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ABSTRACT
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Fatty acid metabolism
(FAM) is associated with the development and treatment of HCC. This study aimed to
build a FAM-related gene model to assess the prognosis of HCC and provide guidance
for individual treatment. RNA-sequencing data of patients with HCC from The Cancer
Genome Atlas and Gene Expression Omnibus database (GSE14520) were extracted as
the training and validation sets, respectively. A FAM-related gene predictive signature
was built, and the performance of prognostic model was assessed. The immune
infiltration and drug sensitivity were also evaluated. Quantitative real-time polymerase
chain reaction and western blot were performed to evaluate the levels of the model
genes. A 12-gene FAM-related risk signature was constructed; patients with a higher
risk score had poorer prognosis than those with a lower risk score. Risk score was shown
as an independent risk factor for overall survival of HCC, and the signature was further
confirmed as an effective and accurate model. A nomogram was constructed, and it
exhibited the good performance in the prognostic prediction. In addition, the immune
cell infiltration and sensitivity to chemotherapy drugs were correlated with different
risk levels. Finally, quantitative real-time polymerase chain reaction and western blot
proved the changes of above genes. Differential expression of FAM-related genes can
be used to predict response to immunotherapy and chemotherapy, and improve the
clinical prognosis evaluation of patients withHCC,which provides new clues for further
experimental exploration and verification on FAM-related genes in HCC.

Subjects Bioinformatics, Gastroenterology and Hepatology, Immunology
Keywords Fatty acid metabolism, Prognosis, Immune infiltration, Drug sensitivity, Hepatocellu-
lar carcinoma

INTRODUCTION
Liver cancer is reported to be the third primary reason of cancer-related death worldwide,
only behind lung and colorectal cancers (Sung et al., 2021). Notably, hepatocellular
carcinoma (HCC) accounts for 90% of primary liver cancers (Forner, Reig & Bruix, 2018).
Presently, HCC treatment mainly concludes surgery, chemotherapy, immunotherapy, and
radiotherapy, but the actual long-term survival rate of HCC patients is still unsatisfactory
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(Gluer et al., 2012). Studies showed the genomic and transcriptional heterogeneity among
patients with HCC may be associated with relapse, drug resistance, and poor prognosis
(Xu et al., 2019). Therefore, valid biomarkers are needed for individualized treatment and
prognostic prediction in patients with HCC.

Metabolic rewiring can disrupt cellular homoeostasis, cause excessive cell growth and
proliferation, and further promote cancer. Changes in lipid metabolism acclimate cancer
cells to the various microenvironment by resisting oxidative stress, adjusting intercellular
communication, regulating immune responses, and sustaining key oncogenic functions
(Butler et al., 2020). Therefore, lipid profiles are emerging as the biomarkers for the
prognostic prediction in patients with cancer. Zhu et al. (2021) constructed a model on the
basis of lipid metabolism-related genes and verified its good performance for prognostic
prediction in patients with bladder cancer. Abnormal fatty acid (FA) metabolism (FAM)
in cancer has attracted increased attention as it was recently shown to affect cancer
cell biology (Koundouros & Poulogiannis, 2020). FA not only regulates the synthesis of
biological membranes, but also takes part in the modulation of oncogenic signaling. In
addition, FA serves as substrates for mitochondrial energy synthesis and the form of energy
storage (Hoy, Nagarajan & Butler, 2021). Wang et al. (2016a) revealed the promotion of
FAM in maintenance of HCC cell survival. Therefore, targeting the FAM may be an
underlying method for the HCC treatment. However, due to the diversity of genotypes
and oncobiology, it is difficult to stratify patients with HCC, which limits drug discovery
based on the FAM. Notably, the development of transcriptomics and metabolomics reveal
a novel approach to HCC grouping, and may provide clinical guidance targeting FAM.
Ding et al. (2021) found prognostic model in colorectal cancer via FAM-related genes
and exhibited that low-risk patients were more sensitive to chemotherapeutic agents.
Consequently, targeting the FAM may contribute to the development of a novel signature
for the prognostic prediction and clinical medication for patients with HCC.

