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INTRODUCTION

Increasingly, animals are moving through human- altered 
landscapes (Tucker et al.  2018). Infrastructure, growing 
human populations and artificial boundaries, such as 
fences or roads, are disrupting animal movement patterns 
(Doherty et al.,  2021; Løvschal et al.,  2017; Wittemyer 
et al. 2008) and consequently, many far- ranging or migra-
tory species are in decline (Campbell et al., 2021; Harris 
et al., 2009; Studds et al., 2017; Wilcove & Wikelski, 2008). 
In order to effectively protect these species, it is essential 
to understand how animals respond to environmental fea-
tures and disturbances and to identify the areas, such as 
migratory corridors, stop- over sites or foraging grounds 
that are vital for the survival of a species.

In recent years, there has been a rapid advance in 
our ability to collect high frequency data on the move-
ment and behaviour of animals (Brown et al.,  2013; 
Kays et al., 2015; Wilmers et al., 2015). Allied with the 
increase in data availability has been the development 
of statistical models (Hooten et al.,  2017) that infer 
key characteristics of movement and identify the driv-
ers of observed movement patterns, one of the core 
aims of movement ecology (Nathan et al.,  2008). A 
fundamental component in the statistical analysis of 
movement has been the random walk model (Codling 
et al.,  2008; Fagan & Calabrese,  2014; Kareiva & 
Shigesada,  1983). Using both continuous and dis-
crete time formulations, this approach has been em-
ployed to detect different behavioural modes, such as 
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as well as revealing the impacts of environmental features on movement behaviour.
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encamped or exploratory, in movement data (Morales 
et al., 2004), to refine home range estimates based on 
the autocorrelation present in trajectories (Fleming 
et al., 2015), to detect spatially or temporally shifting 
migration routes (Gurarie, Cagnacci, et al. 2017) and 
to evaluate the role of social interactions in driving 
movement decisions (Haydon et al.,  2008; Torney, 
Lamont, et al. 2018).

Examining the landscape level drivers of move-
ment has typically employed parametric functions of 
environmental covariates via hidden Markov mod-
els (Langrock et al.,  2012) or step selection functions 
(Avgar et al., 2016; Thurfjell et al., 2014). Recently, non- 
parametric approaches have been proposed that allow 
continuous and time- varying movement parameters 
to be incorporated into models (Michelot et al., 2021; 
Torney et al., 2021). An important next step in the de-
velopment of these models is to identify the underlying 
spatially varying factors that influence animal move-
ment. To do so requires flexible, data- driven models 
that are able to capture complex spatial features and 
the nonlinear behavioural responses they elicit, as well 
as being able to efficiently process the large amounts of 
data required for accurate inference.

In this work, we present a hierarchical spatial 
model based on multilevel Gaussian processes (GPs) 
(Heinonen et al., 2016; Rasmussen & Williams, 2006). 
We employ a velocity- based movement model which 
is linked to an underlying latent spatial field via the 
introduction of a novel non- stationary covariance ma-
trix. While previous works (Hooten & Johnson, 2017; 
Torney et al., 2021) have also applied hierarchical GPs 
to animal movement, the novelty of our approach is 
that by linking the velocity- based movement model 
to latent spatial fields we are able to reveal the per-
sistent, spatially varying movement characteristics of 
mobile animal populations based on positional data 
collected from multiple individuals. To enable efficient 
inference of data sets consisting of potentially millions 
of data points, we employ Bayesian variational learn-
ing (Blei et al., 2017) a novel approach in this context 
that replaces traditional computationally expensive 
sampling- based inference with fast stochastic optimi-
sation. For data set sizes of over one million location 
observations, we show that model fitting takes in the 
order of hours yet still provides full posterior distribu-
tions over the latent fields.

In what follows, we firstly present further theoretical 
background on non- stationary GPs. We next describe 
the computational inference methodology we employ to 
fit the model to data and provide two example studies. 
In the first, we generate a synthetic data set with known 
properties that we infer with our framework. In our sec-
ond case study, we apply the framework to telemetry 
data collected over a period of 6 years from a long- term 
study of the Serengeti wildebeest migration.

M ETHODS

Background

Within statistical ecology, Gaussian random fields are 
a popular tool for the modelling and analysis of spa-
tial data (Banerjee et al., 2003; Rue et al., 2009). As op-
posed to semi- parametric approaches, such as splines 
or radial basis functions, a random field models a 
two- dimensional surface (representing a latent field or 
spatially correlated residuals) as a realisation of a sto-
chastic process (Gelfand & Schliep, 2016). If every finite 
collection of random variables that form this stochastic 
process has a multivariate normal distribution, then the 
random field is a Gaussian random field, or GP.

