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1  |  INTRODUC TION

Neuronal classification is an increasingly important subject be-
cause of its ultimate goal of linking cell types with computation, 
behavior, and cognition (Armañanzas & Ascoli,  2015). The main 
experimental approaches to characterize neurons are biochemis-
try, physiology, and morphology (Petilla Interneuron Nomenclature 
Group et al., 2008). These techniques have all yielded major break-
throughs in recent years thanks to rapid progress in genomics and 

transcriptomics, large-scale electric recordings, and high-resolution 
microscopic imaging (Litvina et al.,  2019), respectively. Both the 
European Human Brain Project and the American BRAIN Initiative 
identified cell-type classification among their first priorities (Insel 
et al.,  2013; Markram,  2012). Relative to neurons, glial cells have 
received less attention despite being similarly abundant in most or-
ganisms with a nervous system, including humans and all common 
animal models. Glia are involved in numerous important functions, 
such as myelination, anti-inflammatory protection, maintenance 
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Abstract
Neurons and glia are the two main cell classes in the nervous systems of most animals. 
Although functionally distinct, neurons and glia are both characterized by multiple 
branching arbors stemming from the cell bodies. Glial processes are generally known 
to form smaller trees than neuronal dendrites. However, the full extent of morpho-
logical differences between neurons and glia in multiple species and brain regions has 
not yet been characterized, nor is it known whether these cells can be reliably distin-
guished based on geometric features alone. Here, we show that multiple supervised 
learning algorithms deployed on a large database of morphological reconstructions 
can systematically classify neuronal and glial arbors with nearly perfect accuracy and 
precision. Moreover, we report multiple morphometric properties, both size related 
and size independent, that differ substantially between these cell types. In particu-
lar, we newly identify an individual morphometric measurement, Average Branch 
Euclidean Length that can robustly separate neurons from glia across multiple animal 
models, a broad diversity of experimental conditions, and anatomical areas, with the 
notable exception of the cerebellum. We discuss the practical utility and physiological 
interpretation of this discovery.
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of neurochemical environment, and exchanges between nervous 
and vascular systems (Aguzzi et al.,  2013; Bronzuoli et al.,  2018; 
Jessen, 2004; Rasband, 2016). Most glial cells emanate from the cell 
body complex branching processes that resemble the structural ar-
chitecture of neuronal dendrites. While large numbers of neurons 
have been morphologically reconstructed for over three decades, 
digitally tracing glial trees has only more recently become a routine 
practice as well.

Although it is usually recognized that glial arbors are smaller than 
dendritic trees (García-Marín et al., 2007; Lu et al., 2015; Veldman 
et al., 2020; Zisis et al., 2021), a comprehensive morphological com-
parison has not yet been carried out. In particular, it is still unknown 
whether geometric features alone can reliably distinguish these two 
main categories of cells. The general problem is further complicated 
by several factors. First, both neurons and glia are intrinsically di-
verse, with the former often distinguished by circuit role (long-range 
projecting, local interneurons, and sensory receptors) and the latter 
typically divided by functional specialization (e.g., microglia, astro-
cytes, and oligodendrocytes). Second, both neurons and glia tend to 
differ broadly across animal species (especially between vertebrates 
and invertebrates), anatomical regions (e.g., neocortex, brainstem, 
spinal cord, peripheral nervous system), and developmental stage 
(such as embryo, early postnatal, and adult). Third, morphological 
characterization may be affected by the tremendous variability in 
experimental methods, including animal care, histological details, 
labeling protocol, imaging modality, and reconstruction software. 
Thus, it remains an open question whether suitable morphometric 
biomarkers exist that can robustly and systematically discriminate 
between neuronal and glial arbors.

Hundreds of laboratories worldwide continuously contribute 
their digital reconstructions of neurons and glia to the public on-
line database NeuroMorpho.Org (Akram et al.,  2018). This reposi-
tory associates every cell entry with metadata (Bijari et al.,  2020) 
describing the animal subject (species, strain, sex, age, and weight), 
anatomy (brain region, sub-region, cell type, and sub-type), experi-
mental details (protocol, condition, histology, microscopy, and trac-
ing), and provenance (authors, source publication, original version, 
and processing logs). Moreover, the detailed 3D representation of 
arbor geometry is accompanied by a battery of morphometric pa-
rameters extracted with L-Measure (Scorcioni et al., 2008), such as 
total length, number of branches, arbor height, and tortuosity. Glial 
cells were introduced to NeuroMorpho.Org in version 7.1 (2017) and 
now constitute 12.1% of over 185,000 tracings. The unrestricted 
availability of these data provides an unprecedented opportunity for 
scientific exploration, statistical analysis, and computational model-
ing (Ascoli et al., 2017).

This study leveraged supervised machine learning algorithms to 
distinguish between neurons and glia. Supervised learning has been 
successfully used in neurobiological data analysis such as automatic 
tracing of neurons and glia (Peng et al., 2017) and their quantifica-
tion (Bijari et al., 2021) as well as healthcare applications such as au-
tomatic diagnoses and treatment planning (Kohli & Arora, 2018). We 
were interested in examining whether the same algorithms utilized 

in disease predictions and tracing automation are able to differenti-
ate the two main types of cells of the nervous system using morpho-
logical structures and independent of their metadata.