Here, we aimed to construct a FAM-related gene model to measure the risk scores,
improve the accuracy of prognosis prediction, explore the drug sensitivity and immune
cell infiltration, and further provide the better guidance for clinical treatment of patients
with HCC.

MATERIALS & METHODS
Data acquisition
The raw RNA sequencing data of HCC were acquired from The Cancer Genome Atlas
(TCGA) database on March 14, 2022. Meanwhile, the clinical information was also
acquired. The GSE14520 (GPL3921) dataset, including data about gene levels and clinical
features of patients with HCC, was extracted from Gene Expression Omnibus (GEO)
database. Notably, samples with incomplete clinical data were excluded. Finally, 370
samples with HCC from the TCGA database were applied as the training set and 221
samples with HCC from the GEO database were used as the validation set.
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Selecting FAM-related differentially expressed genes
A total of 309 FAM-related genes were extracted in FAM pathways, and then 137 common
genes in TCGA and GEO cohorts were identified (Table S1). Moreover, the differentially
expressed FAM-related genes (DEFAMGs) between patients with HCC and control
individuals were obtained on the basis of the following criteria: False Discovery Rate <0.05
and log FC = 0.585. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were carried out on DEFAMGs using the ‘‘cluster
Profiler’’ R package.

Constructing and validating the FAM-related prognostic model
In the training set, the genes significantly related to patient overall survival (OS) were
selected from DEFAMGs using the Univariate Cox analysis. P value <0.01 was regarded as
significant. To avoid overfitting, least absolute shrinkage and selection operator (LASSO)
regression analysis was adopted to construct a prognostic model (Liang et al., 2020). With
the ‘‘glmnet’’ R package, the LASSO algorithm was utilized for variable selection and
shrinkage. The independent variable in the regression was the normalized expression
matrix of candidate prognostic DEFAMGs, and the response variables in the training set
were OS and patients’ status. According to each gene’s normalized expression and related
regression coefficients, the risk score of each patient was computed. The formulae for these
calculations have been previously described (Zhao et al., 2021). Then, Kaplan–Meier (K-M)
analysis and generation of receiver operating characteristic (ROC) curve were carried out.
Next, the independent prognostic performance of the model was assessed by regression
analysis. Besides, the principal-component analysis on the basis of FAM-related genes and
genes used to build prognostic signature model was performed using the ‘‘limma’’ and
‘‘ggplot2’’ R packages. Finally, the FAM-related prognostic signature was further tested
using the K-M analysis and ROC curve in the validation set (GSE14520).

Establishing a predictive nomogram
The nomogram model was created to forecast the OS for patients with HCC via the ‘‘rms’’,
‘‘regplot’’, and ‘‘survival’’ packages. Then, the prognostic performance of the nomogram
was assessed from various aspects.

Exploration of the model in immunity therapy
The gene sets, which included numerous different types of human immune cell subtypes and
immune-related activities, were gathered for evaluation of immune-related characteristics
as previously described (Ding et al., 2021). Single-sample gene-set enrichment analysis
(ssGSEA) was performed using the ‘‘GSEABase’’ and ‘‘GSVA’’ R packages to observe the
immune-related infiltration in patients with HCC. To explore the differences of biological
processes between low- andhigh-risk score groups,GSVAwas performedon the gene profile
using the ‘‘GSVA’’ R package. The reference gene sets were ‘‘c2.cp.kegg.v7.4.symbols’’ from
theMolecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb).In addition,
Tumor ImmuneDysfunction and Exclusion (TIDE) was applied to forecast the feasibility of
immunotherapy (Xu et al., 2020). Moreover, the Wilcoxon test was used to test intergroup
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differences in the levels of potential immune checkpoint molecules, such as PD-1 and
CTLA-4. Statistical significance was set at FDR >0.05.

