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Abstract

Polygenic risk scores (PRS) estimate an individual’s genetic likelihood of complex traits and 

diseases by aggregating information across multiple genetic variants identified from genome-

wide association studies. PRS can predict a broad spectrum of diseases and have therefore 

been widely used in research settings. Some work has investigated their potential applications 

as biomarkers in preventative medicine, but significant work is still needed to definitively 

establish and communicate absolute risk to patients for genetic and modifiable risk factors 

across demographic groups. However, the biggest limitation of PRS currently is that they show 

poor generalizability across diverse ancestries and cohorts. Major efforts are underway through 

methodological development and data generation initiatives to improve their generalizability. This 

review aims to comprehensively discuss current progress on the development of PRS, the factors 

that affect their generalizability, and promising areas for improving their accuracy, portability, and 

implementation.
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GENOME-WIDE ASSOCIATION STUDIES AND GENETIC PREDICTION OF 

COMPLEX TRAITS

Genome-wide association studies (GWAS) of complex traits have grown explosively over 

the last decade (1, 2). In GWAS, researchers typically test millions of associations between 

the genetic variants included in the study [usually single-nucleotide polymorphisms (SNPs)] 

and the phenotype of interest, using a multiple testing significance threshold of p < 5 × 10−8 

genome-wide. GWAS have been enormously helpful in two areas of biomedical research: 

providing unbiased insights into the molecular etiology of diseases and comorbidities and 

predicting genetic risk of diseases to further enable investigations into epidemiology and 

intervention strategies in preventative medicine.

To assess an individual’s genetic predisposition to a common disease, researchers use 

polygenic risk scores (PRS) created from GWAS and individual genotype data in an 

independent target cohort. In their simplest form, PRS are individual-level scores that 

aggregate the number of risk alleles across the genome weighted by their effect sizes. The 

theoretical underpinnings of this model have roots in concepts of complex trait genetics 

and genetic prediction that date back over a century (3). Many first applications of this 

model emerged in agriculture, particularly with estimated breeding values (BVs) in livestock 

genetics (4–6).Similar to challenges with transferring predicted BVs across purebred lines 

in animal models (7), such as the observed decrease in accuracy of estimated BVs in more 

genetically distant breeds, there are challenges with the transferability and thus translation 

of PRS developed across diverse human populations. We focus on generalizability of PRS in 

this review.

Factors That Influence Heritability in the Context of Polygenic Risk Scores

The goal of most prediction models in biomedical research is to predict whether a person 

will develop a disease or the age of onset in individuals who do not yet have the disease. 

The prediction accuracy of a model with genetic predictors, such as PRS, is bounded by 

the heritability of the phenotype. This limit theoretically refers to broad-sense heritability: 

the proportion of a trait’s variance attributable to all genetic variants (8). In practicality, 

however, it is almost impossible to estimate the broad-sense heritability of a phenotype 

because, by definition, it considers the effects of all genetic variants and interactions among 

them. In contrast, narrow-sense heritability, defined as the proportion of a trait’s phenotypic 

variance explained by the additive genetic variation, can be estimated in twin- and family-

based studies (9). The majority of current PRS models are based solely on genotyped 

or high-quality imputed variants. Therefore, the upper limit of PRS is determined by the 

proportion of a trait’s variance captured by the additive effects of these SNPs, also known as 

SNP-based heritability bg
2 , and tends to be a lower bound for narrow-sense heritability (4, 

10). The expected performance of PRS as measured by R2 can be shown as

bg
2 · bg

2

bg
2 + M /N

, 1.
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where bg
2 is the proportion of phenotypic variance explained by genotyped and imputed 

SNPs, M is the effective number of genetic markers (e.g., independent SNPs), and N is 

the sample size (4, 10). It follows that as N goes to infinity, M/N approaches 0, and 

R2 approaches bg
2. Thus, bg

2 can be used to guide how much predictive power to expect 

from PRS based on typical GWAS. Commonly used heritability estimation methods include 

linkage disequilibrium score regression (LDSC), which uses GWAS summary statistics 

(11), and genomic relatedness matrix restricted maximum likelihood (GREML), which uses 

individual-level genotype data (12).

While heritability estimates provide a helpful guide, it is important to note that they are not 

absolute bounds, as they are not fixed properties. Rather, they are specific to the context 

and population in which they are measured. Estimates may vary depending on differences 

in environmental exposures and genetic ancestries (8, 13, 14). Even within a population, 

they may change over time. Characteristics like age, sex, and socioeconomic status have 

been shown to influence heritability estimates for a range of phenotypes in the UK Biobank 

(14). Differences in heritability may to some extent contribute to disparities in PRS accuracy 

across populations, although sample size differences currently play a much larger role 

(15, 16). Further investigations into the phenotypes for which heritability estimates are 

particularly variable across populations will help guide expectations for PRS transferability 

when sample sizes are more comparable across populations.

Partitioning Heritability into Functional Categories for Enrichment Analysis

The advent of GWAS has also accelerated large-scale efforts to define corresponding 

functions across the genome. Some common examples of functional annotations include 

contributions to protein structure and function, potential gene regulatory roles, and 

sensitivity to evolutionary changes (17). These functional annotations are particularly useful 

in differentiating SNPs that potentially have larger effects, may be causal (i.e., mutating the 

genetic variant directly alters the trait), and may explain a larger portion of heritability 

than other SNPs. Altogether, they can help increase the accuracy of SNP heritability 

estimates (17–19). Several methods have been developed to partition SNP heritability by 

these annotations, such as stratified LDSC (S-LDSC) (20) and GREML-based methods (12, 

19, 21). These in turn have been leveraged to improve PRS accuracy and transferability.

POLYGENIC RISK SCORE CONSTRUCTION METHODS

Given the rapid expansion of available GWAS summary statistics [e.g., see the Polygenic 

Score Catalog (22)], there has been a recent flurry of new PRS construction methods 

that improve upon methods originally applied in animal breeding to increase accuracy, 

computational efficiency, and generalizability (23). Each method has advantages and 

disadvantages with varying accuracies and computational burdens across different traits 

and cohorts. The main differences between PRS methods are in their assumptions about 

which variants are included in the predictor and what effect sizes or weights correspond to 

them. PRS methods that use individual-level data, such as LASSO (least absolute shrinkage 

and selection operator) and BLUP (best linear unbiased prediction), can predict the genetic 

component of multiple complex phenotypes with high accuracy (24, 25). However, access 
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to individual-level genotype data is still currently limited because of logistical, data security, 

and ethical considerations. Furthermore, it is computationally challenging to implement 

those methods on current biobank-scale data. We therefore focus primarily on methods that 

only require GWAS summary statistics and a reference panel of linkage disequilibrium (LD) 

information in this review, although approaches have also been developed that combine 

both inputs when individual-level data are partially available (26). The implicit assumption 

for such methods is that the reference sample should be from the same population in 

which GWAS is performed, thus allowing unbiased estimation of LD from the reference 

panel. Discrepancies in LD structure between the GWAS summary statistics and reference 

panel are likely to reduce prediction accuracy. Additionally, the reference panel sample size 

balances computational burden and LD estimation accuracy.