2  |  MATERIAL S AND METHODS

2.1  |  Dataset selection and preprocessing

The morphological reconstructions of glial processes and neuronal 
dendrites utilized in this work were contributed to NeuroMorpho.
Org by over 250 independent laboratories and reflect the distribu-
tion of published arbor tracings in neuroscience (Figure  1). These 
digital tracings of neurons and glia were downloaded from the data-
base using the Summary Reporting web-based functionality (Akram 
et al., 2022). This tool collates for every digital tracings the annota-
tion of 35 distinct metadata fields, providing a detailed qualitative 
description of the cell (Parekh et al., 2015), as well as 21 morphomet-
ric measurements which capture the quantitative structural features 
of the arbor (Scorcioni et al., 2008). In terms of metadata, the data-
set spans a broad diversity of experimental methodologies, including 
over 20 different staining methods (e.g., genetic green fluorescent 
protein labeling, intracellular biocytin injection, immunostaining, and 
rapid Golgi), 15 digital reconstruction software (Neurolucida, Imaris, 
Amira, NeuronJ, Simple Neurite Tracer, Vaa3D, Knossos, NeuTube, 
Knossos, FarSight, Neuromantic, NeuronStudio, Arbor, Eutectic, and 
Raveler), and a continuum of ages across development, from embryo 
through juvenile to old adults. Moreover, both neuronal and glial 
data came from both mammalian and non-mammalian species and a 
large variety of anatomical regions (Figure 2). The full breakdown of 
all metadata categories annotated in NeuroMorpho.Org is provided 
in Supporting Information.

First, we downloaded all glial cells available at the time we began 
data analysis (Fall 2020), corresponding to 10 consecutive releases of 
NeuroMorpho.Org (versions 7.1 to 8.0 inclusive). We then analyzed 
the distributions of their metadata with respect to animal species, 
developmental stage, anatomical region, and other experimental 

Significance

Neurons and glia, the two main cell categories in the 
nervous system, have never been subjected before to 
multivariate statistical classification using morphological 
measurements. We demonstrate that traditional machine 
learning classifiers do a near-perfect job of separating 
neurons and glia. Furthermore, this study identified a 
new morphometric biomarker capable of distinguishing 
these nervous system cells. In addition, we discovered 
that only five branches of a brain cell can discriminate be-
tween glia and neurons without tracing the whole cell for 
classification.
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F I G U R E  1  Representative diversity of morphological reconstructions of glia and neurons from NeuroMorpho.Org with labels indicating 
animal species, anatomical region, and cell type. Blue: Glial processes; green: Neuronal dendrites; red: Cell bodies.
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conditions, and queried the database to identify the same number of 
neurons with the most similar metadata characteristics. Specifically, 
we first generated a list of candidate neurons grouped by metadata 
using the Summary Reporting functionality. To do so, we selected 
all those metadata entries from the dropdown menus of Summary 
Reporting which were represented in the glia dataset. For example, 
under the “Species” menu, we selected all species represented in the 
glia dataset; under the “Anatomical region” menu, we selected all an-
atomical regions represented in the glia dataset; and we did the same 
for all other menus in the Summary Reporting interface. Since we 
were interested in comparing glial processes specifically to neuronal 

dendrites (as opposed to axons), only neurons with dendritic trac-
ings available were selected. This process yielded a list of 37,931 
neurons, which was a 10:3 excess relative to the number of glial 
cells. Therefore, we randomly down-sampled this neuron collection 
with an inclusion probability of 0.3. Moreover, we solely included 
neurons and glia with complete or moderately complete reconstruc-
tions, thus excluding those annotated as incomplete dendrites or in-
complete glial processes by the original contributors. The resulting 
dataset of 22,792 cells comprised 11,398 neurons and 11,394 glia.

The morphometric quantification of neural trees supplied by 
NeuroMorpho.Org provides a detailed 3D representation of branch 

F I G U R E  2  Distribution of (a) animal species and (b) brain regions for the analyzed glia and neuron datasets.
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geometry (Figure  3). The extracted features include parameters 
characterizing both the overall arborization size and scale-invariant 
properties. The formers include total cable length and surface area, 
spanning height and width, maximum Euclidean and path (geode-
sic) distance from the root (soma), and average branch diameter 
among others. The latter measurements capture bush complex-
ity (e.g., number of branches and tree stems), branch angles (local 
and remote bifurcation amplitude), topological imbalance (partition 
asymmetry and maximum branch order), and spatial meandering 
(contraction and fractal dimension), among others. Altogether, this 
set of morphometric parameters is well suited to characterize the 
structure of neuronal dendrites and glial processes alike, and thus 

to quantify their similarities and differences. Of the 21 morphomet-
rics extracted for each cell from NeuroMorpho.Org, we excluded 
Soma Surface and Depth from the analysis. Soma Surface is not an 
arbor morphometric, and 4.7% of the tracings in our dataset did not 
include soma reconstruction. Depth was similarly not reported for 
8.6% of the cells as the accuracy of the tracing is reduced in cer-
tain cases by light diffraction and tissue shrinkage in the direction 
perpendicular to the imaging plane. The remaining 19 morphomet-
ric features were used in the analysis: number of stems, number of 
bifurcations, number of branches, overall width, overall height, av-
erage diameter, total length, total surface, total volume, maximum 
Euclidean distance, maximum path distance, maximum branch order, 

F I G U R E  3  Schematic of selected morphometric features. (a) Illustration of width, depth, and maximum Euclidean distance (left) in 
a monkey neocortical pyramidal cell (NMO_00002) from the Wearne_Hof archive (Duan et al., 2002); and of height and fragmentation 
(right) in a hippocampal granule cell (NMO_73103) from the Diaz archive (Sebastián-Serrano et al., 2016). (b) Diameter and local or remote 
bifurcation amplitude (left) in a rat neocortical microglia (NMO_95641) from the Roysam archive (Megjhani et al., 2015); and maximum path 
distance, length, and number of branches, bifurcations, and stems in a rat cortical oligodendrocyte (NMO_131081) from the Sato_Bigbee 
archive (Mohamed et al., 2020).
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average contraction, total fragmentation, partition asymmetry, aver-
age Rall's ratio, average bifurcation angle local, average bifurcation 
angle remote, and fractal dimension (Table  1). More details about 
these metrics are also available on the Frequently Asked Questions 
of NeuroMorpho.Org (http://neuro​morpho.org/myfaq.jsp) and on 
the online manual of L-Measure (http://cng.gmu.edu:8080/Lm/
help/index.htm). Although the above-described parameters are in-
tuitively interpretable, they may not be completely independent of 
each other. For example, total tree length, surface area, and average 
branch diameter are expected to be interrelated. Such information 
redundancy can unduly bias the objective characterization of the 
structural differences between glia and neurons, complicating sub-
sequent interpretations.