Exploration of chemotherapy response based on risk model
In order to predict the therapeutic effect of commonly used chemotherapeutic drugs,
including sorafenib, gemcitabine, 5-fluorouracil, paclitaxel, and lapatinib, the half-
maximal inhibitory concentration (IC50) of chemotherapeutic agents was detected
using the ‘‘pRRophetic’’ R package. The relationship between the risk score and IC50
of chemotherapeutic drugs was also assessed.

Cell culture and real-time polymerase chain reaction
The human hepatocyte cell line MIHA and HCC cell lines, MHCC-97H and Huh-7, were
obtained from the BeNa Culture Collection (Suzhou, China), and cultured in Dulbecco’s
modified Eagle medium with 10% fetal bovine serum in a 37 ◦C humidified incubator
containing 5%CO2. Total RNAwas isolated from cells using the TRI-ZOL reagent (Takara,
Otsu, Japan). Then, the cDNA synthesis was performed using the PrimeScriptTM RTMaster
Mix Kit (Takara). Real-time polymerase chain reaction (RT-PCR) was carried out using
the SYBR-Green PCR master mix (Takara) in the Roche Light Cycler R480 (Roche, Basel,
Switzerland). The Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the
internal reference. The relative expression of mRNA levels was calculated by 2−11Ct and
the primer sequences are listed in Table S2.

Western blot analysis
Proteins were extracted from cells with RIPA lysis buffer (Beyotime, Shanghai, China)
containing phenylmethyl sulfonyl fluoride. The concentration of protein was measured by
bicinchoninic acid protein assay kit (Beyotime). Then, a suitable quality of protein samples
was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred
to PVDF membranes (Millipore, Billerica, MA, USA). The 8% skimmed milk was used
to block the PVDF membranes at room temperature for 1 h, and the PVDF membranes
were incubated with primary antibodies at 4 ◦C overnight. The corresponding secondary
antibodies was used at room temperature for 1 h and the protein signals were detected
with FluorChem FC3 system (ProteinSimple, Santa Clara, CA, USA) using an enhanced
chemilusystem reagent (Thermo Fisher). Image J was used to measure the gray values of
the target and reference bands. Then, the target/ reference ratio was regarded as the relative
expression level of target. The antibodies used in this study were as follows: PON1 (1:1000,
A3441, Abclonal,Wuhan, China), CYP2C9 (1:4000, GB114267, Servicebio,Wuhan, China),
ACACA (1:1000, A19627, Abclonal), ACADS (1:1000, A0945, Abclonal), ME1 (1:1000,
A3956, Abclonal), ACAT1 (1:1000, A20943, Abclonal), ELOVL1 (1:1000, A07612, Boster,
Wuhan, China), SMS (1:1000, A9380, Abclonal), ADSL (1:1000, A6278, Abclonal), UGDH
(1:1000, A1210, Abclonal), HSP90AA1 (1:1000, A5006, Abclonal), S100A10 (1:1000,
A13614, Abclonal), GAPDH (Abclonal), horse radish peroxidase (HRP)-linked goat anti
rabbit IgG, and HRP-linked goat anti mouse IgG (1:4000, Antgene, Wuhan, China).
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Statistical analysis
The statistical analyses were carried out via R version 4.1.3 (R Core Team, 2021) and SPSS
25.0 (SPSS, Inc., Chicago, IL, USA). The ssGSEA scores of immune cells or pathways
between the high- and low-risk groups were compared using the Mann–Whitney test with
P values corrected using the BH technique. K-M analysis was used to evaluate the OS
differences between different groups. Univariate and multivariate Cox regression analyses
were performed to identify independent predictors of OS. The Chi-squared test was used
to compare proportional differences. Gene and protein levels in different cell lines were
analyzed by independent sample t -test or correction t -test depending on the homogeneity
of variance analysis. Statistical significance was set at P < 0.05.