Summary statistics–based PRS methods can be further categorized by variant selection 

strategy, i.e., SNP preselection methods or genome-wide methods. A widely used 

preselection method is pruning and thresholding (P+T), which usually applies multiple 

p-value thresholds together with a fixed LD r2 threshold to remove highly correlated 

SNPs. The LD window size is typically chosen arbitrarily, and SNPs are pruned through 

a process called LD clumping (23). P+T is then optimized by choosing the p-value threshold 

that produces the highest prediction accuracy in a validation or tuning cohort with both 

genotype and phenotype information available. P+T assumes that the selected SNPs are 

nearly independent from each other and thus can be fit additively. Extended models have 

been developed that correct winner’s curse effects or incorporate functional annotations (27, 

28). More sophisticated genome-wide methods can model all markers simultaneously by 

rescaling or shrinking estimated effect sizes. One major advantage of such methods is that 

they account for LD between SNPs using a reference panel in a principled manner, and 

thus genome-wide SNPs can be fit simultaneously with a reduced risk of overfitting. Some 

examples include LDpred (29), SBLUP (30), lassosum (31), SBayesR (32), PRS-CS (33), 

and LDpred2 (34) (Table 1).

PRS methods typically make different assumptions about the prior distribution of SNP effect 

sizes, that is, the proportion of causal SNPs across the genome (ρ) and their effect sizes. 

For example, LDpred uses a Bayesian framework to infer the posterior mean SNP effects by 

assuming a point-normal mixture distribution. One key parameter that needs to be optimized 

is ρ. When this parameter is set to 1 (i.e., all SNPs are causal), the method assumes an 

infinitesimal genetic architecture; this is the same assumption made in SBLUP. Data-driven 

methods such as SBayesR, LDpred2-auto, and PRS-CS-auto can estimate such parameters 

without post hoc tuning, which reduces computational burden. Comprehensive comparisons 

of prediction performance using these methods have been reported in different traits, and a 

standardized benchmarking framework called GenoPred has been developed to enable fair 

comparisons across methods (35–37). A recent comprehensive review connects most PRS 

methods through a multiple linear regression framework and thus compares their advantages 

and shortcomings from a statistical perspective (38). The optimal prediction method depends 

heavily on the trait-specific genetic architecture, and thus Bayesian or nonparametric 

methods that can adapt to different genetic architectures are expected to perform more 

robustly across phenotypes. However, some of these methods are also computationally 

burdensome. There are ongoing efforts in this active research area to develop methods that 
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improve both prediction accuracy and computational efficiency in current biobank-scale 

datasets.

Increasing Polygenic Risk Score Accuracy and Generalizability Through Multitrait, 
Multiancestry, and Functional Annotation Extensions

There are several potential approaches for extending single-trait PRS methods to improve 

accuracy and transferability (Figure 1). For example, multitrait methods leverage abundant 

genetic correlations (rg) among complex traits by aggregating GWAS information across 

related traits (39–41). Previous studies have reported extensive genetic correlations among 

related traits, such as between schizophrenia and bipolar disorder [rg = 0.79, standard error 

(SE) = 0.04] and between type 2 diabetes and body mass index (BMI) (rg = 0.36, SE = 0.04) 

(11). By modeling the genetic correlations between related traits, multitrait PRS methods 

such as wMT-SBLUP (42) can estimate more accurate SNP effect sizes because of their 

shared genetic basis. Some methods, such as the multitrait analysis of GWAS (MTAG) 

method, boost power by modeling genetic correlation and GWAS summary statistics from 

related traits to produce trait-specific GWAS effect size estimates that can then be used 

as input to PRS methods (40). These approaches typically significantly increase prediction 

accuracy, especially for underpowered GWAS due to limited sample sizes or heritability; 

however, they inherently trade off interpretability of the estimates by combining multiple 

correlated traits for a single PRS construction.

In addition to multitrait approaches, PRS approaches that incorporate information 

from ancestrally diverse populations improve prediction performance especially in 

underrepresented non-European populations by leveraging well-powered GWAS from 

European populations (43–46) (Table 1), typically with little if any decrease in accuracy for 

majority populations. Multiancestry PRS methods typically assume that genetic architecture 

is largely shared across populations. Indeed, an analysis of 31 complex traits identified 

high cross-population genetic correlations of 0.85 (SE = 0.01) on average between East 

Asians and Europeans (47), replicating earlier findings (48). Furthermore, multiancestry 

PRS methods such as PRS-CSx (46), which linearly combines PRS computed from GWAS 

of multiple ancestries, enable more accurate PRS construction by sharing information 

across multiple ancestry populations and leveraging differences in allele frequencies and 

LD. While methodological challenges remain stemming from cross-ancestry differences 

in biology (e.g., heterogeneous effect sizes), the environment [e.g., gene–environment 

(GxE) interaction effects], and technology (e.g., different phenotyping, genotyping, and 

imputation strategies), multiancestry PRS methods are promising approaches for improving 

PRS accuracy and transferability across populations, especially until we reach well-powered 

and comparable sample sizes of GWAS in underrepresented populations.

Additional extensions of PRS methods have been developed that incorporate functional 

annotations to improve the accuracy of PRS, such as LDpred-funct (49) and AnnoPred (50). 

LDpred-funct leverages trait-specific functional priors using a baseline-LD model (49, 51). 

AnnoPred estimates per-SNP heritability using S-LDSC to more heavily weight SNPs with 

greater potential functionality in PRS (50). These two methods have performed comparably 

in analyses despite differences in their inclusion of imputed variants and in how they model 
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polygenicity. Relatedly, IMPACT is a resource of regulatory annotations from epigenetic and 

transcription factor binding datasets across a wide range of cell types that has been used 

in PRS to select SNPs by prioritizing functional variants with more ancestrally portable 

genetic effects in GWAS data (52). Other methods that attempt to identify and prioritize 

causal variants in PRS through (functionally informed) fine-mapping, such as PolyPred, 

more accurately assign causal effect sizes that are more transferable via their shared causal 

mechanisms of biology; these have also been shown to outperform standard PRS approaches 

(44).