As all linear stochastic differential equations (SDEs) 
can be expressed as GPs with an appropriate covariance 
structure (Särkkä et al., 2013), all random walk move-
ment models that can be formulated as a linear SDE are 
also equivalent to GPs (Hooten & Johnson, 2017; Torney 
et al.,  2021). Hence, linking spatial Gaussian random 
fields with a continuous- time movement model involves 
linking one GP with another and is an example of multi- 
layered GP regression. Inference with multi- layer GPs 
is an active area of research in the machine learning 
community, and several different approaches have been 
employed. One approach is to use the outputs from mul-
tiple low level GPs to define the covariance structure of 
a high- level GP (Heinonen et al., 2016) leading to a non- 
stationary stochastic process at the highest level. This 
method can be used to model data that have charac-
teristics, such as autocorrelation or variance, that vary 
over time or space. It is this approach that we adopt in 
this work to learn multiple latent spatial fields that de-
fine the parameters of a continuous- time velocity model 
of animal movement (Johnson et al., 2008). The spatial 
fields are therefore the lower level GPs which provide 
the parameters of a covariance function of a higher 
level GP. These parameters have a clear ecological in-
terpretability, representing the directional persistence 
and average speed of individuals at each location of the 
landscape.

In standard GP regression, we have some input lo-
cations x and some outputs y are observed. We assume 
yi = f

(
xi
)
+ �i for some unknown function f  with added 

white noise �i, where xi and yi are elements of x and y

, respectively. Unlike a parametric approach, where the 
focus is on parametric representations for the function f , 
a GP adopts a non- parametric approach by assuming a 
multivariate Gaussian prior over possible functions and, 
once data have been observed, producing a posterior dis-
tribution over f (x) that is consistent with the observed 
values of y. The aim of GP regression is therefore to infer 
a distribution over functions given the data, p(f ∣ x, y), 
and then to use this to make predictions given new input 
locations x∗, i.e. to compute
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Calculating the conditional probabilities, p(f ∣ x, y) 
and p(y∗ ∣ x∗, x, y), is made possible by the specification 
of a GP prior on the function f . We have assumed that 
our prior distribution over possible functions is defined 
as

where m(x) = �
[
f (x)

]
 is the mean function and 

k
(
x, x�

)
= �

[
(f (x) −m(x))

(
f
(
x�
)
−m

(
x�
))]

 defines the 
covariance function (or kernel). For standard GP regres-
sion, the key challenge for fitting a model to data is ap-
propriately specifying the covariance kernel, k

(
x, x′

)
. If 

k
(
x, x�

)
= k

(
| x − x�|

)
, i.e. the covariance value depends 

only on the distance between two locations and not their 
absolute location, then this is termed a stationary covari-
ance kernel. One choice of stationary covariance kernel is 
the exponential kernel defined as

where the kernel hyperparameters � and � control the 
amplitude and correlation length of the latent function 
f. Typically, the hyperparameters are optimised by max-
imising the marginal likelihood of the data (Rasmussen & 
Williams, 2006). The choice of covariance kernel in effect 
specifies a model for the data generating process; as de-
scribed below, using the exponential kernel is equivalent to 
fitting an Ornstein– Uhlenbeck (OU) process (Uhlenbeck 
& Ornstein, 1930) to the data.

Standard (stationary) GPs are powerful machine 
learning methods known for their predictive ability; 
however, stationary GPs lack the flexibility to model 
data when there is high function variability in the input 
space. In an animal movement context, that would cor-
respond to varying characteristics of the trajectories due 
to different behaviours, such as foraging, hibernation 
or migration, adopted by the animal. More flexible GP 
regression can be achieved by allowing the parameters 
of the covariance kernel and/or the observation noise 
to vary over space or time (Gibbs,  1997; Paciorek & 
Schervish,  2004). Heinonen et al.  (2016) model the pa-
rameters of a non- stationary covariance kernel with a 
multi- layer GP, using Hamiltonian Monte Carlo sam-
pling to sample from the low level GPs defining the ker-
nel parameters. This approach was applied to animal 
movement data by Torney et al.  (2021) to learn time- 
varying movement parameters with periodic (seasonal 
and diurnal) structure. Here, we extend this approach to 
learning random spatial fields that define the character-
istics of a velocity model through the development of a 
non- stationary covariance matrix.