RESULTS
Enrichment analysis of DEFAMGs
Differential expression analysis using data from the TCGA database exhibited that there
were 170 DEFAMGs, with 110 genes and 60 genes being upregulated and downregulated,
respectively in HCC samples (Figs. 1A–1B; Table S3). Then, GO analysis showed that FA
metabolic process, long-chain FA metabolic process, and FA biosynthetic process were
highly enriched (Figs. S1A–S1B). Meanwhile, the KEGG analysis also exhibited that FAM,
degradation, and elongation process were highly concentrated (Figs. S1C–S1D). These
findings revealed that FAM played an important part in HCC.

Building a FAM-related risk signature
There were 42 genes associated with OS (P < 0.01; Fig. 2A; Table S4). After the LASSO
regression (Figs. 2B–2C), the following 12 FAM-related genes, PON1, CYP2C9, ACACA,
ACADS, ME1, ACAT1, ELOVL1, SMS, UGDH, ADSL, HSP90AA1, and S100A10,
were selected to build the prediction model. The formula used was as follows: risk
score = (−0.05089 × PON1expression) + (−0.0225 × CYP2C9expression) + (0.08121 ×
ACACAexpression)+ (−0.0002× ACADSexpression)+ (0.06192×ME1expression)+ (−0.0144
×ACAT1expression) + (0.08595 × ELOVL1expression) + (0.25743 × SMSexpression) + (0.0033
× UGDHexpression) + (0.05056 × ADSLexpression) + (0.08092 × HSP90AA1expression) +
(0.03604 × S100A10expression), which is shown in Table S5.

Validating the FAM-related risk signature
The risk scores of HCC were computed using the above formula. Using the median risk
score, patient samples from the TCGA database were classified into low-risk (n= 185)
and high-risk (n= 185) sets (Table S6). Correspondingly, patients from the GEO database
(GSE14520; validation set) were divided into low-risk (n= 106) and high-risk (n= 115)
groups (Table S7). Patients with higher risk had a worse prognosis both in the training
(P < 0.001; Fig. 3A) and validation (GSE14520) sets (P = 0.006; Fig. 3E). In the training
set, the AUCs for 1-, 3-, and 5-year survival were 0.790, 0.685, and 0.698, respectively
(Fig. 3B), while in the validation set, they were 0.644, 0.608, and 0.601, respectively
(GSE14520) (Fig. 3F). The risk score was also verified to be an effective prediction model
both in the univariate (P < 0.001; Fig. 3C) and multivariate Cox regression (P < 0.001;
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Figure 1 Visualization of differentially expressed FAM-related genes. (A) Heatmap of the differentially
expressed FAM-related genes in the low- and high-risk groups. (B) Volcano plot of the differentially ex-
pressed FAM-related genes. FAM: fatty acid metabolism.

Full-size DOI: 10.7717/peerj.14622/fig-1
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Figure 2 The building of prognostic model. Construction of FAM-related prognostic model. (A) For-
est plot displaying the results of the univariate Cox regression analysis between gene expression and OS.
(B–C) LASSO regression analysis identified 12 genes that were used to develop the FAM-related prognos-
tic model. FAM, fatty acid metabolism; OS, overall survival; LASSO, least absolute shrinkage and selection
operator.

Full-size DOI: 10.7717/peerj.14622/fig-2

Fig. 3D). Besides, the principal-component analysis displayed that the model had a better
performance than FAM-related genes in distinction of the different-risk patients (Figs.
3G–3H).

Stratification analysis of the prediction model
Patients in the TCGA dataset were separated into several subgroups by different clinical
parameters and the OS difference was then explored. We exhibited high-risk patients had
a worse prognosis under the condition of Stage I–II (P < 0.001), Stage III–IV (P < 0.001),
G1+2 (P < 0.001), G3+4 (P = 0.01), T1+2 (P < 0.001), T3+4 (P = 0.009), age <60
(P = 0.039), age ≥ 60 (P < 0.001), male (P < 0.001) except for female (P = 0.059) (Figs.
4A–4J).