Each category of PRS construction method discussed here—those that incorporate multitrait, 

multiancestry, or functional annotations—has separately been shown to improve prediction. 

However, most approaches do not link multiple extensions, such as using multitrait and 

multiancestry data together. Hypothetically, one approach would be to apply a method 

like MTAG for multiple traits within several populations, then use a multiancestry method 

such as PRS-CSx to combine results across populations. A limitation of this multimethod 

approach, however, is that MTAG requires all GWAS to have high statistical power, which 

is unlikely to be available for all populations and phenotypes. Approaches are therefore still 

clearly needed to model and include multiple data modalities to improve PRS portability.

Pleiotropy

The extensive genetic correlation discovered among traits is in part due to pleiotropy, a 

phenomenon where genetic variants affect multiple traits (53, 54). A systematic analysis 

of 558 publicly available well-powered GWAS demonstrated that 90% of trait-associated 

loci have pleiotropic effects (54). As previously discussed, we can leverage such pleiotropic 

effects to improve prediction accuracy, particularly in clinical research. For example, type 

2 diabetes subtypes can be inferred by modeling polygenic risk from waist-hip ratio, BMI, 

lipids, and other traits (55). Theoretically, the proportion of variance explained R2 for the 

target trait yi by the PRS of its correlated trait yj can be written as

R2 = cov yi, yj
2

var yi var yj
. 2.

This equation can be approximated as

R2 ≈ rg2 · bg, i
2 · bg, j

2

bg, j
2 + Mj

Nj

, 3.

using approximations var yj = bg, j
2 +

Mj
Nj

 and 

cov yi, yj = cov gi, gj ≈ cov gi, gj = rg bg, i
2 · bg, j

2  where bg, i
2  and bg, j

2  are respectively SNP-

based heritability for traits i and j, rg is their genetic correlation, and Nj and Mj are 

respectively numbers of samples and independent variants for PRS estimation in trait j 

(56). When Nj goes to infinity, R2 approaches R2 ≈ rg2 ⋅ bg, i
2 . As SNP-based heritability is the 

theoretical upper bound of R2 for the PRS of any target disease, this equation provides an 

Wang et al. Page 6

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analogous upper bound of PRS derived from correlated traits, which is proportional to the 

squared genetic correlation of the target and correlated trait (Figure 2a).

While potentially useful for increasing the accuracy of PRS for certain traits, leveraging 

the pervasive pleiotropy for prediction also raises serious concerns about unintended 

consequences of PRS in many settings, such as embryo selection. For example, a previous 

study reported that embryo selection based on higher polygenic scores for educational 

attainment would increase the risk of bipolar disorder by 16% from an absolute risk of 1% 

to 1.16% (57). The magnitude of this unintended consequence depends on many parameters, 

including heritability, genetic correlation, PRS predictive performance, the number of 

embryos for selection, and the prevalence of the traits in the population (Figure 2b). Other 

work has demonstrated how these parameters affect the expected risk reduction for the 

target disease and risk increase for correlated diseases under different simulation settings 

(58). With a typical number of embryos (n = 5) and prevalence (k = 1%), the relative risk 

increase ranges from ~6% for weakly correlated diseases (rg = −0.1) to ~22% for strongly 

correlated diseases (rg = −0.3). These observations indicate that careful consideration is 

required to prevent unintended and potentially harmful consequences of selecting embryos 

for pleiotropic traits.

EVALUATING POLYGENIC RISK SCORE ACCURACY

There are several metrics for evaluating PRS accuracy, each measuring various aspects of 

model performance. Typically, the performance of PRS is evaluated in an independent target 

dataset. Using linear regression for quantitative traits or logistic regression for binary traits, 

we test the relationship between the genetically predicted and measured phenotype. For PRS 

methods that require tuning of hyperparameters, an additional validation/tuning dataset may 

be required to avoid overfitting. In these cases, both target datasets (validation and testing 

cohorts) require individual-level genotype and phenotype data. Previous work has shown 

that pseudo-validation can be an alternative strategy to determine optimal hyperparameters 

when the validation phenotypes are not available (31).

While the squared correlation (R2) between true phenotype and PRS is an intuitive 

evaluation of phenotypic variance explained for quantitative traits, incremental or partial 

R2 is most often used to quantify the specific contribution of PRS after accounting for 

appropriate covariates in the regression. For binary traits, pseudo-R2 metrics serve as 

conceptual proxies, of which Nagelkerke’s R2 is one of the most widely used statistics. 

To improve interpretability and comparability across cohorts, however, pseudo-R2 metrics 

on the liability scale adjust the metric by case–control ratios so that it is comparable 

to trait heritability. This conversion typically requires disease population prevalence (59), 

which may require careful consideration if prevalences vary across populations. To assess 

the discriminative power of the model to correctly predict individuals with and without a 

disease, researchers most commonly use the metric known as area under the ROC (receiver 

operating characteristic) curve (AUC) (sometimes referred to as Concordance statistics, 

C-index, or C-statistics for survival models). AUC values of 0.5 and 1 indicate no and 

perfect discriminatory ability between cases and controls, respectively. PRS can be modeled 

both with and without other risk factors to understand the performance of specific risk 
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factors, as well as the overall combined model. Additional evaluations based on the PRS 

distribution between cases and controls are often required in order to assess the clinical 

utility of predictive models. As a continuous score, PRS enable the use of any threshold 

to stratify individuals at different levels of risk. Recent studies have measured odds ratios 

(ORs) by comparing top ranked PRS values relative to other PRS strata (e.g., middle stratum 

or the remaining strata combined), but such comparisons can be misleading. Within such 

comparisons, ORs between extreme PRS strata (usually top versus bottom, e.g., 10%, 5%, 

or even 1%) are often inflated relative to OR estimates comparing groups with and groups 

without a disease (60). With information such as AUC and prevalence of binary traits, the 

relative risks in a reference group can be transformed to absolute scales in the general 

population using online tools (61) and R packages (62). Conversion from relative to absolute 

risk scales (e.g., lifetime remaining risk or five-year risk) aids interpretability, is necessary 

for clinical decision-making, and leaves less room for overly optimistic interpretations of 

model utility (63). Relatively few absolute risk models are used in clinical medicine, and 

an open challenge arises when PRS can add significantly to a disease area for which no 

absolute risk models exist beyond simple risk modifiers such as age and sex.