Most reconstructions in NeuroMorpho.Org have coordinates 
reported in microns. In a subset of reconstructions, however, the 
coordinates are expressed in pixels. In these cases, the nominal mea-
surements listed in the morphometric tables must be converted by 
an appropriate scaling factor. Therefore, we manually calculated the 
height of at least one cell in each archive from the figures of the 
corresponding original publications (and relative scale bar) and com-
pared the resulting value to the height reported by NeuroMorpho.
Org. If the values did not match, we computed a conversion factor 
and applied it to size-related morphometric features, including width, 
height, total length, total surface, total volume, maximum Euclidean 

distance, and maximum path distance. A similar number of neurons 
and glia required scaling: 1580 glia (10.1% of glial total) from 10 ar-
chives and 1342 neurons (8.6% of neuronal total) from 9 archives. 
We followed the exact same procedure for both glia and neurons. 
The specific archives that underwent rescaling and the calculations 
for the scale correction are detailed in the Supporting Information 
at https://github.com/Masoo​d-Akram/​Class​ifica​tion_Neuro​ns-Glia/
tree/main/Suppl​ement​ary_Material.

When we concluded the main analysis for this work (Fall 2021), a 
new version of NeuroMorpho.Org had been released (v.8.1). We thus 
identified an additional dataset of 4292 neurons and 4286 glia, up to 
version 8.1.90 (December 2021), allowing us to test the robustness 
of our main results on a completely independent dataset. The scale 
correction details and the complete metadata breakdown for this 
additional dataset are also included in the Supporting Information 
at https://github.com/Masoo​d-Akram/​Class​ifica​tion_Neuro​ns-Glia/
tree/main/Suppl​ement​ary_Material.

2.2  |  Dimensionality reduction

We computed the coefficient of determination (R2) to quantify the 
pairwise correlation (Di Bucchianico, 2008) among the 19 morpho-
metric parameters across neurons and glia using the rcorr function in 

TA B L E  1  Description of morphometric parameters utilized in the analysis

Morphometric parameter Description

Surface Total surface area of entire neural arbor

Volume Total volume occupied by the neural arbor

N_stems Number of tree stems connected to the cell body

N_bifs Number of bifurcations in neural arbor

N_branch Number of branches in neural arbor (sum of bifurcations and terminations)

Width Horizontal span of neural arbor, computed as the difference between the 97.5th and 2.5th percentiles of the X 
coordinate

Height Vertical span of neural arbor, computed as the difference between the 97.5th and 2.5th percentiles of the Y 
coordinate

Length Total cable length of entire neural arbor

Diameter Average branch diameter over entire neural arbor

EucDistance Maximum Euclidean (straight) distance of any point of neural arbor from cell body

PathDistance Maximum path (geodesic) distance of any point of neural arbor from cell body

Branch_Order Maximum number of bifurcations in the path from the cell body to any termination in neural arbor

Contraction Average ratio between Euclidean and path length calculated on each branch

Fragmentation Number of tracing points (compartments) over entire neural arbor

Partition_asymmetry Average over all bifurcations of the ratio between the absolute difference between the numbers of terminations in 
the two subtrees and their sum

Fractal_Dim Average over all branches of the slope of the regression line between the log10 of the path distance and the log10 
of the Euclidean distance of each tracing point from the beginning of the branch

Pk_classic Average over all bifurcations of ratio between the sum of the diameters of the two daughters, each elevated to 1.5, 
and the diameter of the parent, elevated to 1.5

Bif_ampl_local Average over all bifurcations of the angle between the first two daughter compartments

Bif_ampl_remote Average over all bifurcations of the angle between the ends of the two daughter branches

http://neuromorpho.org/myfaq.jsp
http://cng.gmu.edu:8080/Lm/help/index.htm
http://cng.gmu.edu:8080/Lm/help/index.htm
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Supplementary_Material
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the R package Hmisc (Harrel & Dupont, 2021). We then used Principal 
Component Analysis (PCA) to reduce the feature redundancy. PCA 
transforms the data into a set of new orthogonal variables by iden-
tifying the directions (principal components) along which the vari-
ation in the data is maximal (Abdi & Williams, 2010). By discarding 
the least informative components, each sample can be represented 
by fewer, linearly independent features instead of more, mutually 
dependent variables (Ringnér, 2008). Thus, PCA reduces the dimen-
sionality while retaining most of the variation in the data. PCA was 
performed with the R package stats (R Core Team, 2021) by using 
the function prcomp() and setting scale = TRUE. Along with PCA, all 
parameters were standardized by first subtracting the mean of the 
entire feature vector from each element and then dividing by the 
standard deviation.

2.3  |  Supervised learning

In supervised machine learning, an algorithm is trained with the 
known class labels and identifies the most informative combina-
tion of features that are associated with those labels (Kotsiantis 
et al., 2006). The resultant classifiers can then be applied for predict-
ing the labels of unknown data based on their feature values. In this 
study, the training data consisted of the normalized principal com-
ponents of the morphometric features as input, and the known class 
labels (the cell identity as ‘neuron’ or ‘glia’) as output. We used three 
distinct supervised learning algorithms and R (Core Team,  2021) 
v.4.1.1 for Windows as the computing platform. These classifiers 
were used to distinguish between neurons and glia, and no subset 
classifiers were trained and used to distinguish between different 
metadata categories of these cells. In all cases, we calculated sensi-
tivity, specificity, and accuracy, respectively, defined as the fractions 
of true positives, true negatives, and correctly classified (true posi-
tives plus true negatives) cells, using the caret (Kuhn, 2021) package 
in R (Core Team, 2021).