Construction and assessment of a predictive nomogram
As shown in Fig. 5A, the nomogram was created via clinical information and risk score.
Besides, calibration plots exhibited that the observed OS was approximately consistent with
the predictedOS (Fig. 5B).Moreover, the nomogram (AUC= 0.759) was illustrated to have
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Figure 3 The predictive performance of the model. Predictive performance of the FAMmodel. (A, E) K-
M analysis for the OS of the patients in the low- and high-risk groups in the training and validation sets.
(B, F) AUC of time-dependent ROC curves verified the prognostic accuracy of the risk signature at 1-, 3-
and 5-year survival time in the training and validation sets. (C, D) Results of the univariate and multi-
variate Cox regression analyses of OS in the training set. (G, H) Principal-component analysis based on
all FAM-related genes and risk genes of the model. FAM, fatty acid metabolism; K-M, Kaplan–Meier; OS,
overall survival; AUC, Area under the curve; ROC, receiver operating characteristic.

Full-size DOI: 10.7717/peerj.14622/fig-3
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Figure 4 The Kaplan–Meier curve. Kaplan–Meier curves displaying the survival probability in different
subgroups. (A) Stage I–II, (B) Stage III–IV, (C) G1+2, (D) G3+4, (E) T1+2, (F) T3+4, (G) age <60 years,
(H) age ≥60 years, (I) female sex, (J) male sex.

Full-size DOI: 10.7717/peerj.14622/fig-4
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better performance in the prediction of OS than a single marker, such as risk score (AUC=
0.696), age (AUC= 0.587), gender (AUC= 0.450), grade (AUC= 0.539), and pathological
stage (AUC = 0.663) (Fig. 5C). Then, Figs. 5D and 5E displayed that the nomogram was
effective for the prognostic evaluation (P < 0.001 and P = 0.001, respectively).

Exploring the immune-related characteristic
Figures 6A and 6B showed that the fractions of CD8+ T cells were higher in the low-risk set,
while in the high-risk set, higher fractions were observed in macrophages M0. In addition,
as for the immune-related pathways, the scores of APC co-stimulation, CCR, Check-point,
HLA, MHC-class-I, para-inflammation, T-cell-co-stimulation in the high-risk scores set
was higher than those of the low-risk set. However, the score of Type-II-IFN-Response
represented higher activity in the low-risk set.

Role of the FAM model in predicting the response to immunotherapy
The heatmap analysis showed that a majority of metabolic pathways, such as FAM pathway,
were intensive in the low-risk set, while the high-risk was associated with the cancer-related
and cell signaling-related pathways (Fig. 7A). The TIDE showed higher risk patients may be
more suitable for immunotherapy (Fig. 7B). Furthermore, the levels of PD-1 (P < 0.001,
Fig. 7C) and CTLA-4 (P < 0.001, Fig. 7D) were higher in high- than in low-risk patients.

Response to chemotherapy
We identified the candidate drugs by the FAM-related risk signature (Fig. 8). Patients
from the high-risk set were more sensitive to sorafenib (P < 0.001), gemcitabine
(P < 0.001), 5-fluorouracil (P < 0.001), paclitaxel (P < 0.001), and the sensitivity to
these chemotherapeutic drugs was negatively connected with the risk score. However,
lapatinib (P < 0.001) was more suitable for the low-risk patients and there was a positive
relationship between the sensitivity of chemotherapeutic drugs and risk scores.

Validating the genes in cells by RT-PCR and western blot
ThemRNA levels of 12 genes between hepatocyte cell line andHCC cell lines were evaluated
(Fig. 9). In comparison to MIHA cell line, the expressions of PON1, CYP2C9, ACADS,
and ACAT1 were significantly lower in the MHCC97H and Huh-7 cell lines. In addition,
the levels of ME1, HSP90AA1, S100A10, ACACA, ELOVL1, SMS, and ADSL were higher
in the MHCC97H cell line, and the levels of ME1, HSP90AA1, S100A10, SMS, and UGDH
were higher in the Huh-7 cell line compared with MIHA cell line.