The exciting potential applications of PRS in the clinic should be accompanied by careful 

considerations of best practices for PRS construction and evaluation. PRS models for 

individual-level risk prediction are currently somewhat unstable; for example, when PRS 

are developed for the same trait and ancestry with different discovery GWAS, typically 

only small to modest proportions of individuals in the upper tails of the PRS distribution 

in the same target cohort overlap (64). This highlights the uncertainty of PRS estimates 

for individual-level risk stratification (65). Moreover, PRS performance is related to trait-

specific genetic architecture. Therefore, systematically exploring the absolute risk of an 

individual developing a particular disease is necessary, particularly for the translation 

of PRS. Additionally, recent PRS evaluations have been highly inconsistent between 

studies, making it difficult to compare utility across studies. There are ongoing efforts to 

improve the reproducibility of PRS studies and benchmarking against other PRS, such as 

PRS repositories to encourage data-sharing and transparency (66). These efforts propose 

guidelines and protocols for performing PRS analyses and improving reporting standards 

(60, 63, 67). However, guidance on multiancestry PRS construction and best practices in all 

these efforts are lacking. Specifically, while multiancestry GWAS are currently critical for 

overcoming vast Eurocentric biases, they raise further challenges in PRS construction and 

evaluation practices. Furthermore, as PRS methods improve and GWAS attain larger sample 

sizes, corresponding effect sizes used as weights in PRS methods will change over time. 

Therefore, more sophisticated methods are needed to keep PRS updated or ensure that PRS 

are stable over time, with equitable benefits in different contexts.

POLYGENIC RISK SCORE TRANSFERABILITY ACROSS ANCESTRIES

Given vast Eurocentric biases in genetic studies, PRS have wide-ranging accuracies across 

populations. Specifically, PRS constructed from current Eurocentric GWAS are most 

accurate for European ancestry populations (68). PRS are typically constructed using 

common variants [with a minor allele frequency (MAF) of at least 1%]; these common 

variants typically arose long ago in human history and are thus expected to be shared across 
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ancestries. While some degree of transferability of PRS across ancestries might be expected, 

such accuracy can be greatly attenuated, especially in more genetically divergent populations 

relative to the discovery population (16, 69). For example, predictions of PRS in African 

ancestry populations are only ~20–40% as accurate as in European populations when using 

European-based GWAS (70, 71) (Figure 3). This limited portability of PRS across ancestries 

is relatively consistent regardless of the PRS methods used (72, 73). Instead, GWAS 

discovery cohort composition has the largest impact on prediction accuracy. Many additional 

factors can contribute to such limited PRS transferability, such as (a) between-ancestry 

MAF and LD differences, (b) fine-scale population structures, (c) portability differences 

of indirect and direct effects, and (d) differences of cohort characteristics in the discovery 

and target populations. This has motivated data generation and methods development for 

improving PRS transferability across ancestrally diverse populations.

Minor Allele Frequency and Linkage Disequilibrium Differences Across Ancestries

GWAS have the highest statistical power to identify common genome-wide significant 

variants, resulting in higher frequency variants in the discovery population. Therefore, 

variants that are rare or less common in Eurocentric GWAS can be more easily identified 

in other non-European ancestry populations when they are at intermediate frequencies. 

Relatedly, LD is dependent on the variant’s MAF (74). The LD statistics, r or r2, quantify 

the taggability of genotyped or imputed SNPs and vary markedly among ancestries with 

different demographic histories. Genetic variants with intermediate MAF (i.e., ~0.3) are 

likely to produce higher LD correlations, and thus have the highest power to be detected 

in the discovery population (75). LD differences in turn impact effect size estimation, 

which is proportional to the LD r between tag SNPs and causal variants. Accounting for 

MAF and LD differences across ancestries can largely explain the limited portability of 

PRS generated with European-based GWAS under the simplest assumption that causal 

variants underlying the trait are shared (72). Therefore, PRS transferability is expected 

to improve when modeling between-ancestry LD and MAF differences. For example, the 

highest genetic differentiation among continental ancestries is between African and out-of-

Africa populations due to the out-of-Africa migration; consequently, extensive computer 

simulations have shown that using African ancestry cohorts as discovery GWAS will 

generate more generalizable associations, with more similar allele frequencies across 

continental populations from less genetic drift (76). Furthermore, the resolution of fine-

mapping studies greatly benefits from multiancestry cohorts due to between-ancestry LD 

differences, especially when including African populations (77). This also has the potential 

to improve PRS transferability, as recent studies suggest that common causal variants tend to 

be shared across ancestries (45, 78, 79).

Fine-Scale Population Structure

The limits of PRS transferability have been less well studied within finer-scale population 

structures, such as among subpopulations of the same or similar ancestry groups. 

Geographic distributions or novel dimensionality-reduction methods can uncover discrete 

clusters of individuals within the same ancestry, such as in Finland (80), Japan (81) and 

the United Kingdom (73). Inconsistencies between PRS and observed phenotype differences 

across continental ancestry groups have also been identified in relatively homogeneous 
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populations. These findings can pose problems in the interpretation and clinical translation 

of PRS. For example, previously identified polygenic adaptation signals were shown to 

be confounded by cryptic population structures in the UK Biobank (82, 83). Although 

cryptic population structures could potentially increase the prediction accuracy of PRS, 

they may simultaneously limit generalizability and interpretability (Figure 1). Therefore, 

understanding the full extent and consequences of uncorrected population structure (Figure 

4) will be critical for improving PRS transferability.

Admixed Populations

PRS transferability issues are especially evident in recently admixed populations, for which 

two or more ancestral components (typically originating from different continents) are 

present in each genome. Recently admixed populations are also largely underrepresented. 

However, these populations provide unique opportunities to explore approaches for 

improving PRS transferability. First, they provide some (albeit imperfect) level of control 

for environmental differences across groups given the disparate continental ancestral 

components within their genomes. Second, studies have shown that the prediction 

performance of PRS from European-derived GWAS decays with increasing admixture 

proportions from underrepresented ancestries, especially African ancestries (84, 85). 

Therefore, local ancestry-specific effect size estimates can boost GWAS power (86) and 

have the potential to improve prediction performance in admixed populations, particularly 

for traits with relatively sparse genetic architectures (84, 87). Some methods that model 

local ancestry have also been developed but not yet widely applied (88, 89). Linearly 

combining PRS from large-scale European ancestry GWAS and smaller underrepresented 

non-European target ancestries has improved prediction in mixed ancestry populations 

(43, 84). A schizophrenia study has shown that more diverse GWAS discovery cohorts 

can also improve prediction performance in recently admixed populations (90). These 

results highlight the utility of admixed populations for better understanding how PRS 

transferability could be improved with a larger effective sample size, a larger fraction 

of participants included with diverse ancestries, and more contributing genetically distant 

source populations.