K-nearest neighbor (KNN) is a supervised learning algorithm that 
can be used both for classification (discrete value output), as applied 
here, and regression (continuous value output) problems. In KNN, 
the training instances are stored with their labels and each new in-
stance is compared with the labeled ones using similarity measures. 
Each new instance is classified based on labels of the K most simi-
lar neighboring instances. For example, if K is set to 5, five nearest 
neighbors are identified from the training data and the class label 
with the highest frequency is assigned to the new instance (Aha 
et al., 1991). The default Euclidean distance was used here to com-
pute similarity between two data points. The built-in caret package 
(Kuhn, 2021) was utilized for the KNN implementation by using the 
train() function and setting method = “knn” with tuneLength = 10 and 
K = 5.

Support vector machine (SVM) is a binary classification algorithm 
based on finding the maximum margin hyperplane that gives the 
greatest separation between the data points of different classes in 
multidimensional space. Those data points closest to the hyperplane 

are called the support vectors. If the data are not linearly separable, 
different kernels can be selected for nonlinear classification. This 
classifier is robust to large number of variables and small sample sizes 
(Cortes & Vapnik, 1995). We implemented SVM using the caret pack-
age (Kuhn, 2021) using the train() function with tuneLength = 10, and 
method = “radial” kernel, which is a common choice for classification 
tasks (Luts et al., 2010).

Random forest (RF) consists of a large number of individual deci-
sion trees. Each individual tree in the forest splits out a class predic-
tion and the most frequent class becomes the model prediction. This 
is one of the most popular machine learning algorithms and is capable 
of both classification (as used here) and regression (Breiman,  2001; 
Sarica et al.,  2017). We applied the randomForest package (Liaw & 
Wiener, 2002) using function train(), method =  “rf”, and ntree = 500. 
The rationale for this choice is that a relatively high number of deci-
sion trees ensures that every input row is predicted multiple times. 
Parameter mtry determines the number of variables randomly sampled 
as candidates at each split and was set to the default value of 5.

2.4  |  K-fold cross-validation (K-fold CV)

It is customary in supervised learning to train the model on the ma-
jority of the data, leaving the remaining for testing. To rigorously 
examine the classification performance on our data, we performed 
k-fold cross-validation. This process divides the dataset into k equal 
parts. A classifier is first trained on k−1 parts for each fold. The accu-
racy of the trained model is then assessed by using the part of data 
excluded from the k−1 parts in training (Bouckaert, 2003). We per-
formed 10-fold CV repeated 10 times using the caret (Kuhn, 2021) 
package by using the function trainControl(), method = “repeatedcv”, 
number = 10, and repeats = 10.

PSwarm is a global optimization solver for bound and linearly 
constrained problems (Vaz & Vicente, 2009). This algorithm is based 
on a pattern search and particle swarm method, which guarantees 
the convergence to stationary points from arbitrary starting points. 
We used the PSwarm Solver (v.1.5, June 2020, www.norg.uminho.
pt/aivaz/​pswar​m/) implementation in R to find the linear discrimi-
nant of neurons and glia based on two morphometric parameters. 
We set the lower and upper bounds to 75 and 175, respectively, for 
intercept and to −10 and 75 for slope, and the number of iterations 
(maxit) to 2·109. One limitation of PSwarm optimizer is that it can 
only be implemented on a Windows machine.

All analyses were carried out on a 64-bit machine equipped with 
an Intel Core i7-8565U and 16 GB of RAM running Windows 10. The R 
scripts utilized in this work are released open source at https://github.
com/Masoo​d-Akram/​Class​ifica​tion_Neuro​ns-Glia/tree/main/R_Code.

Average branch Euclidean length (ABEL) is the average over all 
branches in a cell of the straight-line distance between the begin-
ning and ending points of each branch. This quantity was calculated 
from three of the morphometric parameters provided for each cell 
by NeuroMorpho.Org: branch path (geodesic) length, the number 
of branches, and contraction, which is the ratio between Euclidean 

http://www.norg.uminho.pt/aivaz/pswarm/
http://www.norg.uminho.pt/aivaz/pswarm/
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/R_Code
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/R_Code
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branch length and branch path length (its inverse is tortuosity). 
Specifically, ABEL was derived by summing the product of contrac-
tion by branch path (geodesic) length and then dividing the result by 
the total number of branches in each cell:

where NB is the total number of branches. We also calculated ABEL 
of the terminal branches (from a bifurcating point to the tip) and of 
internal branches (between two consecutive bifurcation points) of 
both glia and neurons from the .swc reconstruction files provided 
by NeuroMorpho.Org using L-Measure. In particular, for every 
cell, we first extracted branch path length and contraction values 
while setting “Terminal_Degree = 1” under Specificity for terminal 
branches and “Terminal_Degree>1” for internal branches. Once ei-
ther terminal or internal branches were so selected in the L-Measure 
Specificity tab, the morphometric feature of interest (Contraction 
and Branch_pathlength) was selected in the Function tab. The .swc 
files of the cells were uploaded in the Input tab, and the resulting 
.csv file containing the measurements was downloaded from the 
Output tab by selecting the “Raw data” option. We then multiplied 
the path length and contraction values and took the average within 
each group (terminal, internal). Lastly, we were also interested to de-
termine the classification power of ABEL when only a small sample 
of branches was used to estimate the ABEL value. To this aim, we 
first extracted for every cell path length and contraction values of 
all branches with L-Measure without setting any Specificity (thus 
including both internal and terminal branches) and multiplied each 
pair of values to obtain the Euclidean lengths of all branches. We 
then utilized the random library (Van Rossum,  2020) in Python 3 
(Van Rossum & Fred,  2009) to stochastically select 100 sets of N 
values without replacement, where N varied from 1 to 15. The N 
values were used to compute ABEL within each set, and the aver-
age and standard deviation were then computed over the 100 sets. 
Finally, classification was carried out using the mean ABEL value. 
The code for this analysis is released open source at: https://github.
com/Masoo​d-Akram/​Class​ifica​tion_Neuro​ns-Glia/tree/main/
Python_Code.