A covariance matrix for non- stationary 
correlated velocity models

The correlated random walk (CRW) model of ani-
mal movement can be formulated in discrete- time 
(McClintock et al., 2012) and continuous- time (Gurarie, 
Fleming, et al. 2017). The continuous- time version em-
ploys a correlated velocity model, also called an OU 
velocity model or integrated OU model. Given that we 
are dealing with non- stationary data we wish to derive a 
non- stationary version of the correlated velocity model, 
that is, we wish to derive a covariance matrix that repre-
sents the correlation structure in positional observations 
of an animal following an autocorrelated continuous- 
time random walk with varying parameters. Our start-
ing point is therefore an assumed movement model for 
the animal that is a non- stationary OU velocity model 
described by the following equations:

where f is the true location of the animal, v is its velocity, 
wt is a Wiener process, and a(t) and b(t) are time- varying 
coefficients that determine the mean- reversion rate and 
volatility of the OU process, respectively.

While our movement model is a two- dimensional 
model, we will present the derivation of the covariance 
matrix in the one- dimensional case to simplify notation 
and calculations. In the case of constant parameters of 
the movement process, that is, a(t) = a and b(t) = b, the 
covariance function of the OU process is well- known 
(Gardiner, 2009) and is equivalent to the exponential co-
variance function after relaxation of transients terms,

To relate the covariance of the velocity process to the cova-
riance of the positions, we note that for a zero- mean posi-
tion process

(The zero- mean assumption can always be satisfied by a 
change of coordinates so that the initial location is at the 
origin). Through changing the order of integration and ap-
plication of Fubini's theorem, Equation 6 leads to

Hence, the covariance of the position process can be found 
by performing the double integration of the covariance of 
the velocity process. For constant parameters of the veloc-
ity process, the covariance function defined by Equation 5 

(1)p(y∗ ∣ x∗, x, y) = ∫ p(y∗ ∣ f, x∗)p(f ∣ x, y)df.

(2)f (x) ∼ (
m(x), k

(
x, x�

))
,

(3)k
(
| xi − xj|

)
= �exp

(
−

∣ xi − xj ∣

�

)
,

(4)
df= vdt,

dv= −a(t)vdt+b(t)dwt,

(5)Cov
(
vt, vs

)
=
b2

2a
exp( − a| t − s| ).

(6)Cov
(
ft, fs

)
= �

(
ftfs

)
= �

(

∫
t

0

vudu ∫
s

0

vrdr

)
.

(7)Cov
(
ft, fs

)
= ∫

t

0 ∫
s

0

Cov
(
vu, vr

)
dudr.
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may be substituted into Equation  7 and the integral is 
tractable.

In this work, we are interested in time- varying ve-
locity characteristics and we therefore employ a non- 
stationary version of Equation  5 proposed in Paciorek 
and Schervish (2004) as

where

and �(t), �(t) are the values at time t of the time- varying 
kernel timescale and amplitude parameters, respectively. 
Note that the parameterisation used here differs from that 
of Equation  5, but there is a direct correspondence be-
tween the two.

Substituting Equation 8 into Equation 7 gives

which contains an intractable integral due to the non- 
constant nature of � and �. To approximate a numerical 
solution to the double integral, we make the following 
assumption. As we have observations of the animal tra-
jectory at discrete, known time points, we assume that 
between two successive observations the parameters of 
the movement process are constant. This assumption 
means that if we have n observations, the non- stationary 
OU process will be split into n − 1 piecewise OU pro-
cesses, with each process having constant parameters. 
The advantage of this approach is that we can break 
down the integrals of Equation 7 into segments corre-
sponding to the intervals between observations. Each 
segment has constant � and � values; therefore, the inte-
gral can be solved. We then sum over segments to obtain 
the full integral.

In more detail, given observations at discrete time 
points t1, t2, tn, where n is the total number of observa-
tions, we have

The inner integral can be written as a sum of integrals with 
limits corresponding to observation times,

with a similar decomposition employed for the outer inte-
gral. Combined this leads to

As each term of the summation corresponds to a pair of 
between- observation intervals (p, q), the parameters of the 
movement process are taken to be constant. In our model, the 
movement parameters depend on spatial location; hence, we 
are unable to specify the true variable values between fixes. 
In order to specify the true spatially varying value, we would 
require knowledge of the animal's location between fixes and 
this information is unavailable due to the discrete nature of 
the observation process. We therefore must introduce an ap-
proximation and we do so by assuming the movement pa-
rameters are well approximated by the parameter values at 
the midpoint of the straight line between the two successive 
fixes. This gives values �p, �p and �q, �q that correspond to the 
constant parameter values associated with movement in the 
between- observation intervals p and q, respectively.