Family History and Direct Versus Indirect Genetic Effects on Phenotypes

Differences in the contribution of direct versus indirect genetic effects may also influence 

effect size differences across populations and thus limit PRS transferability. Direct and 

indirect effects both refer to causal genetic variants. However, direct effects are the effects 

of inherited genetic variation on the phenotype of the individual that carries that variant. In 

contrast, indirect genetic effects denote effects of a relative’s genotype on the phenotype of 

an individual through a shared environment (91, 92). Examples of indirect genetic effects 

include variants that affect parental or sibling behaviors (93). GWAS typically only include 

unrelated samples without family data, and therefore capture the combination of direct and 

indirect effects (93). This maximizes predictive power for PRS, so in many cases effect 

size estimates from standard GWAS without family data is preferred and sufficient for PRS 

construction (93). Within-family genetic association studies (for example, within-sibship 

GWAS) can be used to obtain more precise estimates of direct genetic effects. Studies 

that have compared within- and between-family PRS prediction have indeed found that 
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for a number of traits, standard GWAS have greater prediction accuracy than sib-GWAS, 

indicating that some degree of genotype-environment correlation typically impacts PRS 

accuracy (94–96). However, as noted by these studies, a consequence of this increased 

predictive power may be decreased portability, even within the same ancestry. Therefore, 

decomposing direct from indirect effects may guide more generalizable prediction models, 

particularly for phenotypes in which indirect effects may have outsized contributions, such 

as behavioral traits. This will require datasets with genotyped siblings and/or parents at a 

much larger scale than currently available to reach sufficient statistical power to parse direct 

versus indirect effects. Polygenic transmission disequilibrium tests (pTDT) in family data 

can also illuminate how common and rare genetic risk factors contribute to liability (97). 

In the absence of large-scale genetic studies with pedigree data, family history information 

alone can boost PRS accuracy (98). This builds on prior work showing that PRS informs risk 

somewhat independently of self-reported family history (99).

Collider Bias, Gene–Environment Interaction Effects, and Nongenetic Factors

Interpretation of PRS generalizability requires consideration of the GWAS cohort study 

design. Nearly all GWAS are subject to some degree of ascertainment bias. For example, 

the volunteer-based ascertainment of the UK Biobank study means that participants tend to 

be healthier, wealthier, and higher educated than average (100), whereas hospital-ascertained 

cases may be sicker on average. The latter may also introduce collider bias, in which even if 

two variables were initially unrelated, they become correlated through a downstream effect 

of the two variables. In the hospital ascertainment example, two unrelated diseases that 

cause hospitalization may become correlated in a dataset due to the study design. This may 

induce phenotypic correlation and some degree of GWAS effect size correlation between the 

two unrelated phenotypes.

PRS models, in their most common and basic form, do not consider effects of nongenetic, 

environmental variables on phenotypes. This may hinder PRS transferability in contexts 

where GxE interactions exist. GxE interaction effects can be defined as phenomena 

whereby the effect of a genotype on a phenotype depends on the environment (101, 

102). Consequently, the effect of the variant on the phenotype can differ in magnitude 

across populations depending on the environment, so PRS will not necessarily transfer 

consistently (93). There are few reproducible examples of GxE interactions. One example is 

the attenuation of obesity risk from FTO variants as a function of multiple lifestyle factors, 

including physical activity and alcohol consumption (103, 104). Insufficient statistical 

power, multiple testing burden, and lack of reproducible environmental measures are major 

barriers to pinpointing GxE interactions (93). However, with the advent of PRS, studies 

have been able to move beyond candidate GxE interactions to genome-wide studies. 

This approach has been particularly prevalent in the neuropsychiatric field, where several 

investigations have been conducted into the effects of interactions between PRS and various 

relevant exposures on depression, psychosis, and neuroticism (105–107). Additionally, 

studies have investigated the effects of interactions among PRS for education on obesity 

(108, 109). The consistency of these effects and other interactions in non-European ancestry 

populations remains an open question. It is also unclear how these interactions may attenuate 

the power and generalizability of PRS in different populations.
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Studying GxE interactions across populations is a considerable challenge that will require 

rigorous evaluations of the contribution of nongenetic factors to disease risk in different 

populations. The immense scale of possible environmental exposures and the difficulties 

in systematically and reproducibly collecting and defining these exposures have so far 

impeded investigations into the effects of nongenetic factors in aggregate. Some have 

considered coarse environmental risk scores in the context of multipollutants (110, 111). 

More recently, studies have more broadly evaluated polyexposome scores alongside PRS 

from insurance billing and zip code data (112); such analyses can be challenging to 

interpret, as environmental effects that are causal rather than a consequence of disease 

cannot be determined without further longitudinal measures. With the establishment of the 

UK Biobank, some progress has been made on quantifying the effects of a wide range of 

modifiable environmental factors on disease risk alongside PRS (113). However, we need 

more investment in the systematic collection of environmental variables, as well as novel 

analytic approaches, to fully elucidate environmental contributions to phenotypes.

POTENTIAL TRANSLATIONAL USES

Utility of Polygenic Risk Scores in Population Risk Stratification and Screening, Not 
Diagnostic Tests

A growing number of studies have identified significant associations between PRS and 

disease status, highlighting interest in their potential for clinical translation. While PRS 

hold clear promise in research settings and are increasingly studied in preventative medicine 

contexts, their clinical utility is neither definitive nor clear (114, 115). Currently, PRS 

enthusiasts, skeptics, and researchers along this spectrum disagree on the strength of 

evidence needed for risk stratification in clinical settings. Varying opinions notwithstanding, 

establishing clinical value requires an evidence base akin to existing biomarkers already 

used in preventative medicine—i.e., showing that incorporating PRS into current clinical 

models significantly improves patient outcomes, and in which specific contexts and areas 

of medicine (116, 117). Testing these models also requires shifting from a relative risk 

distribution to an absolute disease risk estimate (116, 118).

While not unique to PRS, an especially pernicious issue when evaluating their accuracy is 

context dependence. Interpreting the predictive value of PRS for individuals with ancestries 

from multiple disparate origins is particularly challenging with current scales of data and 

methods. Clinical models for risk factors in other areas of medicine over- and underestimate 

risk for certain populations as well. For example, including pooled cohort equations used 

in atherosclerotic cardiovascular diseases (CVD) may systematically underestimate risk in 

minorities or overestimate risk in patients with higher socioeconomic status (119). However, 

ancestral study composition has a far more direct impact on PRS prediction accuracy (15) 

than it does on the validity of biomarkers used in most areas of medicine.