3  |  RESULTS

We began our quantitative analysis by inspecting the morphomet-
ric features extracted for neurons and glia (Figure 4). The pairwise 
coefficients of determination (R2) for glial (Figure 4a) and neuronal 
(Figure  4b) morphometrics revealed substantial correlations be-
tween specific features. For example, surface is highly correlated 
to volume, the number of bifurcations to the number of branches, 
length, fragmentation, and branch order (and the latter four to 
one another), path distance to Euclidean distance, and contraction 
to fractal dimension. Although the coefficients of determination 
tended to be higher in neurons than in glia, most visibly between 

maximum path distance and total surface area, and between over-
all height and maximum Euclidean distance, the majority of correla-
tions were highly consistent between the two cell types. In order 
to remove the interdependency among features, we performed 
PCA jointly on the full dataset to orthogonalize the morphometric 
parameters (Figure 4c). The first 11 principal components captured 
95.70% of the variance and we thus decided to exclude the last eight 
components from machine learning. The 11 principal components 
considered in subsequent analysis constitute a combined transfor-
mation of all 19 morphometric parameters described above but are 
guaranteed by PCA to be independent.

The first two components (PC1 and PC2) alone capture more 
than 50% of the overall morphological variance in neural cells. A 
striking separation between cell classes is apparent on the PC1–PC2 
projection plane, with neurons more abundant toward positive coor-
dinates and glia toward negative in both dimensions (Figure 5a). Data 
points that are close to each other in this projected space represent 
structurally similar cells, whereas morphologically different cells oc-
cupy distant positions. The first two principal components consist of 
distinct linear combinations of morphometrics: PC1 (Figure 5b) has 
strongly positive loading on size (e.g., total cable length, overall arbor 
height, maximum path distance), while PC2 (Figure 5c) has strongly 
negative loadings on tree complexity and other scale-invariant mea-
sures, such as number of bifurcations, maximum branch order, and 
fractal dimension. These results, therefore, confirm that neurons 
have greater overall arbor size than glia, as quantifiable by multiple 
alternative metrics. Furthermore, this analysis reveals that, com-
pared to neuronal dendrites, glial processes tend to form bushier 
trees, with more symmetric branching distributions and wider bifur-
cations angles.

The above analysis suggests that neurons and glia may be reli-
ably recognized based on morphological features alone independent 
of numerous confounds such as species, anatomical region, and ex-
perimental methods. To test this hypothesis, we used the 11 princi-
pal components explaining >95% of the variance for classification 
with three supervised learning algorithms: Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). In all 
cases, we performed 10-fold cross-validation: the dataset was ran-
domly split into 10 folds without replacement, with 90% of the data 
used to train the classifier and the remaining 10% used for testing. 
The process was repeated 10 times for more reliable assessment. 
The total runtime for 10 repeats of 10-fold cross-validation was 
15 min for KNN with 5 nearest neighbors (k = 5), 2.2 h for SVM, and 
5 h for RF. All three classifiers performed remarkably well in sepa-
rating glia from neurons (Figure 6). SVM slightly outperformed KNN 
in terms of sensitivity, specificity, and accuracy, with RF displaying 
intermediate performance metrics. However, all classification mea-
surements fell within 1% difference for the three algorithms, and the 
area under the curve (AUC), a robust measure of predictive modeling 
accuracy, was >99.5% for each of them.

The nearly perfect results obtained from supervised classifica-
tion by using morphometric features along with the PC1 and PC2 
loadings clearly showed that the measures of arbor size such as 

ABEL =

∑NB

i=1
(Contraction × Branch path length)

NB
,

https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Python_Code
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Python_Code
https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Python_Code
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overall height and total length and measures of arbor complexity 
such as number of branches constitute viable candidates for further 
exploration of morphometric features. Although the corresponding 
silhouette profiles (Figure 7) corroborated the expected statistical 
differences, it also revealed extensive overlap in the correspond-
ing data distributions. For example, the optimal height threshold to 
discriminate neurons from glia (76.15 μm) resulted in a suboptimal 
classification accuracy of <0.95, with >6% of neurons misclassified, 
and even worse performance for total length, number of branches, 
and any other individual parameter. These silhouette plots clearly 
demonstrate that neurons have longer cables and glia have more 
branches. Based on these results, an appropriately combined fea-
ture was proposed that could achieve a multiplicative improvement 
in discrimination. This new morphometric feature, Average branch 
Euclidean Length (ABEL), was derived by dividing length with num-
ber of branches, which define average branch path length, and multi-
plying branch length by contraction and averaging over all branches, 

which define average branch Euclidean length. Silhouette analysis 
confirms the considerably better separation between neurons and 
glia based on ABEL when compared to all other individual morpho-
metrics (Figure 7).

The optimal ABEL threshold of 14.33 μm results in overall clas-
sification accuracy of 97.6%, with fewer than 2.4% of glia and 2.5% 
of neurons misclassified. Notably, the misclassification rate dropped 
steeply around the threshold ABEL value, with >90% of the misclas-
sified cells found in a narrow ABEL range of 7 (12–19) μm (Figure 8a). 
These results were robust across multiple species (such as mouse, 
rat, drosophila melanogaster, rabbit, and monkey), strains (e.g., 
Sprague–Dawley, C57BL/6J, Albino, Canton S G1 × w1118, Long-
Evans), developmental stages (adult, old, young, neonatal, fetal, 
and larval), anatomical regions (hippocampus, neocortex, amygdala, 
and pons, among others), types of glial and neuronal cells (microg-
lia, astrocytes, oligodendrocytes, principal cells, interneurons, and 
sensory neurons), labeling techniques (such as immunostaining, 

F I G U R E  4  Orthogonalization of morphometric features. (a) Correlation matrix quantifying the interdependence among 19 morphometric 
features of glia and of (b) neurons. The coefficient of determination (R2) is shown on a dark intensity scale. (c) Scree plot of the variance 
contributed by each sequential principal component (blue bars, left axis) and the corresponding cumulative distribution (red line, right axis).
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enhanced green fluorescent protein, and Golgi), and additional ex-
perimental details, as compiled in the Supporting Information. For 
example, when dividing all data by contributing labs, for more than 
three-quarters of cases the misclassification rate was <1%. The rare 
exceptions consisted of specific phenotypes as discussed at the end 
of the Results. Furthermore, even an incomplete sampling of neural 
branches is sufficient for reliable classification based on ABEL: the 
accuracy is essentially unaltered when using 15 randomly chosen 
branches (97.3%) and remains above 95% when reducing the ABEL 
sample size to five branches (Figure  8b). To determine if the clas-
sification could be improved further by considering arbor height 
together with ABEL, we combined the two measures (Figure  8c). 
The optimal linear boundary, which is the line best separating 
neurons and glia in two-dimensional space, followed the equation 