To obtain the parameters required for the non- 
stationary covariance kernel, we combine the con-
stant parameters within the observation intervals with 
Equation 9 to define,

and

Finally, we end up with a covariance function defined as a 
summation over a sequence of tractable integrals,

where the parameters �pq and �pq are constant within the limits 
of integration. After some further algebra (see Supplementary 
Materials for details), the covariance matrix of the non- 
stationary integrated OU process for the positions is

(8)Cov
(
vt, vs

)
= �2

st
exp

(
−

∣ t − s ∣

�st

)
,

(9)

�2
st
=�(s)�(t)

√
2�(s)�(t)

�(s)2+�(t)2
,

�st=

√
�(s)2+�(t)2

2
,

(10)Cov
(
ft, fs

)
= ∫

t

0 ∫
s

0

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
dudr,

(11)Cov
(
fi , fj

)
= ∫

ti

t1
∫
tj

t1

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
dudr.

(12)
∫
t2

t1

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
du + ∫

t3

t2

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
du… + ∫

tj

tj−1

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
du,

(13)

Cov
(
fi , fj

)
=

i−1∑

q=1

j−1∑

p=1
∫
tq+1

tq
∫
tp+1

tp

�2
ru
exp

(
−

∣ r − u ∣

�ru

)
dudr.

(14)�2
pq
= �p�q

√
2�p�q

�2
p
+ �2

q

,

(15)�pq =

√
�2
p
+ �2

q

2
.

(16)

Cov
(
fi , fj

)
=

i−1∑

q=1

j−1∑

p=1
∫
tq+1

tq
∫
tp+1

tp

�2
pq
exp

(
−

∣ r − u ∣

�pq

)
dudr,

(17)

Cov
(
fi , fj

)
=

i−1∑

q=0

j−1∑

p=0

�2
pq
�2
pq

[
2�pq

(
tp+1− tq

)

�pq

+exp

(
−

∣ tp− tq+1 ∣

�pq

)
−exp

(
−

∣ tp+1− tq+1 ∣

�pq

)

−exp

(
−

∣ tp− tq ∣

�pq

)
+exp

(
−

∣ tp+1− tq ∣

�pq

)]
,
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where �pq is the Kronecker delta, that is, �pq = 1, when 
p = q, and 0 otherwise.

Model formulation

In this work, we develop a two- layer hierarchical GP 
model, using the non- stationary integrated OU kernel 
matrix derived above. In this formulation, the timescale 
parameter (corresponding to directional persistence) 
and the variance parameter (corresponding to speed) are 
modelled by GPs.

The timescale and variance parameters are assumed 
to depend on the spatial location x (a 2- d matrix com-
posed of latitude and longitude coordinates), while our 
observations consist of a vector y that is an n × 2 ma-
trix of locations at times t. We assume a regression model 
for the top layer of our GP hierarchy as,

where � ∼ (
0,�2I

)
 is a random observation noise term 

that follows a normal distribution with variance �2 and I 
is an n2 × 2 identity matrix; hence, we neglect any spatial 
variation in the error rates of the telemetry equipment and 
assume a spatially homogeneous measurement error vari-
ance. The latent function f  corresponds to the (unknown) 
true location of the animal and we place a GP prior on this 
vector- valued function,

where y0 is the location of the animal at the first time point 
and kNS

(
t, t′

)
 is the integrated non- stationary kernel de-

fined by Equation 17. We refer to this as the top layer of our 
hierarchy and this corresponds to assuming that the ani-
mal is following an unbiased CRW (Johnson et al., 2008) 
with varying characteristics.

Implicit in the specification of the GP prior is the 
dependence of kNS

(
t, t′

)
 on two lower- level GPs. This is 

the lower layer of our hierarchy. The log of the timescale 
(�) and variance (�2) parameters are modelled as latent 
functions of space and we place separate GP priors on 
these functions,

To link the layers, we first pass the latent functions through 
an exponential transform to ensure positivity, and then we 
translate the spatial dependence of the latent functions to 
the temporal dependence of the non- stationary kernel by 
using the animal's recorded location at time t, that is

These values enter the top layer GP via Equation 17 of the 
non- stationary kernel definition. In order to introduce the 
effect of environmental features into the model, we may 
modify Equation 20 so that the mean of the GP depends 
on an environmental covariate, that is

where e is a vector of covariate values at the location 
x, while �� and �� are vectors of coefficients associated 
with the mean directional persistence and mean speed, 
respectively.

