Skip to main content
. 2023 Jan 6;11:e14540. doi: 10.7717/peerj.14540

Table 1. Comparison of five richness estimators based on 1,000 simulation data sets under a homogeneous model with S = 1,000 and CV = 0.

The five estimators are: the Chao1 estimator (Chao, 1984) denoted as S ˆChao1, the first-order Jackknife estimator (Burnham & Overton, 1978) denoted as S ˆJack1, the estimator proposed by Chao & Bunge (2002) denoted as S ˆCB, the estimator proposed by Lanumteang & Böhning (2011) denoted as S ˆLB, and the newly proposed estimator denoted as S ˆGP.

Size n (Observed richness) Estimator Average estimate Bias Sample s.e. Average estimated s.e. Sample RMSE 95% CI coverage rate
1,000 (633.0) S ˆChao1 1,006.4 6.4 51.5 51.4 51.9 0.94a
S ˆJack1 1,002.2 2.2a 24.2 27.2 24.3a 0.97
S ˆCB 1,009 9 72.1 106.5 72.7 0.99
S ˆLB 1,019.9 19.9 122.4 118 124.0 0.93
S ˆGP 1,025.3 25.3 84.6 78.2 88.3 0.92
2,000 (864.4) S ˆChao1 1,000.5 0.5 22.8 21.9 22.8 0.94a
S ˆJack1 1,134.9 134.9 20.5 19.7 136.4 0
S ˆCB 1,000.2 0.2a 22 24.1 22a 0.96
S ˆLB 1,007.8 7.8 41.7 39.5 42.4 0.93
S ˆGP 1,006.4 6.4 32 30.4 32.6 0.93
4,000 (981.8) S ˆChao1 1,000.4 0.4a 6 6.3 6 0.94
S ˆJack1 1,055 55 8.7 9.4 55.7 0
S ˆCB 999.4 −0.6 5 5.3 5a 0.95a
S ˆLB 1,001.6 1.6 9.5 9.7 9.6 0.95a
S ˆGP 1,000.8 0.8 7.7 8.3 7.7 0.94
8,000 (999.7) S ˆChao1 1,000.2 0.2 0.8 0.8 0.8 0.94a
S ˆJack1 1,002.4 2.4 1.7 1.6 2.9 0.86
S ˆCB 999.9 −0.1a 0.6 0.6 0.6a 0.84
S ˆLB 1,001.1 1.1 4.1 2.9 4.2 0.84
S ˆGP 1,000.3 0.3 1.2 1.9 1.2 0.94a

Notes.

a

denotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.