A = −0.1352H + 23.04 μm, where A and H stand for ABEL and height, 
respectively. This combination increased the classification accuracy 
of glia and neurons only marginally compared to using ABEL alone, 
from 97.6% to 98.5%. Altogether, these results indicate that ABEL is 
an effective, novel morphological biomarker for identifying the main 
neural cell class.

Multiple studies reported that certain neuron types have lon-
ger terminal branches than internal (bifurcating) branches (Duan 
et al., 2002; Kawaguchi et al., 2006; Li et al., 2005), but it remains 
unknown whether the same may be true for glia. Since neurons have 
greater ABEL values than glia, if glial processes have similar length 
for their terminal and internal processes, then terminal ABEL might 
be even more effective than overall ABEL to distinguish neurons 
from glia. To test this possibility, we extracted terminal and internal 

F I G U R E  5  (a) PCA biplot of the two-dimensional distribution of neurons and glia relative to the first two principal components (PC1 and 
PC2). Morphological tracings of several cells (glia: Blue; neurons: Green) are also shown to illustrate their structural variability and similarity 
in this space. (b) Linear contributions of all morphometric parameters to PC1 and (c) PC2. Negative loadings indicate a high weight of the 
scale low-end for a parameter; for instance, cells with large positive PC2 values tend to have very few branches, whereas cells with many 
branches tend to have large negative PC2 values.
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ABEL for all cells. The distribution of the ratios between terminal and 
internal ABEL values had an average of approximately 2 for neurons 
(Figure  9a), confirming earlier reports that dendrites tend to have 
longer terminal than internal branches. In contrast, the distribution 
of the terminal/internal ABEL ratios had an average close to unity for 
glia, indicating that this phenomenon is limited to neurons. This was 
also confirmed by linear regression analysis, where the relationship 
between terminal ABEL and overall ABEL was essentially described 
by the identity line, which is given by y = x, for glia, but had a slope 
above unity for neurons (Figure  9b). Nevertheless, terminal ABEL 
did not improve the classification accuracy of glia and neurons com-
pared to overall ABEL; in fact, it was slightly decreased to 97.1%, 
with an optimal separation threshold of 16.20 μm. To investigate 
why restricting ABEL measurements to terminal branches failed to 
improve classification performance, we examined the terminal/in-
ternal ABEL ratio specifically for the misclassified cells (Figure 9c). 
Interestingly, those outlying neurons with exceptionally low ABEL 
values also displayed similar length between terminal and internal 
branches. Conversely, outlying glia with exceptionally high ABEL 
values had longer terminal than internal branches. Linear regression 
of terminal ABEL versus overall ABEL for the misclassified cells also 
confirmed that most cells misclassified using overall ABEL are also 
misclassified using terminal ABEL (Figure 9d).

It is interesting to ask whether there are sex differences in 
ABEL and its ability to discriminate neurons from glia. The sex of 
the animal was only specified in approximately half of the original 
published data available for this study in NeuroMorpho.Org. In par-
ticular, 48.4% of the glia and 42.9% of the neurons came from data-
sets that either did not mention the sex of the animal or explicitly 
included males and females but did not annotate the animal sex for 
individual cells. The datasets that explicitly identified the sex of the 
animal for individual cells included data from both males (31.6% of 
glia and 46.5% of neurons) and females (20.0% of glia and 10.6% 
of neurons). When considering male and female animals separately, 
ABEL was found to be equally capable of separating neurons and 
glia (accuracy for males: 98.1%, and for females: 98.3%). For both 

neurons and glia, ABEL was slightly but significantly smaller in fe-
males than in males (female/male ABEL ratio: 0.74 for glia, 0.84 for 
neurons). Accordingly, the ABEL threshold to discriminate between 
glia and neurons was smaller for females (12.18 μm) than for males 
(15.21 μm). These differences between sexes were small compared 
to the main effect between cell types, where ABEL is significantly 
smaller for glia than for neurons (glia/neuron ratio: 0.13 for males, 
0.12 for females). The complete ABEL results by sex and cell types 
are reported in the Supporting Information.

Next, we tested the robustness of ABEL as a morphological bio-
marker of neurons and glia and how well the optimized classification 
thresholds generalize to new cell datasets. To this aim, we extended 
the analysis to the additional glial cells released at NeuroMorpho.
Org since the beginning of this study and through the time of this 
writing (v.8.1.90; N = 4286), balancing the dataset with an equiva-
lent number of neurons (N = 4292) from similar species, anatomical 
regions, and other metadata (as detailed in Supporting Information). 
The ABEL classification accuracy for this new dataset was the same 
at 97.6% (using the unaltered 14.33 μm threshold). We then tried to 
assess whether the few outliers were due to systematic patterns or 
random noise. Classification accuracy was largely consistent across 
almost all of the metadata investigated, with only notable exceptions 
when portioned by brain region (Figure 10a). Specifically, the high 
misclassification rate in the cerebellum prompted a deeper evalua-
tion of cells from that region. The misclassified glia consisted of 70 
transitional oligodendrocytes and only one Iba1-positive microg-
lia, whereas all 78 oligodendrocyte precursor cells, and the rest of 
cerebellar microglia were correctly classified (Figure  10b). The 62 
misclassified neurons include eight out of 11 granule cells, and all 
54 Purkinje cells, whereas cerebellar basket, stellate, Golgi, Lugaro, 
and glutamatergic cells were all correctly classified (Figure 10c). The 
results indicate that certain cerebellar neurons, specifically Purkinje 
and granule cells, share similar ABEL with glia. The second, less ex-
treme, exception consisted of the peripheral nervous system (PNS). 
Here, we found that the single culprit was a specific subtype of in-
vertebrate sensory neuron: dendritic arborization (da) Class III cells 
from the fly larva (46 out of 47 misclassified). In contrast, 104 out 
of 108 Class I and Class IV sensory neurons, and the vast majority 
(98.5%) of PNS glial cells, were correctly classified.