To complete the model formulation, it remains to 
specify the covariance kernels of the lower level GPs, k� 
and k�. These kernels control the covariance structure of 
the latent spatial fields and we employ a standard radial 
basis function kernel (Rasmussen & Williams, 2006) for 
the empirical data study and a periodic kernel for the 
synthetic data. This latter choice is dictated by the peri-
odic boundaries of the simulations (see below for details) 
and would not be an appropriate choice for empirical 
data.

The log marginal likelihood of a trajectory can then 
be found by marginalising the probability of the data 
(the top layer of the GP hierarchy) over the latent func-
tions (the lower layer of the GP hierarchy),

where � and � are the timescale and variance parameters, re-
spectively, at the observation locations. As the latent func-
tions determine the covariance matrix of the top layer GP, 
rather than its mean, the integral in Equation 23 is intracta-
ble. However, as we show below and in the Supplementary 
Materials, methods developed for sparse variational GP 
inference (Hensman et al., 2013; Titsias, 2009) can be ap-
plied to the non- stationary GP model, thereby enabling 
efficient computation of an approximation to the poste-
rior distribution of the latent functions given the location 
observations.

Model inference

To fit the model to data, we implement our framework 
using TensorFlow Probability, a probabilistic program-
ming library that is built on TensorFlow, an open- source 
deep learning platform (Abadi et al., 2016). In general, 
GP regression does not scale well with data set size due 
to the (N3

)
 complexity associated with the inversion 

of the covariance matrix. To compensate for this issue, 
we employ variational inference (VI) (Blei et al.,  2017) 
in place of MCMC- sampling. VI proceeds by first pro-
posing a distribution with which to approximate an un-
known posterior. Once selected the parameters of the 

(18)y = f (t) + �,

(19)f (t) ∼ (
y0, kNS

(
t, t�

))
,

(20)
�̃(x)∼(

�� , k�
(
x, x�

))
,

�̃2(x)∼(
�� , k�

(
x, x�

))
.

(21)
�(t)= exp

[
�̃(y(t))

]
,

�2(t)= exp
[
�̃2(y(t))

]
.

(22)
�̃(x)∼(

�L+�� . e, k�
(
x, x�

))
,

�̃2(x)∼(
��+�� . e, k�

(
x, x�

))
,

(23)logp(y) = log ∭ p(y| f)p(f| �, �)p(�, �)dfd�d�,
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proposed distribution are optimised in order to minimise 
the distance (typically the Kullback– Leibler divergence) 
between the approximate distribution and the true poste-
rior. In essence, VI recasts the problem of Bayesian infer-
ence as an optimisation problem whereby the parameters 
of the variational distribution and any hyperparameters 
associated with the model can be optimised with a gradi-
ent descent algorithm (Hoffman et al., 2013).

Details of the inference scheme can be found in the 
Supplementary Material; however, we describe here two 
key properties of our approach that ensure the frame-
work is able to run efficiently with large numbers of ob-
servations. Firstly, we approximate the full likelihood of 
a trajectory using a segmentation technique, where we 
segment individual trajectories into smaller, equal- sized 
and more computationally manageable sections. This 
approach extends the assumption that each GPS collar 
provides a trajectory that is conditionally independent 
of others given the latent spatial fields by further break-
ing trajectories from the same individual into multiple 
segments. For example, given a trajectory consisting of 
4000 observations spanning 2 years, we break this trajec-
tory into 8 segments of 500 observations each spanning 
a 3- month period. This method, also known as a mix-
ture of GP experts (Rasmussen & Ghahramani,  2002), 
has been applied successfully to movement data (Torney 
et al., 2021) and provides an accurate approximation to 
the true likelihood if the length of the trajectory segment 
is large compared to the autocorrelation length of the GP 
(Snelson & Ghahramani, 2007). In the context of animal 
movement, this corresponds to selecting trajectory seg-
ments with a length greater than the maximum timescale 
over which directional persistence is observed. Secondly, 
rather than learning a latent spatial field value for each 
location of a GPS fix, we define a grid of locations within 
a fixed domain at which we define the function values for 
the lower level GPs. To obtain the values of the timescale 
and variance at the location of an animal (required for 
Equation 21) we compute the conditional probabilities of 
the function values at that location given the grid of la-
tent values. This approach reduces the number of latent 
function values we need to infer and further provides a 
method for these values to be shared across trajectory 
segments.