In Fig. 10, we assessed the protein levels of the risk-score genes in these cell lines by
western blot. The levels of ACACA, ME1, ELOVL1, SMS, UGDH, ADSL, HSP90AA1, and
S100A10 were significantly higher in MHCC97H cells than in MIHA cells, and the levels of
ME1, ELOVL1, SMS, UGDH, HSP90AA1, and S100A10 were higher in Huh-7 cells than in
MIHA cells. In addition, the levels of PON1, CYP2C9, ACADS, and ACAT1 were lower in
MHCC97H cells than in MIHA cells, and the levels of PON1, CYP2C9, and ACADS were
significantly lower in Huh-7 cells than in MIHA cells.
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Figure 5 The nomogram. Establishment and evaluation of a nomogram in the training set. (A) Nomo-
grams for predicting the overall survival of patients with HCC at 1-, 3- and 5-year survival time. (B) Cali-
bration curves displaying the concordance between predicted and observed 1-, 3-, and 5-year overall sur-
vival. (C) AUC of time-dependent ROC curves verifying the prognostic performance of the nomogram at
5-year overall survival. (D) Results of the univariate Cox regression of OS in the nomogram. (E) Results of
the multivariate Cox regression of OS in the nomogram. AUC, Area under the curve; HCC, hepatocellular
carcinoma; OS, overall survival; ROC, receiver operating characteristic.

Full-size DOI: 10.7717/peerj.14622/fig-5
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Figure 6 The evaluation of immunological characteristics. Evaluation of immune cells and immuno-
logic function based on risk scores. (A) Fraction of immune cells in the low- and high-risk groups. (B) Im-
munologic function in the low- and high-risk groups (* P < 0.05, ** P < 0.01, *** P < 0.001.).

Full-size DOI: 10.7717/peerj.14622/fig-6

Yang et al. (2022), PeerJ, DOI 10.7717/peerj.14622 12/23

https://peerj.com
https://doi.org/10.7717/peerj.14622/fig-6
http://dx.doi.org/10.7717/peerj.14622


Figure 7 The model in immunotherapy. Ability of the FAMmodel to predict response to immunother-
apy. (A) Heatmap in the low- and high-risk score groups. (B) Comparison of tumor immune dysfunction
and exclusion between low- and high-risk groups. (C) Comparison of PD-1 expression between low- and
high-risk groups. (D) Comparison of CTLA-4 expression between low- and high-risk groups. FAM, fatty
acid metabolism.

Full-size DOI: 10.7717/peerj.14622/fig-7

DISCUSSION
In this study, we analyzed the DEFAMGs between patients with HCC and controls from
the TCGA database. Next, the prognosis-related genes were identified and the novel
prognostic model for patients with HCC was developed. Besides, we validated the model as
an effective biomarker in the GEO database (GSE14520). Furthermore, we demonstrated
the risk score model could forecast the OS, identify the response to immunotherapy, select
the suitable chemotherapy drugs, and provide the guideline for the clinical work. Notably,
we conducted some experimental validations to prove the gene model.

In this study, a total of 12 genes (PON1, CYP2C9, ACACA, ACADS, ME1, ACAT1,
ELOVL1, SMS, UGDH, ADSL,HSP90AA1, and S100A10) were used to build the prognostic
signature. PON1 is involved in inhibiting the adhesion of leukocytes, reducing the chronic

Yang et al. (2022), PeerJ, DOI 10.7717/peerj.14622 13/23

https://peerj.com
https://doi.org/10.7717/peerj.14622/fig-7
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://dx.doi.org/10.7717/peerj.14622


Figure 8 The model in chemotherapy. Relationships between risk scores and chemotherapeutic sensitiv-
ity. IC50s of sorafenib (A), gemcitabine (C), 5-fluorouracil (E), paclitaxel (G), and lapatinib (I) in the low-
and high-risk groups. The relationship between the risk score and sensitivity to sorafenib (B), gemcitabine
(D), 5-fluorouracil (F), paclitaxel (H), and lapatinib (J). IC50: half-maximal inhibitory concentration.