Lastly, we tested whether ABEL could differentiate among the 
three main types of glia (microglia, astrocytes, and oligodendrocytes) 
and of neurons (principal cells, interneurons, and sensory neurons) 
as distinguished in NeuroMorpho.Org. Unfortunately, we found that, 
although ABEL could separate well all types of glia from all types 
of neurons, the three types of glia had overlapping distributions 
and so did the three types of neurons (see Sub-Type Classification 
in Supporting Information), which prevented their discrimination by 
this parameter. We, thus, asked whether the machine learning ap-
proach that classified glia and neuron with >99% accuracy could re-
liably distinguish the six different cell types. A major limitation we 
encountered, however, was the imbalanced proportion of these dif-
ferent cell types in publicly available datasets. Out of 15,680 glial 
cells from NeuroMorpho.Org, 11,953 are microglia, 3355 astrocytes, 

F I G U R E  6  Classification performance for support vector 
machine (SVM), K-nearest neighbors (KNN), and random Forest 
(RF), including the area under the curve (AUC) of the receiver-
operating characteristic plot.
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and 372 oligodendrocytes. Similarly, out of 15,690 neurons, 13,718 
are principal neurons, 1615 interneurons, and 357 sensory neu-
rons. In data classification, uneven distributions tend to increase 
the chance of false-negative errors for the least abundant classes. 
Correspondingly, although the overall accuracy of the six-class clas-
sification using Support Vector Machine (SVM) was still promising 
(93.2%), the sensitivity was only acceptably high for microglia (97.3%) 

and principal cells (98.1%) but dropped substantially for astrocytes 
(81.3%), oligodendrocytes (55.9%), sensory neurons (63.6.1%), and 
interneurons (60.6%). Thus, in order to identify the best morpho-
metric parameters to distinguish among neuronal types and among 
glial types, it will be necessary to obtain a more balanced distribution 
of reconstruction data. The complete ABEL and SVM results by cell 
sub-types are reported in the Supporting Information.

F I G U R E  7  Silhouette profiles of length, height, contraction, number of branches, and average branch Euclidean length (ABEL) of glia and 
neurons, and examples of branch Euclidean length measurements from a rat basal ganglia GABAergic cell (NMO_68194) from the Smith 
archive (Smith et al., 2015).
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4  |  DISCUSSION

Open sharing of digitally reconstructed neuronal morphology from 
labs across the world has made it possible for researchers to carry 
out statistical analysis, classification, and computational modeling 
of their interest (Bota & Swanson, 2007; Halavi et al., 2012; Parekh 
& Ascoli, 2015). Far fewer morphological classification studies have 
also included glia, and they typically did not focus on directly com-
paring neurons to glia. For example, Leyh et al. (2021) classified dif-
ferent types of microglia in healthy and diseased mouse model, while 
Zhang et al. (2021) added glia as a separate phenotype in a multiclass 
neuron type categorization task using deep learning. Recognizing 
the morphological signatures that distinguish glia from neurons is an 
important yet unfulfilled step.

This study sought to determine whether neuronal dendrites and 
glial processes can be reliably separated solely based on their arbor 
geometries and independent of animal species, anatomical region, 
developmental stage, and experimental condition. To this aim, we 
harnessed all publicly available reconstructions of glia and com-
pared them with an equivalent number of neurons with as closely 

matching metadata as possible. The resulting dataset of over 30,000 
cells spanned the very broad methodological diversity in the field. 
Our results showed that supervised learning methods are able to dis-
tinguish neurons from glia with exceptionally high (>99%) accuracy. 
We, thus, set out to determine which specific differences could ex-
plain such striking separation. While neurons were confirmed to have 
larger arbors than glia, we also discovered that glial trees tend to bi-
furcate more than neurons, and that glial branches are slightly more 
tortuous than their neuronal counterparts. These morphometric fea-
tures have already proved useful in the separate investigation of neu-
rons (Kawaguchi et al., 2006; Polavaram et al., 2014), and glia (Khakh 
& Deneen, 2019; Verkhratsky et al., 2019), but to our best knowledge 
never in their comparison. Combining these measurements, we de-
fined a novel morphometric parameter, the average branch Euclidean 
length or ABEL, and demonstrated that it constitutes a powerful and 
robust morphological biomarker of cell type. Throughout the whole 
dataset, glia had smaller ABEL values than neurons, and fewer than 
2.5% of cells were misclassified based on a simple ABEL threshold 
of ~14 μm. Standard measures of arbor size, such as height, yielded a 
more than double misclassification rate relative to ABEL.

F I G U R E  8  Classification performance of average branch Euclidean length (ABEL). (a) ABEL distributions of neurons (green), glia (blue), and 
cells that are misclassified (red, secondary axis) based on optimal separation threshold of 14.33 μm (vertical dashed line). (b) Misclassification 
rate as a function of the number of branches sampled to estimate ABEL. (c) Linear separation (black dashed line) between neurons (green) 
and glia (blue) on the plane defined by arbor height and ABEL.
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Molecular expression remains a prominent approach for the 
consistent identification of cell types in the nervous system. For 
example, glial fibrillar acidic protein (GFAP), nerve/glial antigen 2 
(NG2), and ionized calcium binding adapter molecule 1 (Iba1) are 
commonly utilized to identify distinct classes of glia. Similarly, 
neurons are often distinguished by their main neurotransmitter 
based on presence of vesicular glutamate transporters, glutamic 
acid decarboxylase, choline acetyl transferase or tyrosine hydro-
lase. In situ hybridization of the corresponding genes is useful to 
study the somatic distribution of these neurons and glia but does 
not label their dendrites and processes. Immunostaining can, in 
some cases, visualize cell-type-specific neural arbors, and multi-
color combinations of antibodies may allow co-labeling of distinct 
cell types in the same preparation. In contrast, relatively simpler 
but non-selective staining such as Golgi (Ghosh,  2020) impreg-
nates a broad spectrum of neurons and glia. In these cases, ABEL 
can provide a practical way to quickly recognize neurons from glia. 
It is important to note in this regard that measuring ABEL does not 