A potential benefit of PRS beyond other biomarkers is their informativeness relatively early 

in life, before other biomarkers typically show increased risk (120, 121). This complicates 

clinical trial designs, which tend to be relatively short, however, because disease diagnoses 

are rarer early in life and, thus, more time is required to observe the potential benefits of 

early interventions. Recent studies show that PRS can be used as biomarkers before lab tests 
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are elevated in presymptomatic patients, and higher PRS may be associated with an earlier 

age of onset for complex diseases (122, 123). Conversely, one benefit of the utility of PRS 

early in life is their potential to prevent overscreening (124, 125).

The most promising areas of medicine where PRS may be beneficial soonest are for diseases 

that have actionable interventions, are significantly heritable, have large-scale GWAS 

available, and improve current clinical models or facilitate the development of clinical 

models where they are lacking. Some examples include breast and prostate cancer (121, 

124, 126, 127), type 1 and 2 diabetes (128, 129), and CVD (116, 120, 130, 131). As PRS 

offer probabilistic insights into disease risk and trait likelihood, they are not diagnostic tools. 

Therefore, communicating risk for complex traits distilled by PRS requires particular care 

to avoid perceptions of genetic determinism (57, 132). PRS for schizophrenia and psychosis 

have higher predictive power than most other common diseases but have shown limited 

prognostic value compared to features captured in a structured clinical interview (133) and 

unclear actionability. Potential applications for PRS beyond assessing disease risk include 

predicting response to treatment, such as for antipsychotic medications (134). In contrast to 

these promising areas of medicine, PRS have been considered for screening outside typical 

preventative medicine contexts, such as embryo selection offered by direct-to-consumer 

companies. This use of PRS is unregulated, remains ethically problematic and scientifically 

dubious, and is overshadowed by other considerations with in vitro fertilization (57, 135).

Use Cases of Polygenic Risk Scores Alongside Clinical Risk Factors and Demographic 
Information

In risk stratification models, PRS often perform poorly alone but comparatively well in 

combination with existing risk factors (114, 120). Their clinical utility should therefore be 

evaluated in concert with other disease-specific risk factors (114, 120). Perhaps the most 

obvious near-term use case for clinical implementation of PRS is in breast cancer; PRS have 

outperformed current existing clinical risk models for breast cancer in European ancestry 

populations for several years and are becoming increasingly precise and nuanced (121, 

124, 126, 127). One clinical model used for breast cancer risk analysis, the Breast and 

Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), 

provides a flexible framework that can include rare truncating variants in BRCA1, BRCA2, 

PALB2, CHEK2, and ATM; PRS; family history; and mammographic density (136, 137). 

The effects of various risk factors are typically combined multiplicatively (126, 137). 

Incorporating genetic risk factors that are enriched in disease subtypes, for example, 

in estrogen receptor (ER)-positive versus ER-negative breast cancer, may be possible in 

further model extensions, informing prevention programs based on risk-reducing medication 

(136). While most PRS inform relative risk, a critical step in clinical utility adopted by 

BOADICEA is transforming to absolute risks and providing clear clinical thresholds for 

screening and prevention. Figure 5 combines information from previous proposals for 

implementation (136–138). In practice, however, guidelines for screening and management 

vary enormously across a wide range of professional organizations (e.g., American Cancer 

Society and US Preventive Services Task Force). Even when recommendations are clearer, 

for example, regarding the interpretation of pathogenic genetic variants from the American 
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College of Medical Genetics and Genomics (139), health risk is communicated to patients 

who make the ultimate decisions about screening or prevention.

Another clinical area where PRS show promise is the prevention of CVD. PRS in European 

ancestry populations aggregate effects similar in magnitude to monogenic risk variants 

(131). They also predict risk more accurately than other individual risk factors routinely 

used in clinical models including smoking, diabetes, family history of heart disease, 

BMI, hypertension, and high cholesterol; intuitively, the best performing model combines 

PRS with these conventional risk factors (120) (Figure 6). Evidence of PRS utility from 

retrospective studies of CVD in the United States and United Kingdom has so far been 

absent or modest (140, 141). However, a major challenge with these early interpretations 

and PRS evaluation is their utility earlier in life, requiring studies that are longer term 

than those used for typical risk factors. Prospective studies offer more real-world insights 

into the question of clinical utility, and an observational follow-up study in Finland has 

shown early promise, along with a clinical trial in the United States in which PRS motivated 

positive changes in health behavior (142, 143). Relatedly, the contributions of monogenic 

and polygenic risk factors to QT interval duration have also been jointly investigated in 

the UK Biobank and Trans-Omics for Precision Medicine (TOPMed) Consortium; in both 

studies, monogenic variants and PRS contribute to risk of long QT syndrome, but most 

patients do not have elevated risk from either risk factor (144). Implementing PRS more 

generally will likely require multiple large-scale follow-up studies, as notable differences 

abound in social cohesion and healthcare systems across countries participating in existing 

studies. Cost also needs to be evaluated to determine the economic burden for implementing 

such a system versus the amount recouped through early diagnosis or disease prevention 

(127).

Current Deployment Examples

Clinical translation of PRS has already begun, with initial efforts in a limited number of 

health systems, although studies to evaluate efficacy and considerations are still needed. A 

prominent area where PRS are being integrated and tested is in breast and ovarian cancer, 

for example, with the BOADICEA approach. This model is implemented as a web interface 

in the CanRisk Tool (145), which is already publicly available to medical practitioners and 

researchers for breast cancer screening and risk stratification research. PRS are also being 

deployed and evaluated in the context of CVD risk screening. For example, a report recently 

described a framework for how policymakers and healthcare systems could incorporate PRS 

for CVD into NHS (National Health Service) health checks in the United Kingdom (146). 

Similarly, the Electronic Medical Records and Genomics (eMERGE) Network has also 

evaluated PRS for CVD risk across some ancestries and healthcare settings, with consistent 

findings to those described previously (130).

There are also already several early examples of PRS available directly to consumers, 

through their healthcare providers via for-profit and nonprofit companies, and in research 

settings. For example, consumers who already have their own genotyping data can upload 

their genetic data to Impute.me (147) to calculate their PRS and their contextualized 

meaning with respect to a broader population. 23andMe already provides PRS for type 
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2 diabetes (148). Additionally, Myriad Genetics markets the Myriad RiskScore, which 

combines an 86-SNP-based PRS for breast cancer with a clinical risk score (149). Recently, 

Ambry Genetics discontinued AmbryScore, a similar product, in part because of limited 

data across ancestry groups (117). Genomics PLC has developed PRS as well as predictive 

models for CVD and other disease areas that integrate PRS (150, 151).