Empirical data collection

GPS collars were deployed on 31 migratory wildebeest 
(Connochaetes taurinus) in Serengeti National park, 
Tanzania, providing a total of 84,000 GPS observations 
obtained between June 2013 and June 2019. Figure  1 
shows a map of the Serengeti National Park along with 
the recorded locations of wildebeest. The grid of latent 
function locations used for inference is also shown on 
the map. In order to explore the movement response of 

wildebeest to spatially varying features in the landscape, 
we included metrics associated with both resources and 
risks as covariates in the non- stationary GP. Specifically, 
we used Normalised Difference Vegetation Index 
(NDVI), grass nitrogen and the distance to drainage beds 
as the environmental features that might help to explain 
the observed variation in the directional persistence 
and speed of wildebeest across the ecosystem. NDVI is 
a metric of the relative greenness of the vegetation and 
is associated with quality and productivity of the forage 
(Boone et al.,  2006). The concentration of nitrogen 
in forage is a proxy of the protein content and is a key 
component of ungulate diet (Rysava et al., 2016). We also 
estimated the exposure to risk of natural predation by 
measuring the animals' proximity to ephemeral drainage 
lines. In semi- arid savannas, drainages remain dry for 
the majority of the year but are associated with landscape 
features such as thick vegetation, river confluences, and 
erosion terraces, all of which conceal ambush predators 
such as lions and improve their success of catching prey 
(Davidson et al.,  2012; Hopcraft et al.,  2005). Previous 
studies have shown that ungulates reduce the risk of 
predation by avoiding these areas (Anderson et al., 2010; 
Hopcraft et al.,  2012, 2014). Further details on data 
collection can be found in the Supplementary Materials.

Synthetic data generation

For the generation of the synthetic data set, we simulate 
from a non- stationary CRW model, where the param-
eters of the velocity process, mean- reversion, a, and the 
volatility of the OU process, b are position- dependent,

The movement process gives rise to positional observations 
of the animal at discrete time points that are subject to ob-
servation error, so that y = f + � where � is a white noise 
term. We create the spatial fields for a(f) and b(f) using a 
two- dimensional version of the warped sine function,

where � = 2 gives a flattened sine wave that provides a 
more patch- like environment. The spatial field used to 
generate the movement trajectories is shown in Figure 2.

To account for the finite simulation domain, we 
introduce periodic boundary conditions for the envi-
ronment. This creates an infinite domain on which 
the simulated animals move, but they encounter a re-
peating, tiled spatial field if they cross the boundar-
ies of the environment. In this way the boundaries of 

(24)
df= vdt,

dv= −a(f)vdt+b(f)dwt.

(25)wsin(v) =

√
1 + �2

1 + �2sin2(2�v)
sin(2�v),
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the simulation do not affect the movement of the in-
dividuals and all spatially varying movement charac-
teristics result from the latent fields. We simulate 200 
individuals moving across an environment and collect 
500 positional observations from each individual re-
sulting in 100,000 observations. To measure the execu-
tion time of our model, we also generate synthetic data 
sets ranging from 100,000 observations to 1.6 million 
observations.

RESU LTS

To fit the hierarchical model to data and infer the la-
tent spatial fields, we maximise a lower bound on the 
log- marginal likelihood (see Supplementary Material) 
which is equivalent to minimising the Kullback– Leibler 
divergence between the variational distribution and the 
true posterior distribution. We use stochastic gradient 
descent and the Adam optimiser (Kingma & Ba, 2017) to 
achieve this with the negative of the lower bound acting 
as the loss function to be minimised.