necessarily require the detailed tracing of the full arbors. Euclidean 
length is simply defined as the straight-line distance between the 
start and end points of a branch, which can be computed directly 
from the microscopic image in any common software. Moreover, 
we showed that as few as five branches are sufficient to provide 
an ABEL approximation that distinguishes glia from neurons with 
>95% accuracy. Even for complex arbors with hundreds of bifur-
cations and terminations, it is thus possible to estimate ABEL with 
minimum effort.

Besides the practical utility, it is tempting to speculate about the 
possible scientific interpretation of our main finding. The systemati-
cally small ABEL values of glia suggest a tendency to optimize spatial 
occupancy, consistent with extensively reported tiling properties 
for these cells (Barber et al., 2021; Pogodalla et al., 2022). In con-
trast, the larger ABEL values of neurons are indicative of pressure 
to maximize spatial exploration, in line with the role of dendrites to 
integrate converging synaptic signals from multiple neural pathways 
(Anton-Sanchez et al., 2018; Stepanyants & Chklovskii, 2005). It is 

F I G U R E  9  Relationship between the average branch Euclidean length (ABEL) of terminal branches and internal (bifurcating) branches 
for glia (blue) and neurons (green). (a) Distribution of the ratio between terminal and internal ABEL, with medians (vertical dotted lines) and 
means (vertical dashed lines) indicated. (b) 2D scatter and linear regression between terminal ABEL and all-branch ABEL, with respective 
classification thresholds indicated by horizontal and vertical dashed lines. (c) Same as A except limited to cells that are misclassified based on 
all-branch ABEL. (d) Same as B except limited to cells that are misclassified based on all-branch ABEL. The filled circles represent the subset 
of neurons and glia that are misclassified based on all-branch ABEL but correctly classified based on terminal ABEL. An even larger number 
of cells (not shown) are correctly classified based on all-branch ABEL but misclassified based on terminal ABEL.
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especially intriguing to consider the rare exceptions that emerged 
from our analysis. Since the only glial outliers in terms of ABEL were 
transitional oligodendrocytes, it is possible that the compact arbor 
is an acquired property of mature glia rather than an innate feature, 
and that seeking myelination targets requires a degree of spatial 
exploration. The main neuronal exceptions were cerebellar gran-
ule and Purkinje cells. It may not be a coincidence that these two 
neuron types together form one of the most peculiar circuits in any 
neural system: the parallel fibers of the cerebellum, which ascend 
from granule cell axons and contact the Purkinje dendrites on up 
to 100,000 spines. Purkinje cells are the output cells of the cere-
bellar cortex, and their dense, planar dendrites are fan-shaped and 
branch extensively to cover the field of their respective territories 
without overlapping (Fujishima et al., 2018). These features, which 
push Purkinje dendrites toward the compact spatial occupancy typi-
cal of glia, are dictated by the need to sample the exceptionally large 
number of synaptic signals from the parallel fibers (Hirano, 2018). 

Cerebellar granule cells are the single most abundant neuron type in 
the mammalian brain (Herculano-Houzel, 2010) as well as the most 
densely packed (Badura & De Zeeuw, 2017), leading to considerably 
small dendritic fields (Houston et al., 2017). These characteristics, 
again determined by the unique connectivity profile of the cerebel-
lar parallel fibers, are more akin to those of glial processes than of 
typical neuronal dendrites. Of note, the other cerebellar neurons 
(basket, Lugaro, Golgi, and stellate cells) are all correctly classified by 
ABEL. These exceptions point to a clearly different cell organization 
in the cerebellum compared to other brain regions.

Aside from the sparse exceptions, the robustness of the re-
sults reported in this study is underscored by the very large data-
set, distributed provenance of the reconstructions, and broad 
diversity of metadata. At the same time, it is also essential to 
recognize that this study is intrinsically limited by data availabil-
ity. For example, although the included species span primates, 
rodents, fish, and invertebrates, the majority of reconstructions 

F I G U R E  1 0  Classification of glia and neurons across anatomical regions. (a) Number of cells analyzed (stacked blue bars, right axis: 
Main dataset, solid; and additional dataset, striped) and classification accuracy (black line and red triangle, left axis). (b) ABEL distribution of 
cerebellar glia. Cells to the right of the threshold (vertical dashed line) are misclassified. (c) ABEL distribution of cerebellar neurons. Cells to 
the left of the threshold (vertical dashed line) are misclassified.
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for both neurons and glia come from rats and mice. Furthermore, 
while many anatomical regions are represented in the study, the 
list is far from complete. And albeit several classes of glia and of 
neurons were analyzed, their distribution was far from uniform. 
These factors reflect the state of the research in this field rather 
than a flawed analysis design. Nevertheless, the conclusions must 
be considered tentative until further validated as more data con-
tinue to accumulate.

This work also illustrates the usefulness of subjecting very large 
datasets to exploratory analysis via machine learning, followed by 
a targeted investigation of the most promising phenomena or pat-
terns revealed. This “breadth-then-depth” approach may help shed 
light on otherwise elusive mechanisms. In particular, tracing glial 
morphology has become progressively more common and, thanks 
to increased awareness of data sharing, ever larger amounts of 
glial reconstructions are being deposited to NeuroMorpho.Org. 
This increment in data availability in a public repository opens new 
doors for scientific discovery, especially when applying different 
analysis and modeling techniques for glia that have been produc-
tively applied to neurons since the early days of computational 
neuroscience.
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