Communicating risk remains a major challenge for integrated polygenic and traditional risk 

models across all disease areas. Current evidence on the effect of communicating genetic 

risk alongside lifestyle factors in, for example, CVD is mixed, with caveats regarding who 

communicates the information and how (i.e., a trusted doctor versus a web-based form) 

(142, 152).

FUTURE DIRECTIONS

As PRS have become increasingly powerful with the exponential growth in GWAS, attention 

has shifted toward new research directions and clinical translation. Far beyond their original 

human applications in biology, more recent proposals include applications in social sciences 

such as personalized education. Some researchers and groups have called for a society-

wide conversation on acceptable uses of PRS accompanied by potential regulation and 

oversight particularly with more controversial uses such as embryo selection (57, 153). 

Simultaneously, enthusiasm has ramped up for implementation in some areas of healthcare 

as PRS have become increasingly available and predictive.

A major ethical and scientific concern with all of these use cases of PRS currently is that 

they have uneven accuracies across populations due to Eurocentric genetic study biases (15). 

Therefore, major efforts are underway to increase the generalizability of PRS across diverse 

cohorts, ancestries, and populations. In addition to rapidly expanding the diversity of GWAS 

data, several promising areas of exploration are underway for improving the accuracy of 

PRS across all populations. These include extending PRS methods to integrate multiple 

ancestries, traits, and functional annotations.

The lack of PRS generalizability across ancestries is easily measurable and has been well 

documented. While genetic studies are especially prone to issues of stratification, other 

epidemiological risk factors are likely to suffer from the same study biases in medicine 

more broadly but may be less reproducibly measured and therefore less obvious. Already, 

some evidence of racial biases has been identified in algorithms that have been designed to 

coordinate care among patients (154). Therefore, the lack of PRS generalizability should be 

a warning that many other algorithms used to assess risk and care for patients are also likely 

to suffer from biases that could exacerbate health disparities but are fixable.
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Figure 1. 
(a) PRS analysis steps. First, we obtain the estimated effect sizes β  of genetic markers 

from the training data. Second, we use different PRS construction methods to rescale or 

reshrink the estimated effect sizes. We optimize the hyperparameters of those methods 

requiring fine-tuning in the validation/tuning cohort. Finally, we construct the PRS and then 

validate their performance in the independent test data. (b) Extensions of PRS methods 

based on GWAS summary statistics that incorporate multitrait, multiancestry, and functional 

annotation data. Abbreviations: BLUP, best linear unbiased prediction; CTPR, cross-trait 

penalized regression; GWAS, genome-wide association study; IMPACT, inference and 

modeling of phenotype-related active transcription; LMM, linear mixed model; MTAG, 

multitrait analysis of GWAS; P+T, pruning and thresholding; PANPRS, Pleiotropy and 

ANnotation information into PRS; PRS, polygenic risk scores; PRS-CSx, PRS continuous 

shrinkage extension; SBayesR, summary statistics Bayesian multiple regression model; 

SBLUP, summary statistics–based BLUP; SNP, single-nucleotide polymorphism; wMT, 

weighted multitrait; XP-BLUP, cross-population BLUP; XPASS, cross-population analysis 

with summary statistics.
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Figure 2. 
(a) Theoretical upper bound of the proportion of variance explained, R2, based on Equation 

3. For a given target trait (with heritability bg
2) and its correlated trait (with genetic 

correlation rg2 to the target trait), the plot shows distributions of theoretical maximum R2. 

Dotted lines represent contours of maximum R2 = 0.1,. . ., 0.9. (b) The relative risk increases 

for correlated traits by selecting embryos based on higher polygenic scores of educational 

attainment. With different levels of heritability and prevalence of correlated traits, the plot 

demonstrates how the relative risk increase changes with regard to genetic correlation with 

the target trait (educational attainment). We set the number of embryos for selection to be 

10; broad-sense and SNP-based heritabilities of educational attainment to be 0.4 and 0.1, 

respectively; and standard deviation of educational attainment to be 3.2. To generate this 

figure, we modified the simulation framework developed by Turley et al. (57).
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Figure 3. 
Prediction accuracy of polygenic risk scores relative to European ancestry individuals across 

17 quantitative traits and 5 continental ancestry groups in the UK Biobank. Violin plots 

show the distributions of relative prediction accuracies, points show mean values, and error 

bars show standard error of the mean. Figure adapted from Reference 15.
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Figure 4. 
Uncorrected population stratification in GWAS is pervasive. Across several studies, there 

are significant correlations between PCs in the 1000 Genomes Project and effect size 

estimates β  from GWAS for a range of phenotypes. Abbreviations: BMI, body mass 

index; DIAGRAM, Diabetes Genetics Replication and Meta-analysis; GIANT, Genetic 

Investigation of Anthropometric Traits; GWAS, genome-wide association studies; IBD, 

inflammatory bowel disease; MAGIC, Meta-Analysis of Glucose and Insulin-related traits 

Consortium; PC, principal component; PGC, Psychiatric Genomics Consortium; ReproGen, 

Reproductive Genetics; SSGAC, Social Science Genetic Association Consortium; TAG, 

Tobacco and Genetics.
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Figure 5. 
A clinical translated model for breast and ovarian cancer risk that incorporates PRS 

alongside other clinical information. While BOADICEA includes sex information, this was 

simplified in the diagram given the higher prevalence among women. The model and 

screening strategies summarized in this figure have been described more fully previously 

(136, 138, 145). Abbreviations: BMI, body mass index; BOADICEA, Breast and Ovarian 

Analysis of Disease Incidence and Carrier Estimation Algorithm; ER, estrogen receptor; 

Fam hx, family history; MRI, magnetic resonance imaging; PRS, polygenic risk scores.
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Figure 6. 
Current clinical risk factors for cardiovascular disease alongside PRS. Figure adapted from 

Reference 120 (CC BY 4.0). Abbreviations: GRS, genetic risk score; PRS, polygenic risk 

scores.
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Table 1

Overview of existing PRS methods

Type
a Method (Ref.) Description Tuning parameters

b Extensions

Single trait, single 
ancestry

P+T (23) Selects independent trait-associated SNPs 
within a specified LD window

Usually just p-value 
threshold; additional LD 
window and LD r2 tuning 
has the potential to 
improve accuracy