Simulation model

We ran the optimiser and monitored the loss over time to 
assess convergence. Training was automatically halted 
if the loss had not decreased over 5 epochs (one epoch 
corresponded to one iteration through the entire data 
set). Training loss is shown in Fig S1. The mean of the 
posterior distributions of the latent spatial fields is shown 
in Figure 2. As we are using simulated data, this can be 
compared to the values used to create the movement 
trajectories. We observe a very close agreement between 
the inferred values and the simulated environment. 
We note that there is not an exact match between the 
hierarchical GP model and the simulation model; 
however, we are able to accurately locate the regions 
of different movement characteristics and recover 
the parameter values within the regions. The model is 
unable to perfectly capture the shape of the timescale 
function as it transitions between regions and this is due 
to the transient dynamics in the velocity process when an 
animal enters a region where its directional persistence 
alters. When the degree of persistence alters there is a 

F I G U R E  1  Telemetry locations and inference grid. A map of the Serengeti National Park with GPS locations shown as blue points. The red 
dots show the inducing grid used for inference of the latent spatial fields.
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delay before this is detectable in the data, and hence a 
blurring of the borders between regions.

To visualise the uncertainty, we show one- dimensional 
profiles of the true environment, inferred values and 
credible intervals in Figure 2c,f. We further investigate 
the execution time of our algorithm and show that we are 
able to process data sets of 1.6 million observations in 
under 3.5 h (see Fig. S2).

Wildebeest movement

Inferring the spatial characteristics of the wildebeest 
migration followed a similar approach to the synthetic 
data. Again we ran the optimiser until the model had 
converged, that is the loss had not decreased for 5 ep-
ochs (see Figs. S3 and S4). Training took around 22 min 
for 84,000 observations on an NVIDIA Quadro GP100 
GPU. Full movement trajectories of the wildebeest were 
split into trajectory segments consisting of 500 points 
which equated to roughly 3 months depending on the 
sampling schedule of the collar. We employed a batch 
size of 4, meaning 4 trajectory segments were passed into 
the optimiser at each iteration, with the data set shuffled 
at the end of each epoch.

Inferred posterior means for the latent fields are 
shown in Figure  3. For uncertainty quantification, we 
also show the posterior standard deviation of the field, 
along with the 95% credible intervals for the posterior 

samples in Figure S5. Our results reveal the migratory 
pathways of the wildebeest; regions of high directional 
persistence can be found in a circuit around the southern 
extent of the Serengeti, corresponding to the main path-
way that moves south along the east of the park and then 
north through the western corridor. A region of high 
speeds, but low directional persistence, can be found at 
the centre of the migration where the long grass plains of 
the Serengeti are found. We expect that this pattern can 
be attributed to rapid transit between the nutrient- rich 
short grass plains in the south- east and the woodland 
areas of the Western corridor.

We further detect significantly different movement be-
haviour in the north west of the park close to the bound-
ary and south of the Tanzania- Kenya border. Here, we 
observe high speeds and high directional persistence, 
meaning we can identify a region through which wilde-
beest move directly and rapidly. This is a region of high 
human density and, while we can not attribute causality, 
our results are strongly suggestive of an effect of human 
presence on the movement behaviour of wildebeest (Rija 
& Kideghesho, 2020). Finally, we note that uncertainty 
in the spatial fields is in general low. High uncertainty 
is only found at the edges of the wildebeest's migratory 
range in regions of very little data. This highlights a key 
advantage of our Bayesian approach. We observe higher 
speeds at the centre of the park and in the north- west 
close to villages and human activity. Since these loca-
tions have low uncertainty, we can be confident that we 

F I G U R E  2  Simulation model inference. (a) and (b) show the inferred kernel variance and approximate ground truth value of the kernel 
variance, respectively. (d) and (e) show the inferred timescale and the approximate ground truth kernel timescale, respectively. (c) and (f) show 
a one- dimensional profile with uncertainty; the black dashed line is the approximate ground truth value of the parameters, the red line is the 
posterior mean and the dark blue region is the 50% CI and the light blue region is the 90% CI.
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are detecting regions of significantly different movement 
behaviour.

We next extend the model to include the effects of the 
environmental covariates, grass nitrogen, NDVI and 
distance to drainage, on the mean values of the move-
ment parameters. Results from this analysis are shown 
in Figure  4. In line with previous studies (Stabach 
et al.,  2022), we find that NDVI values have a signifi-
cant effect on the average speed of wildebeest, with 
lower speeds being associated with high quality forage 
as would be expected. A weaker effect of grass nitrogen 
on movement speed was found. This likely indicates 
that although nitrogen is associated with grass quality 
and protein content, wildebeest are strongly influenced 
by instantaneous conditions and the ephemeral nature 
of resources in the Serengeti (Holdo et al., 2009) makes 

NDVI a better predictor of movement patterns. Grass 
nitrogen did have a small effect on directional per-
sistence, with less directed movements associated with 
regions of high grass quality. This could be caused by 
irregular movements of animals tracking ephemeral 
resources in the wet season, as observed by Hopcraft 
et al.  (2014). Increased distance to drainage, which we 
associate with lower predation risk, had a greater effect 
on directional persistence, along with a large effect on 
movement speeds. These results indicate that wildebeest 
make significantly faster, more directed movements 
through regions associated with high predation risk (i.e. 
regions close to drainage lines). An interesting extension 
to this analysis would be to compare this observed re-
sponse to natural predation with the response to human- 
caused mortality risk.

