts that greatly affect
genome integrity. For example, the inhibition of C-NHEJ often leads
to elevated levels of chromosomal translocations, large deletions,
and vector integrations [43]. Moreover, deactivation of p53 in
editing cells can also cause genome stability and lead to cancers
[212–215].
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