2D PRS (27) 
(integrate P+T and 
functional 
annotations); 
doubly weighted 
GRS (28) (correct 
for winner’s curse); 
SCT (155) (stack 
multiple PRS built 
from P+T with 
varying parameters 
using penalized 
regression)

LDpred (29) Uses a Bayesian multiple regression 
framework; LDpred-inf assumes an 
infinitesimal model

Proportion of SNPs with 
nonzero effects and LD 
radius for grid model

LDPred2 (34) 
(faster and more 
robust, automated 
model without 
tuning parameters 
implemented); 
LDpred-funct (49) 
(leverages 
functional 
annotations)

SBLUP (30) Assumes an infinitesimal model, approximates 
BLUP effects

NA wMT-SBLUP (39)

Lassosum (31) Uses a penalized regression framework with a 
LASSO-type penalty

Penalty parameter and 
shrinkage parameter for 
the LD correlation 
matrix; pseudo-validation 
applicable

NA

SBayesR (32) Uses a Bayesian multiple regression 
framework; an approximation of BayesR

NA SBayesS, 
SBayesRS (156)

PRS-CS (33) Uses a Bayesian multiple regression 
framework with continuous mixture shrinkage 
priors

Proportion of SNPs with 
nonzero effects for grid 
model

PRS-CSx (46)

NPS (157) Uses a partitioning-based nonparametric 
shrinkage framework

NA NA

DBSLMM 
(158)

Assumes all SNPs have nonzero effects, with 
some having larger effects; an approximation 
of BSLMM

NA NA

SDPR(159) Uses a Bayesian nonparametric model through 
Dirichlet process regression

NA NA

Meta-PRS (26) Uses a linear combination of one PRS derived 
from individual-level data using BOLT-LMM 
and another derived from GWAS summary 
statistics using LDpred/P+T

Weight for each PRS 
and LDpred/P+T-related 
hyperparameters

NA

Single trait and 
single ancestry, 
with functional 
annotations

AnnoPred (50) Leverages genomic and epigenomic functional 
annotations based on a Bayesian framework; 
AnnoPred-inf assumes infinitesimal models

Proportion of SNPs with 
nonzero effects

PleioPred (41)

JAMpred (160) Uses a two-step Bayesian variable selection 
framework

Sparsity parameter 
reflecting the proportion of 
SNPs with nonzero effects

NA

IMPACT (52) Uses regulation annotations to prioritize nearly 
independent variants selected by P+T in 
Europeans and generalized in East Asians

Same as P+T; the 
proportion of SNPs 
explaining the closest 50% 
SNP-based heritability

NA
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Type
a Method (Ref.) Description Tuning parameters

b Extensions

Multitrait wMT-SBLUP 
(39)

Combines genetically correlated traits in a 
weighted index; an approximation of MT-
BLUP

NA NA

MTAG (40) Meta-analyzes genetically correlated traits 
accounting for sample overlap; usually the 
outputs are further used for other PRS 
construction methods

Dependent on the 
downstream PRS 
construction methods

NA

CTPR(161) Uses a cross-trait penalized regression 
framework with the LASSO and minimax 
concave penalty

Penalty parameters NA

PANPRS (162) Uses a penalized regression framework 
integrating pleiotropy and functional 
annotations

Penalty and sparsity 
parameters

NA

PDR(163) Identifies shared pleiotropic components 
underlying genetically correlated traits to 
estimate posterior mean effect sizes

Dependent on the 
downstream PRS 
construction methods

NA

Multitrait with 
functional 
annotations

PleioPred (41) Leverages pleiotropy and functional 
annotations based on a Bayesian 
framework; PleioPred-inf/PleioPred-anno-inf 
assume infinitesimal models

Covariance within the 
overlapping individuals; 
not required for 
noninfinitesimal models

NA

Multiancestry XP-BLUP (88) Uses large-scale trans-ancestry auxiliary 
GWAS (usually European GWAS) to select 
trait-associated SNPs as a variance component 
and evaluates ancestry-specific effect sizes 
using linear mixed models

Same as P+T NA

MultiPRS (43) Uses a weighted combination of PRS trained 
from different populations

Weight for each PRS NA

XPASS (164) Leverages trans-ancestry genetic correlation; 
XPASS+incorporates population-specific 
effects

Same as P+T for XPASS+ NA

PRS-CSx (46) Jointly models multiple GWAS from diverse 
ancestries using a Bayesian framework 
assuming continuous effect size shrinkage

Proportion of SNPs with 
nonzero effects for grid 
model; weight for each 
PRS

NA

shaPRS (165) Utilizes shared genetic effects across ancestries 
using a modified meta-analysis from two 
GWAS (one is from target ancestries); also 
applies to two genetically correlated traits in 
the same ancestry

Dependent on the 
downstream PRS 
construction methods

NA

Multiancestry with 
functional 
annotations/fine-
mapping

Polypred, 
Polypred+ (44)

Uses a linear combination of predictors 
from functionally informed fine-mapping 
and BOLT-LMM/SBayesR/PRS-CS in large-
scale European GWAS; Polypred+additionally 
incorporates predictors from large-scale data in 
target ancestry if available

Weight for each PRS NA

a
The listed PRS methods are categorized as single- or multiancestry and single- or multitrait, with some incorporating additional information such 

as functional annotations and fine-mapping (a detailed example is shown in Figure 1b).

b
For methods requiring additional validation/tuning cohorts, the corresponding tuning parameters are also briefly described.

Abbreviations: BayesR, Bayesian multiple regression model; BLUP, best linear unbiased prediction; CTPR, cross-trait penalized regression; 
DBSLMM, deterministic Bayesian sparse linear mixed model; GRS, genetic risk score; GWAS, genome-wide association study; IMPACT, 
inference and modeling of phenotype-related active transcription; LASSO, least absolute shrinkage and selection operator; LD, linkage 
disequilibrium; MTAG, multitrait analysis of GWAS; NA, not any; P+T, pruning and thresholding; PANPRS, Pleiotropy and ANnotation 
information into PRS; PRS, polygenic risk scores; PRS-CSx, PRS continuous shrinkage extension; SBayesR, summary statistics Bayesian multiple 
regression model; SBayesRS, SBayesS extension following the multicomponent mixture model of SBayesR; SBayesS, summary data-based 
BayesS; SBLUP, summary statistics–based BLUP; SCT, stacked clumping and thresholding; SDPR, summary data–based Dirichlet process 
regression model; SNP, single-nucleotide polymorphism; wMT, weighted multitrait; XP-BLUP, cross-population BLUP; XPASS, cross-population 
analysis with summary statistics.
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