Full-size DOI: 10.7717/peerj.14622/fig-8
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Figure 9 The mRNA expression levels of the related genes. RT-PCR analysis of the 12 model genes in
MIHA, MHCC97H, and Huh-7 cells. Data are presented as the mean± SD, * P < 0.05, ** P < 0.01 and
*** P < 0.001.

Full-size DOI: 10.7717/peerj.14622/fig-9

inflammation, and suppressing the tumor invasion or metastasis (Ding et al., 2020).
ACADS was reported to participate in the proliferation and metastasis of HCC (Chen et
al., 2019a). SMS can influence the metabolic process and is involved in tumor growth (Guo
et al., 2020).Overexpression of ACACA, ME1, ADSL or S100A10 promotes HCC growth,
migration or invasion, and is connected with poor prognosis (Jiang et al., 2021;Nakashima
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Figure 10 The protein expression of the related genes.Western blot analysis of the 12 model genes in
MIHA, MHCC97H, and Huh-7 cells. Data are presented as the mean± SD, * P < 0.05, ** P < 0.01, and
*** P < 0.001.

Full-size DOI: 10.7717/peerj.14622/fig-10
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et al., 2018;Wang et al., 2016b). As for the ACAT1 and CYP2C9, overexpression inhibits the
proliferation and migration of tumor cells (Chen et al., 2019b; Yu et al., 2015). Concerning
the ELOVL1, UGDH and HSP90AA1, studies only showed the correlation with cancer,
and further exploration is needed to elucidate the underlying mechanisms (Fan et al., 2009;
Hama et al., 2021; Shi et al., 2020; Yamashita et al., 2017). As in our study, the levels of
PON1, CYP2C9, ACADS, and ACAT1 were decreased in the HCC and positively associated
with the OS of patients with HCC. The expressions of SMS, HSP90AA1, ADSL, UGDH,
ACACA, ME1, ELOVL1, and S100A10 were increased in the tumor tissues and negatively
associated with the OS. Notably, our experiments in normal hepatocyte and HCC cell lines
confirmed these changes.

In recent years, increasing incidence and mortality of HCC has been a wide concern.
However, the prognosis analysis of patients with HCC is mainly being conducted on the
basis of the conventional staging, which is not sensitive enough (Bruix, Reig & Sherman,
2016). Therefore, identifying reliable prognosticmarkers is necessary to improve the clinical
outcomes of HCC. Recently, it was reported that abnormal metabolism was strongly
connected with the course of tumorigenesis and metastasis (Thakur & Chen, 2019), and
the altered FAM in cancer drew the renewed interest (Koundouros & Poulogiannis, 2020).
Some studies have revealed that orchestrating fatty acid metabolism can regulate the
occurrence and development of HCC (Chen et al., 2021; Ma et al., 2021; Wu et al., 2020).
Notably, lots of metabolism-related genes have been revealed to be valuable prognostic
markers and metabolism-related risk signatures was built to predict OS of HCC (Hu, Yang
& Sang, 2020; Zhao et al., 2021). However, little study on the FAM-related genes risk model
has been done. Therefore, we re-screened the FAM-related genes and finally identified 12
genes to construct the prognostic signature. According to the gene model, patients can
be divided into high- and low-risk groups. K-M curves revealed that high-risk patients
had a shorter survival time than low-risk patients. Furthermore, the predictive capacity of
the model was evaluated. The AUCs for 1-, 3-, and 5-year survival were 0.790, 0.685, and
0.698, respectively, which are higher than those in a previous study (Chen, Yang & Chen,
2022) and indicated the accuracy of our model. In addition, univariate and multivariate
Cox analyses revealed that the model may be applied as an independent prediction factor
in patients with HCC.