F I G U R E  3  Empirical data inference. (a) Posterior mean speed calculated from the variational posterior distribution. (b) Posterior mean 
directional persistence. (c) Speed standard deviation of variational posterior distribution. (d) Directional persistence standard deviation of 
variational posterior distribution.



   | 2735PAUN et al.

DISCUSSION

In this work, we present a Bayesian hierarchical frame-
work for learning the latent spatial fields that underlie 
observed animal movement patterns. Our framework 
links two fundamental concepts in statistical ecol-
ogy: spatial random fields and CRW models of animal 
movement. As both these methods can be formulated 
as GPs, we adopt a multi- layer GP approach imple-
mented within the high- performance machine learn-
ing package, TensorFlow. Our framework has several 
advantages over existing approaches to animal move-
ment modelling. Multi- layer GPs offer a flexible, non- 
parametric method of inferring latent spatial fields as 
well as providing an effective means to model spatially 
correlated residuals when fitting parametric models. 
However, while we are not required to make any re-
strictive assumptions about the functional form of the 
underlying field, we can encode prior knowledge into 
the kernel functions of the low level GPs by employing 
appropriate covariance kernels.

In order to efficiently process large data sets, we em-
ploy stochastic VI and a trajectory segmentation tech-
nique that circumvents the cubic scaling of GPs with data 
set size (Rasmussen & Williams, 2006). While segmenta-
tion does introduce artificial breakpoints into continu-
ous trajectories, this will not affect the model inference 
as long as segments are long compared to the timescale 
over which an animal's velocity is autocorrelated. For 
practical applications, this means that location fix rates 

should be set, or subsampled, so that a segment spans a 
time period that exceeds the typical velocity autocorrela-
tion time.

As animal movement is inherently a multiscale pro-
cess (Torney, Hopcraft, et al. 2018) in which animals re-
spond to multiple, often contradictory cues (Hopcraft 
et al.,  2014), a latent spatial field approach can offer 
key insights into the different behaviours that animals 
exhibit across a landscape, enabling specific regions 
to be associated with certain behaviours. This can be 
achieved without having to make decisions about which 
environmental features to include in a model, or how to 
discretise movement data into the individual choices of 
an animal, and can provide information on migratory 
routes, foraging grounds or regions of high perceived 
risk. While our model can infer latent spatial fields 
based on location data alone, it can also incorporate 
specific covariates if required. Hence, the parameters 
of the movement model can be associated with environ-
mental features to explore the drivers of observed spa-
tial patterns and the response of animals to resources 
and risks in the landscape.

Since our method learns spatial patterns of move-
ment directly from data and by- passes the need for hy-
pothesised relationships to environmental covariates, it 
creates opportunities in several ecological application 
areas. Notably, our approach enables the investiga-
tion of human- mediated environmental disturbance on 
animal movement, even when disturbance effects are 
non- local (Kavwele et al.,  2022) or the level of human 

F I G U R E  4  Effect of resources and risk on movement. (a– c) Mean speed as a function of covariate. (d– f) Mean directional persistence as a 
function of covariate. Horizontal dashed line indicates the model intercept, and vertical dashed line indicates the mean covariate value in the 
data set.
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activity is difficult to measure. By detecting regions of 
markedly different movement behaviours, our analysis 
is able to act as a precursor to environmental data col-
lection rather than being dependent on the prior identi-
fication and investigation of spatial covariates. Hence, 
our approach is able to direct data collection efforts to 
regions where movement behaviour is significantly dif-
ferent as compared to other locations or recent history. 
Finally, our method is able to process large- - scale data 
sets consisting of location observations from multiple 
individuals by leveraging techniques from the domain 
of Bayesian machine learning (Ghahramani,  2015). As 
the resolution and volume of animal movement data in-
crease, it seems likely that many of these techniques will 
become invaluable tools for ecologists seeking to extract 
meaningful insight from this wealth of telemetry data 
(Nathan et al., 2022).
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