Immune system is regarded to play an important role in preventing people from
cancer. In recent years, tumor immunotherapy is emerging as a promising adjuvant
therapy for HCC (Schoenberg et al., 2021). Tumor immunotherapy aimed at strengthening
or weakening the abnormal immune state to control tumor growth or kill tumor cells
(Farkona, Diamandis & Blasutig, 2016). However, only part of patients with HCC were
reported to be sensitive to the tumor immunotherapy. Wu et al. reported that FAM
could adjust the phenotype and function of immune cells, and thus, influence the effect
of immunotherapy (Wu et al., 2019). In this study, according to the FAM-related genes
model, we found that T cells CD8 was downregulated while the Macrophages M0 was
increased in high-risk patients, which suggested the more serious immune disorder in
patients with high risk (Zhao et al., 2021; Zhou et al., 2016). Therefore, these patients may
be more suitable for immunological therapy. TIDE is regarded as an important immune
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response biomarker (Jiang et al., 2018). Patients with a low TIDE score are less likely to
evade anti-tumor immunity, and immunotherapy is likely to be more effective. In our
study, high-risk patients had a lower TIDE score than low-risk patients, suggesting they
may respond better to immunotherapy. Furthermore, we explored the reactivity of the
model in predicting patients’ response to immunotherapeutic agents. We found that
patients with a higher risk score had higher levels of PD-1 and CTLA-4 than those with a
lower risk score, which suggested that anti-PD1 and anti-CTLA-4 antibody therapies may
be more suitable for high-risk score patients. Collectively, the FAM-related genes model
may provide the valuable information to identify HCC patients fit for immunotherapy.

It is reported that different patients respond inconsistently to chemotherapy drugs.
Therefore, the individualized treatment should be taken into consideration to improve the
clinical effect. Ding et al. (2021) constructed the FAM-related risk signatures to forecast
the effect of 5-fluorouracil in colorectal cancer and revealed lower risk patients were
more sensitive to 5-fluorouracil. In this study, we demonstrated that patients with HCC
with high-risk score were more sensitive to sorafenib, gemcitabine, 5-fluorouracil, and
paclitaxel than those with low-risk score; low-risk patients were more sensitive to lapatinib.
The different chemotherapeutic sensitivities may be attributed to the different anti-tumor
mechanisms of these drugs. Sorafenib is a multi-kinase inhibitor that inhibits vascular
endothelial growth factor receptor, thereby reducing angiogenesis and suppressing tumor
cell proliferation of HCC (Tang et al., 2020). Gemcitabine belongs to a class of anti-tumor
drugs that disrupts cell cycle progression and mainly acts on tumor cells during DNA
synthesis, causing DNA breakage and further leading to the tumor cell death of HCC
(Kumar et al., 2022). 5-fluorouracil is an anti-metabolic chemotherapeutic drug that can
suppress thymidine synthase, thus, inhibiting the synthesis of DNA in hepatocellular
tumors (Zhou et al., 2020). Paclitaxel is a naturally occurring anti-tumor agent, which is
able to induce cell growth arrest at the G2/M phase, decrease cell proliferation, accelerate
apoptosis, and further suppressHCC tumorigenesis (Liu et al., 2020). Lapatinib is a tyrosine
kinase inhibitor that can inhibit the epidermal growth factor receptor, and further suppress
cell proliferation and tumor growth of HCC (Ding et al., 2017). Collectively, the different
anti-tumor mechanisms of these drugs may underlie the different sensitivities between the
low- and high-risk patients, and the appropriate chemotherapy can be chosen using the
risk score for patients with HCC in the future.

However, this study also has limitation without the clinical trials. Therefore, further
exploration should be carried out to evaluate the functions of FAM-related genes in patients
with HCC in future.

CONCLUSIONS
In conclusion, we screened the DEFAMGs in patients with HCC using comprehensive
bioinformatic analyses. Then, 12 genes related to prognosis were used to build a risk
model, which was independently connected with the OS for patients with HCC. This model
was externally validated, suggesting its broad applicability. The findings provided a novel,
effective and precise prognostic predictingmodel for patients with HCC.Moreover, the risk
model could provide the guidance for personalized immunotherapy and chemotherapy.
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